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Abstract—We present a scheme that propagates a reference 

skeletal model (s-rep) into a particular case of an object, thereby 

propagating the initial shape-related layout of the skeleton-to-

boundary vectors, called spokes. The scheme represents the 

surfaces of the template as well as the target objects by spherical 

harmonics and computes a warp between these via a thin plate 

spline. To form the propagated s-rep, it applies the warp to the 

spokes of the template s-rep and then statistically refines. This 

automatic approach promises to make s-rep fitting robust for 

complicated objects, which allows s-rep based statistics to be 

available to all. The improvement in fitting and statistics is 

significant compared with the previous methods and in statistics 

compared with a state-of-the-art boundary based method. 

 

Index Terms—Skeletal model, correspondence propagation, 

statistical analysis, thin plate spline, medical imaging. 

 

I.  INTRODUCTION 

The ability to accurately and robustly represent sets of 

similar objects is an important and well-studied problem in 

computer vision [1, 2] and medical image analysis applications 

[3, 4]. Skeletal models for representing objects have shown 

particular strengths. As a result of their property of providing a 

shape-based coordinate system for the object interior and near 

exterior, they provide special capabilities for mechanical 

modeling [5-8] and for the image match term used in 

segmentation [9, 10]. Because they capture not only global 

boundary locations but also local object width properties and 

boundary directional properties, they have provided stronger 

statistical summaries of object populations, and these have led 

to improved prior terms needed for segmentation, which 

together with the advantages for the image match term have 

yielded superior segmentations [9]. 

A particular form of quasi-medial skeletal model called the 

s-rep [11] has been shown in numerous recent papers to be 

more powerful for various statistical pattern recognition 

objectives, e.g., in classification (diagnosis) [12], hypothesis 

testing [13] and in the general probability distribution 

properties of specificity, generalization, and compactness [14] 

as compared to boundary point distribution models (PDMs) 

[15]. This s-rep consists of a grid of spoke vectors proceeding 

from the skeletal surface to the object boundary (Fig. 1). 

To gain this expanded capability, s-reps must be fit tightly 

to the training objects in a way producing correspondence. 

Methods previously available [11, 13, 16] to obtain such fits 

can be summarized as 1) define a template s-rep (denoted as 

𝒯𝑠𝑟𝑒𝑝 ); 2) solve an optimization problem that fits the 

interpolated form of 𝒯𝑠𝑟𝑒𝑝 to each target object; 3) compute the 

mean of the generated s-reps; 4) repeat this fitting process by 

replacing 𝒯𝑠𝑟𝑒𝑝  with the mean. This standard fitting process 

has been tedious to use and has required much manual 

intervention, leading to weaknesses in correspondence as well 

as limited use of this representation by others than those in or 

closely collaborating with our laboratory. Moreover, it 

performs poorly for more complex objects with variable 

bending and twisting. 

Means of propagating a reference model into a particular 

object have been applied to PDMs. Cootes et al. presented 

such a method based on PDM statistics, active shape models 

[17]. Davies et al. [18] proposed a method for improving such 

statistical shape models by putting them into inter-object 

correspondence based on minimum description length. To 

obtain the additional geometric information captured by s-rep, 

a similar means of propagating a reference model is needed. 

Styner et al. [19] demonstrated a thin plate spline (TPS) 

warping that maps objects to a common medial branching 

topology while matching their PDM boundaries perfectly. 

In this letter we improve s-rep fitting by initializing the 

optimization in steps 2-4 above with a TPS-based propagation 

of 𝑇𝑠𝑟𝑒𝑝  into the target object. For complicated objects this 

leads to much more automatic fits with good correspondence. 

This promises to make the advantages of s-reps described 

above available to all users of shape statistics. 

The propagation uses the spherical harmonics point 

distribution model (SPHARM-PDM) [3] representing both 

𝒯𝑠𝑟𝑒𝑝 and the target object as the basis for computing the TPS 

warp and then applies that warp to the skeleton-to-boundary 

spoke vectors of 𝒯𝑠𝑟𝑒𝑝. 

