
Orthotropic Thin Shell Elasticity Estimation for
Surface Registration

Qingyu Zhao1, Stephen Pizer1,2, Ron Alterovitz1, Marc Niethammer1, and
Julian Rosenman2,1

1 Computer Science, UNC Chapel Hill, NC, United States
2 Radiation Oncology, UNC Chapel Hill, NC, United States

Abstract. Elastic physical models have been widely used to regularize
deformations in different medical object registration tasks. Traditional
approaches usually assume uniform isotropic tissue elasticity (a constant
regularization weight) across the whole domain, which contradicts human
tissue elasticity being not only inhomogeneous but also anisotropic. We
focus on producing more physically realistic deformations for the task of
surface registration. We model the surface as an orthotropic elastic thin
shell, and we propose a novel statistical framework to estimate inhomo-
geneous and anisotropic shell elasticity parameters only from a group of
known surface deformations. With this framework we show that a joint
estimation of within-patient surface deformations and the shell elasticity
parameters can improve groupwise registration accuracy. The method is
tested in the context of endoscopic reconstruction-surface registration.

1 Introduction

A popular way of solving medical image registration problems is to formu-
late an optimization that minimizes a weighted sum of two energy terms: data
mismatch and the regularity of the deformation that deforms one data item
to the other. In particular, the latter term has been formulated from different
standpoints, one of which is to use physical energy derived from an elastic mod-
el to regularize deformations [1]. Even though some other methods [2,3,4] have
also produced reasonable results via different regularization formulations, the
elasticity-model-based idea is particularly appealing because in many medical
applications anatomical deformations are indeed elastic processes caused by mus-
cles or other forces.

The key to realistic physical modeling is to apply proper elasticity parameters.
As a matter of fact, human tissue elasticity is both inhomogeneous (different tis-
sue types show different stiffness) [5] and anisotropic (e.g., different stiffness
along and across the tissue fiber direction) [6]. However, traditional registration
approaches simply assume a spatially constant elasticity parameter (the single
regularization weight), which makes the physical modeling unrealistic. Therefore,
the use of elasticity models in registration currently becomes more of a moti-
vational concept than the seeking of truly physical deformations. The above



argument motivates research interest in studying spatially varying tissue elastic-
ity, not only for registration, but also for simulation [7] and pathology analysis
[8]. However, most approaches for non-uniform elasticity estimation have to use a
sophisticated mechanical system equipped with a force generation/measurement
capability, which is often unavailable in a common registration setting.

In this paper, we propose a statistical framework that can estimate spatially
varying anisotropic elasticity parameters only using a set of known material de-
formations. In particular, we focus on studying a physical model for registration
of anatomic surfaces that have deformed within a patient. We first propose to
model the surface as an orthotropic elastic thin shell. To be specific, orthotropy is
a special kind of anisotropy that can characterize different material stiffness along
different directions, but the orthotropic model has fewer parameters than arbi-
trary anisotropy. Next we show that with some proper prior knowledge, spatially
inhomogeneous and orthotropic elasticity parameters can be estimated from a set
of known shell (surface) deformations via a novel maximum-a-posteriori (MAP)
optimization. We finally show that with this statistical framework we can im-
prove the groupwise surface registration accuracy by a joint estimation of surface
deformations and shell elasticity parameters.

We test this framework in the context of endoscopy 3D reconstruction, the
goal of which is to produce a 3D reconstruction surface from multiple endoscopic
movie frames. Since the tissue is constantly deforming during endoscopy, a key
step of this reconstruction is to register all the single-frame 3D reconstruction
surfaces into a unified surface to account for the aforementioned deformations
across frames. We show that our elasticity estimation framework is able to re-
trieve insightful tissue elastic properties from the data and in turn to improve
this groupwise registration.

1.1 Related Work

Closely related to our work is a research branch known as spatially-varying
registration, the idea of which is to let regularization strength be dependent on
location. This can be modeled by spatially-varying diffusion [9], non-stationary
Gaussian processes [10] or applying a non-stationary metric in the LDDMM set-
ting [11]. Despite their theoretical appeal, those methods explore the problem
mostly from the computational aspect and lack physical motivation, and they
also don’t handle the anisotropic situation. The notion of spatially-varying regis-
tration has been also used in elastic models [12,13], but the elasticity parameters
have to be manually chosen for known segmented regions.

Automatic elasticity estimation has been studied in different medical appli-
cations [14,6]. With tissue displacements and external forces taken as known
values, the elasticity can be computed directly as an inverse problem of the Fi-
nite Element Method (FEM). Elastography is another widely used non-invasive
procedure for determining local elastic properties, but it either requires a force
exertion/measurement device or a vibration actuation mechanism [15], which is
often not available in other imaging modalities.



