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Abstract—We present a scheme that propagates a reference
skeletal model (s-rep) into a particular case of an object, thereby
propagating the initial shape-related layout of the skeleton-to-
boundary vectors, called spokes. The scheme represents the
surfaces of the template as well as the target objects by spherical
harmonics and computes a warp between these via a thin plate
spline. To form the propagated s-rep, it applies the warp to the
spokes of the template s-rep and then statistically refines. This
automatic approach promises to make s-rep fitting robust for
complicated objects, which allows s-rep based statistics to be
available to all. The improvement in fitting and statistics is
significant compared with the previous methods and in statistics
compared with a state-of-the-art boundary based method.

Index Terms—Skeletal model, correspondence propagation,
statistical analysis, thin plate spline, medical imaging.

l. INTRODUCTION

The ability to accurately and robustly represent sets of
similar objects is an important and well-studied problem in
computer vision [1, 2] and medical image analysis applications
[3, 4]. Skeletal models for representing objects have shown
particular strengths. As a result of their property of providing a
shape-based coordinate system for the object interior and near
exterior, they provide special capabilities for mechanical
modeling [5-8] and for the image match term used in
segmentation [9, 10]. Because they capture not only global
boundary locations but also local object width properties and
boundary directional properties, they have provided stronger
statistical summaries of object populations, and these have led
to improved prior terms needed for segmentation, which
together with the advantages for the image match term have
yielded superior segmentations [9].

A particular form of quasi-medial skeletal model called the
s-rep [11] has been shown in numerous recent papers to be
more powerful for various statistical pattern recognition
objectives, e.g., in classification (diagnosis) [12], hypothesis
testing [13] and in the general probability distribution
properties of specificity, generalization, and compactness [14]
as compared to boundary point distribution models (PDMs)
[15]. This s-rep consists of a grid of spoke vectors proceeding
from the skeletal surface to the object boundary (Fig. 1).

To gain this expanded capability, s-reps must be fit tightly
to the training objects in a way producing correspondence.
Methods previously available [11, 13, 16] to obtain such fits
can be summarized as 1) define a template s-rep (denoted as
Tsrep ); 2) solve an optimization problem that fits the

interpolated form of T,..,, to each target object; 3) compute the
mean of the generated s-reps; 4) repeat this fitting process by
replacing Ts,..,, with the mean. This standard fitting process
has been tedious to use and has required much manual
intervention, leading to weaknesses in correspondence as well
as limited use of this representation by others than those in or
closely collaborating with our laboratory. Moreover, it
performs poorly for more complex objects with variable
bending and twisting.

Means of propagating a reference model into a particular
object have been applied to PDMs. Cootes et al. presented
such a method based on PDM statistics, active shape models
[17]. Davies et al. [18] proposed a method for improving such
statistical shape models by putting them into inter-object
correspondence based on minimum description length. To
obtain the additional geometric information captured by s-rep,
a similar means of propagating a reference model is needed.
Styner et al. [19] demonstrated a thin plate spline (TPS)
warping that maps objects to a common medial branching
topology while matching their PDM boundaries perfectly.

In this letter we improve s-rep fitting by initializing the
optimization in steps 2-4 above with a TPS-based propagation
of Ty, into the target object. For complicated objects this
leads to much more automatic fits with good correspondence.
This promises to make the advantages of s-reps described
above available to all users of shape statistics.

The propagation uses the spherical harmonics point
distribution model (SPHARM-PDM) [3] representing both
Tsrep and the target object as the basis for computing the TPS
warp and then applies that warp to the skeleton-to-boundary
spoke vectors of Tg,.q),.

Our main contribution is two-fold: 1) a novel scheme for
fitting significantly improved s-reps via TPS warping; 2) an
effective way to propagate the correspondence provided by the
initial shape model.

The remainder of this letter is organized as follows.
Section Il describes the input and related formulations. Section
Il presents our proposed method. Experimental results are
given in Section 1V, followed by a discussion in Section V.