Our main contribution is two-fold: 1) a novel scheme for 

fitting significantly improved s-reps via TPS warping; 2) an 

effective way to propagate the correspondence provided by the 

initial shape model. 

The remainder of this letter is organized as follows. 

Section II describes the input and related formulations. Section 

III presents our proposed method. Experimental results are 

given in Section IV, followed by a discussion in Section V. 

 

II. INITIAL SHAPE MODEL AND SPHARM SURFACE 

The input to the proposed method is a predefined template 

s-rep 𝒯𝑠𝑟𝑒𝑝  (see Fig. 1a), which is iteratively fitted to the 

object using the standard pipeline discussed in Section I under 
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supervision; and a population of target PDMs sampled from 

each object. These PDMs can be those extended from any 3D 

surface detection method (e.g., [20, 21]). As aforementioned, 

here we use the SPHARM-PDM which is an up-to-date, open 

source, public available framework that has been extensively 

used in shape statistics [14, 18, 22-25] and medical image 

applications [26-29] to describe binary segmented magnetic 

resonance (MR) images. Spherical harmonics (SPHARM) 

describes a surface x(𝜃, 𝜑) using 

x(𝜃, 𝜑) = ∑ ∑ 𝑐𝑙
𝑚𝑌𝑙

𝑚(𝜃, 𝜑),

𝑙

𝑚=−𝑙

∞

𝑙=0

 (1) 

where the basis functions 𝑌𝑙
𝑚(𝜃, 𝜑), −𝑙 ≤ 𝑚 ≤ 𝑙, of degree l 

and order m are defined on 𝜃 ∈ [0, 𝜋] × 𝜑 ∈ [0,2𝜋) and where 

the 3D coefficients 𝑐𝑙
𝑚  are obtained by solving the least-

squares problems in each spatial coordinate directions. 

Every point 𝑝𝑖  on the surface is one-to-one mapped to a 

parameter vector (𝜃𝑖 , 𝜑𝑖)  on the unit sphere. The bijective 

mapping of the surface to the sphere is done by modifying the 

parameter vectors in a constrained optimization procedure 

considering minimal quadrilateral distortion and area 

preservation that is used to force every object region to map to 

a region of proportional area in parameter space. Each object’s 

optimization is preceded by a setting of its axis and prime 

meridian using second moments of its {𝑝𝑖}. 

A homogeneous sampling of the spherical parameter space 

uses a linear, uniform icosahedron subdivision along each edge 

of the original icosahedron. Suppose we get a set of parameter 

vectors (𝜃𝑖 , 𝜑𝑖)  through the homogeneous sampling on the 

spherical parameter space. The PDM of the object surface can 

be obtained directly by putting the coefficients into Eq. (1), 

thus a sampled point 𝑝⃗𝑖 at location (𝜃𝑖 , 𝜑𝑖) takes on the form: 

𝑝⃗𝑖 = ∑ ∑ 𝑐𝑙
𝑚𝑌𝑙

𝑚(𝜃𝑖 , 𝜑𝑖)

𝑙

𝑚=−𝑙

𝐾

𝑙=0

, (2) 

where 𝐾 is a linear subdivision level of the icosahedron, which 

was selected depending on the complexity of the objects. 

In this letter each lateral ventricle was sampled by a linear 

subdivision level 𝐾 = 10, which composes a PDM consisting 

of 1002 points. All PDMs were normalized to the unit space. 

 

III. METHOD 

The main issue addressed in this letter is the automatic and 

robust TPS-based propagation of a reference s-rep into unseen 

target objects. The following sections present the main 

components of our novel scheme: 1) get TPS deformations 

from 𝑇𝑠𝑟𝑒𝑝 to each of the target PDMs; 2) warp 𝑇𝑠𝑟𝑒𝑝 by each 

TPS deformation; 3) refine the warped target s-reps. 