I1. INITIAL SHAPE MODEL AND SPHARM SURFACE
The input to the proposed method is a predefined template
s-rep Tsep (s€€ Fig. 1a), which is iteratively fitted to the
object using the standard pipeline discussed in Section | under



supervision; and a population of target PDMs sampled from
each object. These PDMs can be those extended from any 3D
surface detection method (e.g., [20, 21]). As aforementioned,
here we use the SPHARM-PDM which is an up-to-date, open
source, public available framework that has been extensively
used in shape statistics [14, 18, 22-25] and medical image
applications [26-29] to describe binary segmented magnetic
resonance (MR) images. Spherical harmonics (SPHARM)
describes a surface x(8, ¢) using
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where the basis functions Y™ (6, ¢), —l < m <[, of degree |
and order m are defined on 8 € [0, ] X ¢ € [0,27) and where
the 3D coefficients ¢]™ are obtained by solving the least-
squares problems in each spatial coordinate directions.

Every point p; on the surface is one-to-one mapped to a
parameter vector (6;, ;) on the unit sphere. The bijective
mapping of the surface to the sphere is done by modifying the
parameter vectors in a constrained optimization procedure
considering minimal quadrilateral distortion and area
preservation that is used to force every object region to map to
a region of proportional area in parameter space. Each object’s
optimization is preceded by a setting of its axis and prime
meridian using second moments of its {p;}.

A homogeneous sampling of the spherical parameter space
uses a linear, uniform icosahedron subdivision along each edge
of the original icosahedron. Suppose we get a set of parameter
vectors (6;, ;) through the homogeneous sampling on the
spherical parameter space. The PDM of the object surface can
be obtained directly by putting the coefficients into Eq. (1),
thus a sampled point p; at location (8;, ¢;) takes on the form:
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where K is a linear subdivision level of the icosahedron, which
was selected depending on the complexity of the objects.
In this letter each lateral ventricle was sampled by a linear
subdivision level K = 10, which composes a PDM consisting
of 1002 points. All PDMs were normalized to the unit space.

I1l. METHOD
The main issue addressed in this letter is the automatic and
robust TPS-based propagation of a reference s-rep into unseen
target objects. The following sections present the main
components of our novel scheme: 1) get TPS deformations
from T, to each of the target PDMs; 2) warp T, by each
TPS deformation; 3) refine the warped target s-reps.

A. Thin Plate Spline Deformation

Given landmarks {p;, = (xx, ¥, 2x), k = 1, ..., m} that must
map into target landmarks {p;,' = (x', vi'.z'). k = 1,...,m},
the TPS [30] provides the deformation that minimizes the
bending energy

f fm(fxzx + 5 + 2+ 215 + 2f5 + 2f5)dxdydz - (3)

where f7, i,j € {x,y,z} denotes the squares of the second-

order partial derivatives. That deformation maps any point p =
(x,y, z) into the target point p’ = (x',y', z") by the equation
m

p’=A_x+Ap+ZwkU(|p—pkl) 4)

k=1
where U(s) = s?In(s) and the three values in the translation
Ax, the nine values in the 3 x 3 matrix 4, and the 3m values
of the weights w, of the warp basis functions U(|p — pi|) are
computed by solving linear equations involving vectors
connecting corresponding landmarks in {p,} and {p;'}.

B. Deriving the Warps for Target PDMs

The process starts from getting the SPHARM boundary for
Tsrep (Fig. 1a), which is achieved by applying the same
formula as for the target PDMs presented in Section II. The
resulting PDM acts as the template PDM (referred to as T;,4,).
The yellow points in Fig. 1b are the resulting T,,4,,, for the T,.,.

I skeletal surface

‘ spoke
W

Fig. 1. (a) The template lateral ventricle s-rep; (b) that s-rep with its
SPHARM boundary shown as yellow points. The magenta lines proceeding
from the skeletal surface (cyan) to the object’s boundary are spokes.

The calculation of the warp T; for each target PDM j can be
done by solving the linear equations discussed in in Section I11-
A, where the landmarks {p,} are the boundary points T,4,, in
the SPHARM-PDM derived from T5,..,and . the landmarks
{px'} are analogous points in each of the target PDMs.
Applying T; to spoke’s two endpoints p yields the
corresponding spoke endpoints p’.

For a population of N target objects, we get a set of mapping
functions {T},j = 1, ..., N} each defining a warp T; that can be
applied to deform the spoke endpoint pairs in T, to get its
warped target s-rep.

C. Creating Initializing Warped S-reps

The process of creating a warped target s-rep (denoted as
Wiyrep) is summarized in Table I. The set of transforms {T},j =
1,..., N} are applied to the “landmark pairs” (the tail point and
tip point of each spoke) of the template s-rep. The resulting
“landmark pairs” are used to produce the j* target s-rep. Each
spoke has a position (the coordinate of the spoke tail), a
direction (a unit vector pointing from tail to tip) and a radius
(the length of the spoke vector).

These warped s-reps can be refined by slightly modifying
each spoke’s length and direction to optimize the fit to the
binary image. The refinement process is beyond the scope of
this letter. The evaluations described in the next section are all
based on the warped s-reps without refinement.



TABLE |
PROCESS FOR THE CREATION OF TARGET S-REPS

Input:  Tgrep and {T},j = 1,...,N.}
Output:  {Werep}

for the j TPS transformation T;
for each spoke of T,
tpsSpokeTail = applyTPS(T}, spokeTail);
tpsSpokeTip = applyTPS(T}, spokeTip);

spokeRadius = calculateSpokeRadius(tpsSpokeTail, tpsSpokeTip);
spokeDirection = calculateUnitDir(tpsSpokeTail, tpsSpokeTip);

saveNewSpoke(tpsSpokeTail, spokeRadiu, spokeDirection);
end
saveNewsSrep();
end

IV. EXPERIMENTAL RESULTS

The proposed method was evaluated on a set of real world
lateral ventricle objects semi-automatically segmented from
MR images in neonate datasets. The details of this dataset and
its segmentation procedures were described in [31]. We
selected 94 lateral ventricles for our tests presented here. The
program was implemented in C++, all experiments were done
on a 64-bit 3.20 GHz Intel Quad Core PC with 8 GB RAM. It
takes about 11 minutes to get the SPHARM-PDM surface, 5
minutes to get the TPS propagated s-rep, and 29 minutes to get
the standardly fitted s-rep for one object.

We first investigated the smoothness of the surfaces implied
by the propagated s-reps resulting from the proposed approach.
Then we compared these s-reps with those from the standard
method. Following this we evaluated the statistics of these s-
reps via three commonly used measurements: generalization
G(M), specificity S(M) and compactness C(M), which were
first introduced by Davies [32] and have been widely used in
previous literature [18, 26, 33]. Briefly, a lower value is
desirable for all three metrics. Finally, we studied the shape
variability captured by the proposed method and the baseline.

As described in Section Il, our input objects were described
by the SPHARM-PDMs, which also provide the ground truth
to evaluate if our warped s-reps imply the correct object
boundaries (similar to the input surfaces). Fig. 2 shows two
example objects described by SPHARM-PDMs with the
corresponding warped target s-reps shown inside.

In Figs. 2a,b we can see that all the spokes (magenta lines)
located in the object interior (bounded by the yellow points).
All the spoke tips (magenta points in Figs. 2cd) lie
approximately on the baseline surface (yellow points, the
SPHARM-PDM). These tell us that our warped target s-reps
achieve a rather smooth surface.

To further evaluate the propagated fitting, we compared the
implied boundary of the s-reps resulting from the proposed
method with those from the aforementioned standard fitting
process that was extensively used for fitting relatively simple
objects (e.g., [12, 13, 15, 34]). Results show that the proposed
method achieves reasonable smooth surfaces with improved
overlap with the target object, while there are error regions
from their methods (e.g., Fig. 3).

Fig. 2. Visualization of two example objects (each column is an object) with
the propagated s-reps shown inside of their own baseline (SPHARM-PDM). (a)
and (b) are the s-reps fitted into the baseline (yellow points); (c) and (d) are the
spokes ends (spoke tail (white), spoke tip (magenta)) fitted into the baseline.