A. Thin Plate Spline Deformation 

Given landmarks {𝑝𝑘 = (𝑥𝑘, 𝑦𝑘, 𝑧𝑘), 𝑘 = 1, … , 𝑚} that must 

map into target landmarks {𝑝𝑘
′ = (𝑥𝑘

′, 𝑦𝑘
′, 𝑧𝑘

′), 𝑘 = 1, … , 𝑚}, 

the TPS [30] provides the deformation that minimizes the 

bending energy 

∬ (𝑓𝑥𝑥
2

 

ℝ3
+ 𝑓𝑦𝑦

2 + 𝑓𝑧𝑧
2 + 2𝑓𝑥𝑦

2 + 2𝑓𝑦𝑧
2 + 2𝑓𝑧𝑥

2 )𝑑𝑥𝑑𝑦𝑑𝑧 (3) 

where 𝑓𝑖𝑗
2 , 𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧}  denotes the squares of the second-

order partial derivatives. That deformation maps any point 𝑝 =
(𝑥, 𝑦, 𝑧) into the target point 𝑝′ = (𝑥′, 𝑦′, 𝑧′) by the equation 

𝑝′ = ∆𝑥 + 𝐴𝑝 + ∑ 𝜔𝑘𝑈(|𝑝 − 𝑝𝑘|)

𝑚

𝑘=1

 (4) 

where 𝑈(𝑠) = 𝑠2ln (𝑠) and the three values in the translation 

∆𝑥, the nine values in the 3 × 3 matrix 𝐴, and the  3𝑚 values 

of the weights 𝜔𝑘 of the warp basis functions 𝑈(|𝑝 − 𝑝𝑘|) are 

computed by solving linear equations involving vectors 

connecting corresponding landmarks in {𝑝𝑘} and {𝑝𝑘
′}. 

B. Deriving the Warps for Target PDMs 

The process starts from getting the SPHARM boundary for 
𝒯𝑠𝑟𝑒𝑝  (Fig. 1a), which is achieved by applying the same 

formula as for the target PDMs presented in Section II. The 
resulting PDM acts as the template PDM (referred to as 𝒯𝑝𝑑𝑚). 

The yellow points in Fig. 1b are the resulting 𝒯𝑝𝑑𝑚 for the 𝒯𝑠𝑟𝑒𝑝. 

 

 

Fig. 1.  (a) The template lateral ventricle s-rep; (b) that s-rep with its 

SPHARM boundary shown as yellow points. The magenta lines proceeding 

from the skeletal surface (cyan) to the object’s boundary are spokes. 
The calculation of the warp 𝑇𝑗 for each target PDM 𝑗 can be 

done by solving the linear equations discussed in in Section III-
A, where the landmarks {𝑝𝑘} are the boundary points  𝒯𝑝𝑑𝑚 in 

the SPHARM-PDM derived from 𝒯𝑠𝑟𝑒𝑝and .  the landmarks 

{𝑝𝑘
′}  are analogous points in each of the target PDMs. 

Applying 𝑇𝑗  to spoke’s two endpoints 𝑝  yields the 

corresponding spoke endpoints 𝑝′. 
For a population of 𝑁 target objects, we get a set of mapping 

functions {𝑇𝑗 , 𝑗 = 1, … , 𝑁} each defining a warp 𝑇𝑗 that can be 

applied to deform the spoke endpoint pairs in 𝒯𝑠𝑟𝑒𝑝 to get its 

warped target s-rep. 

C. Creating Initializing Warped S-reps 

The process of creating a warped target s-rep (denoted as 

𝒲𝑠𝑟𝑒𝑝) is summarized in Table I. The set of transforms {𝑇𝑗 , 𝑗 =

1, … , 𝑁} are applied to the “landmark pairs” (the tail point and 

tip point of each spoke) of the template s-rep. The resulting 

“landmark pairs” are used to produce the 𝑗𝑡ℎ target s-rep. Each 

spoke has a position (the coordinate of the spoke tail), a 

direction (a unit vector pointing from tail to tip) and a radius 

(the length of the spoke vector). 

These warped s-reps can be refined by slightly modifying 

each spoke’s length and direction to optimize the fit to the 

binary image. The refinement process is beyond the scope of 

this letter. The evaluations described in the next section are all 

based on the warped s-reps without refinement. 