SPHARM-PDM
baseline

S proposed method

Fig. 3. (a) The surface for the standardly fitted s-rep; (b) the surface for the
SPHARM-PDM (which is the baseline); (c) the surface for our propagated s-
rep; (d) and (e) are the overlap of the baseline onto (a) and (c), respectively.
The red frames indicate the approximate corresponding positions. The blue
arrows indicate the significant differences of the two methods in comparison.

The erroneous bumps in Figs. 3a,d show the surface implied
by a standardly fitted s-rep. These bumps need to be adjusted
manually followed by redoing of the fitting; even this doesn’t
guarantee better fit for complicated objects. But our method
(Figs. 3c,e) automatically yields significantly improved s-reps
with smooth surfaces. This is because the TPS warps are
globally smooth and robust to narrow/thin regions, unlike the
previous method for matching the s-rep model to the objects.
Also, problems of poor convergence of the previous
optimization method when initialized poorly are avoided.

To evaluate the statistics of the resulting propagated s-reps, a
Procrustes alignment was performed to remove the translation,
scaling and rotation variances introduced by each model. Figs.
4a,b display all the 94 samples in the population together; each



was represented by the SPHARM-PDMs and the s-reps. The
alignment brings the shapes closer (Figs. 4c,d).

Original
SPHARM-PDMs

Aligned )
SPHARM-PDMs Aligned s-reps
Fig. 4. All the 94 training shapes overlaid on top of each other. Each shape is
described by the SPHARM-PDM (a) and the s-rep (b). After applying the
Procrustes alignment, the shapes described by both shape models get close and
tight as (c) and (d). Colors indicate different shapes in the population.
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Fig. 5. Comparisons of correspondence quality among different PDMs. M is
the shape parameters used for constructing new instances.

The correspondence quality among our propagated s-reps,
the standardly fitted s-reps and the baseline are compared in
Fig. 5. We collected two types of PDMs implied by s-rep
spokes: B-PDM, which has 106 points (only spoke tip points)
and BS-PDM, which has 212 points (spoke tail-and-tip points).
Fig. 5 tells us that the proposed method achieves lower values
than other methods in all three measurements, which means
that our warped s-reps are superior.

TABLE I
SHAPE VARIANCES OF DIFFERENT METHODS (%)

Point set A A, As Ay As A¢  Sum
B-PDM 42.7 153 113 6.2 5.0 3.0 835
BS-PDM 37.8 186 118 7.1 5.5 3.1 839

SPHARM-PDM  40.4 157 105 6.0 51 29 804

Table 11 lists the contribution of the first six eigenmodes for
B-PDM and BS-PDM from our warped s-reps and the baseling;
we can see that the total shape variances captured by these
eigenmodes are 83.5%, 83.9% and 80.4% respectively. This
suggests that the proposed model captures more shape variance
even if we only consider the object boundaries implied by s-
reps (B-PDM) and describes the object with lower dimension.
On inspection, all three types of PDMs appear to be of good
quality; each main eigenmode describes a plausible pattern of
variation observed in the population (see Fig. 6 for a
visualization of the first eigenmode).

Fig. 6. From left to right column: B-PDM, BS-PDM and SPHARM-PDM. The
middle row is the mean shape resulting from different point sets; the top and

bottom rows are +./4; respectively.

V. CONCLUSION

We presented a novel scheme that propagates a reference
skeletal model (T5,.,,) to a set of biomedical objects to obtain
their fitted s-reps. This is done by representing the surfaces of
Trep as Well as the target objects by spherical harmonics and
computing a thin plate spline warp between these, and applying
this warp to J5,.,. Experimental results proved that 1) this
automatic scheme creates stable s-reps that are robust for
complicated objects; 2) the propagated s-reps have significantly
improved fitting and model properties as compared with the
standardly fitted s-reps; 3) the propagated s-reps in the
presence of considerable shape variability gain over the
baseline. The resulting s-reps can be further statistically
improved in spoke correspondence (e.g., [14]). In the future,
we expect to obtain better fits by using shape change statistics
in the refinement step. The resulting s-reps can be applied to
achieve better results on classification, hypothesis testing and
probability distribution estimation, as well as a variety of
medical image applications dependent on these statistical
analyses.
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