(a) (b) 

skeletal surface 

spoke 
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TABLE I 

PROCESS FOR THE CREATION OF TARGET S-REPS 

Input: 𝑇𝑠𝑟𝑒𝑝 and {𝑇𝑗 , 𝑗 = 1, … , 𝑁. } 

Output: {𝒲𝑠𝑟𝑒𝑝} 

for the 𝑗𝑡ℎ TPS transformation 𝑇𝑗 

for each spoke of 𝑇𝑠𝑟𝑒𝑝 

tpsSpokeTail = applyTPS(𝑇𝑗, spokeTail); 

tpsSpokeTip = applyTPS(𝑇𝑗, spokeTip); 

 

spokeRadius = calculateSpokeRadius(tpsSpokeTail, tpsSpokeTip); 

spokeDirection = calculateUnitDir(tpsSpokeTail, tpsSpokeTip); 

 

saveNewSpoke(tpsSpokeTail, spokeRadiu, spokeDirection); 

end 

saveNewSrep(); 

end 

 

IV. EXPERIMENTAL RESULTS 

The proposed method was evaluated on a set of real world 

lateral ventricle objects semi-automatically segmented from 

MR images in neonate datasets. The details of this dataset and 

its segmentation procedures were described in [31]. We 

selected 94 lateral ventricles for our tests presented here. The 

program was implemented in C++, all experiments were done 

on a 64-bit 3.20 GHz Intel Quad Core PC with 8 GB RAM. It 

takes about 11 minutes to get the SPHARM-PDM surface, 5 

minutes to get the TPS propagated s-rep, and 29 minutes to get 

the standardly fitted s-rep for one object. 

We first investigated the smoothness of the surfaces implied 

by the propagated s-reps resulting from the proposed approach. 

Then we compared these s-reps with those from the standard 

method. Following this we evaluated the statistics of these s-

reps via three commonly used measurements: generalization 

𝐺(𝑀), specificity 𝑆(𝑀) and compactness 𝐶(𝑀), which were 

first introduced by Davies [32] and have been widely used in 

previous literature [18, 26, 33]. Briefly, a lower value is 

desirable for all three metrics. Finally, we studied the shape 

variability captured by the proposed method and the baseline. 

As described in Section II, our input objects were described 

by the SPHARM-PDMs, which also provide the ground truth 

to evaluate if our warped s-reps imply the correct object 

boundaries (similar to the input surfaces). Fig. 2 shows two 

example objects described by SPHARM-PDMs with the 

corresponding warped target s-reps shown inside. 

In Figs. 2a,b we can see that all the spokes (magenta lines) 

located in the object interior (bounded by the yellow points). 

All the spoke tips (magenta points in Figs. 2c,d) lie 

approximately on the baseline surface (yellow points, the 

SPHARM-PDM). These tell us that our warped target s-reps 

achieve a rather smooth surface. 

To further evaluate the propagated fitting, we compared the 

implied boundary of the s-reps resulting from the proposed 

method with those from the aforementioned standard fitting 

process that was extensively used for fitting relatively simple 

objects (e.g., [12, 13, 15, 34]). Results show that the proposed 

method achieves reasonable smooth surfaces with improved 

overlap with the target object, while there are error regions 

from their methods (e.g., Fig. 3). 

 

 

Fig. 2.  Visualization of two example objects (each column is an object) with 

the propagated s-reps shown inside of their own baseline (SPHARM-PDM). (a) 

and (b) are the s-reps fitted into the baseline (yellow points); (c) and (d) are the 

spokes ends (spoke tail (white), spoke tip (magenta)) fitted into the baseline. 
 

 
Fig. 3.  (a) The surface for the standardly fitted s-rep; (b) the surface for the 

SPHARM-PDM (which is the baseline); (c) the surface for our propagated s-

rep; (d) and (e) are the overlap of the baseline onto (a) and (c), respectively. 

The red frames indicate the approximate corresponding positions. The blue 

arrows indicate the significant differences of the two methods in comparison. 

 

The erroneous bumps in Figs. 3a,d show the surface implied 

by a standardly fitted s-rep. These bumps need to be adjusted 

manually followed by redoing of the fitting; even this doesn’t 

guarantee better fit for complicated objects. But our method 

(Figs. 3c,e) automatically yields significantly improved s-reps 

with smooth surfaces. This is because the TPS warps are 

globally smooth and robust to narrow/thin regions, unlike the 

previous method for matching the s-rep model to the objects. 

Also, problems of poor convergence of the previous 

optimization method when initialized poorly are avoided. 

To evaluate the statistics of the resulting propagated s-reps, a 

Procrustes alignment was performed to remove the translation, 

scaling and rotation variances introduced by each model. Figs. 

4a,b display all the 94 samples in the population together; each 

(a) (b) 

(c) (d) 

(a) 

standard fitting 

(b) 

SPHARM-PDM 

baseline 

(c) 

proposed method 
(d) (e) 
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was represented by the SPHARM-PDMs and the s-reps. The 

alignment brings the shapes closer (Figs. 4c,d). 

 

 

Fig. 4.  All the 94 training shapes overlaid on top of each other. Each shape is 

described by the SPHARM-PDM (a) and the s-rep (b). After applying the 

Procrustes alignment, the shapes described by both shape models get close and 

tight as (c) and (d). Colors indicate different shapes in the population. 

 

 

Fig. 5.  Comparisons of correspondence quality among different PDMs. 𝑀 is 

the shape parameters used for constructing new instances. 

 

The correspondence quality among our propagated s-reps, 

the standardly fitted s-reps and the baseline are compared in 

Fig. 5. We collected two types of PDMs implied by s-rep 

spokes: B-PDM, which has 106 points (only spoke tip points) 

and BS-PDM, which has 212 points (spoke tail-and-tip points). 

Fig. 5 tells us that the proposed method achieves lower values 

than other methods in all three measurements, which means 

that our warped s-reps are superior. 

 

 
Table II lists the contribution of the first six eigenmodes for 

B-PDM and BS-PDM from our warped s-reps and the baseline; 

we can see that the total shape variances captured by these 

eigenmodes are 83.5%, 83.9% and 80.4% respectively. This 

suggests that the proposed model captures more shape variance 

even if we only consider the object boundaries implied by s-

reps (B-PDM) and describes the object with lower dimension. 

On inspection, all three types of PDMs appear to be of good 

quality; each main eigenmode describes a plausible pattern of 

variation observed in the population (see Fig. 6 for a 

visualization of the first eigenmode). 

 

 

Fig. 6.  From left to right column: B-PDM, BS-PDM and SPHARM-PDM. The 

middle row is the mean shape resulting from different point sets; the top and 

bottom rows are ±√𝜆1 respectively. 

 

V. CONCLUSION 
We presented a novel scheme that propagates a reference 

skeletal model (𝒯𝑠𝑟𝑒𝑝) to a set of biomedical objects to obtain 

their fitted s-reps. This is done by representing the surfaces of 
𝒯𝑠𝑟𝑒𝑝 as well as the target objects by spherical harmonics and 

computing a thin plate spline warp between these, and applying 
this warp to 𝒯𝑠𝑟𝑒𝑝 . Experimental results proved that 1) this 

automatic scheme creates stable s-reps that are robust for 
complicated objects; 2) the propagated s-reps have significantly 
improved fitting and model properties as compared with the 
standardly fitted s-reps; 3) the propagated s-reps in the 
presence of considerable shape variability gain over the 
baseline. The resulting s-reps can be further statistically 
improved in spoke correspondence (e.g., [14]). In the future, 
we expect to obtain better fits by using shape change statistics 
in the refinement step. The resulting s-reps can be applied to 
achieve better results on classification, hypothesis testing and 
probability distribution estimation, as well as a variety of 
medical image applications dependent on these statistical 
analyses.  

TABLE II 

SHAPE VARIANCES OF DIFFERENT METHODS (%) 

Point set 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 Sum 

B-PDM 42.7 15.3 11.3 6.2 5.0 3.0 83.5 

BS-PDM 37.8 18.6 11.8 7.1 5.5 3.1 83.9 

SPHARM-PDM 40.4 15.7 10.5 6.0 5.1 2.9 80.4 

 

 

(a) (b) 

(c) (d) 

Original 

SPHARM-PDMs 

Aligned 

SPHARM-PDMs 

Original s-reps 

Aligned s-reps 
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