Therefore, modality-independent and purely image-based approaches are de-
sired and have been under investigation for several years. Miga et. al. [5] intro-
duced registration-based elastography to estimate tissue stiffness of an object
given two images of it undergoing an elastic deformation. Risholm et. al. [16]
extended this approach by forming a probabilistic model over the registration
parameters and inhomogeneous isotropic elasticity parameters. While our frame-
work is related to theirs, ours is different by incorporating anisotropy and by
applying the model to surface data.

In a broader context, Statistical Shape Analysis seeks a statistical distribu-
tion or a low dimensional subspace, called a shape space, for describing a given
set of shapes (or shape deformations). Most existing approaches [17,18] construct
the shape space by constraining the shape’s global appearance, such as deforma-
tion vector fields, point positions or normal directions. Our framework provides
an alternative perspective in the sense that it recovers the underlying physical
reason that can best explain the given shape deformations.

2 Orthotropic Thin Shell

Thin shells are special 3D structures bounded by two curved surfaces (Fig.
1a), where the distance between the surfaces (thickness) is small in comparison
with other body dimensions (width). Due to this high width-to-thickness ratio,
the behavior of a thin shell can be characterized by its middle surface M, the
locus of points that lie at equal distances from the two bounding surfaces. In this
situation, out-of-plane strain can be neglected, and the elastic model is reduced
to 2D. The 2D linear Hooke’s law for arbitrary anisotropy reads

σ = [σxx, σyy, σxy]T = C[εxx, εyy, εxy]T = Cε, (1)

where σ and ε are the local in-plane stress and strain tensors parameterized on
the tangent plane of the middle surface M, and C is a 3 × 3 positive definite
matrix, called a stiffness matrix, characterizing local elasticity .

For a thin shell, it can be shown that the local strain ε can be classified into
the stretching strain ϕ and bending strain κ, where the relationship between ε
and {ϕ, κ} follows the Love-Kirchhoff hypothesis [19,20]. The local deformation
energy is approximated by the function W :

W (ϕ, κ,C) = λsϕ
TCϕ+ λbκ

TCκ, (2)

where ϕ = [ϕxx, ϕyy, ϕxy]T is the tangential Cauchy-Green strain tensor char-
acterizing local stretching, κ = [κxx, κyy, κxy]T is the shape operator difference
characterizing local bending (local curvature change), and {λs, λb} are the global
mixing weights determined by shell thickness.

Orthotropic material is a special type of anisotropic material. For an
orthotropic shell, the anisotropy on the tangent plane is symmetric w.r.t. two
orthogonal axes, known as the natural axes. This leads to a simplified stiffness
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Fig. 1: (a) A thin shell model. (b) A Gaussian MRF model with nodes (white)
defined on the dual graph (blue) of a triangle mesh. Node j (triangle T j)
is associated with unknown variables (Cj , θj) and a set of observed variables
{ϕαj , καj |α = 1...N}

matrix in the following form when σ and ε are parameterized under this natural-
axes coordinate system:

C =

 c1 c2 0
c2 c3 0
0 0 c4

 =
1

1− νxyνyx

 Ex νvuEx 0
νxyEy Ey 0

0 0 2Gxy(1− νxyνyx)

 , (3)

where {Ex, Ey} are the Young’s moduli along the natural axes, {νxy, νyx} are
the Poisson’s ratios, and Gxy is the shear modulus. In the following text, we
will use C to denote such a simplified matrix, called the canonical orthotropic
stiffness matrix. We denote the space of such matrices as SPDC .

Rotation of Frame. When σ and ε are parameterized under an arbitrary
orthogonal frame (Fig. 1a) instead of rotated into the natural axes, we have the
following relationship,[

εxx εxy
εxy εyy

]
=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

] [
ε′xx ε

′
xy

ε′xy ε
′
yy

] [
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, (4)

where {ε′αβ} is the strain tensor parameterized under an arbitrary orthogonal
frame and θ is the rotation angle between the two frames, known as the canonical
angle. The same rotational relationship applies for σ. Combining with Eq. 1, the
stiffness matrix under an arbitrary frame is C ′ = R−1CR, where

R =

 cos(θ)2 sin(θ)2 2cos(θ)sin(θ)
sin(θ)2 cos(θ)2 −2cos(θ)sin(θ)

−cos(θ)sin(θ) cos(θ)sin(θ) cos(θ)2 − sin(θ)2

 . (5)

In other words, C and θ uniquely determines the local orthotropic stiffness matrix
parameterized under an arbitrary frame.

The orthotropic elasticity model has shown its effectiveness in modeling 3D
soft tissues in the situations where the stiffness is usually different in a direction
parallel to the fibers than in the transverse directions [6,7]. We adapt this model
to the essentially 2D situation of the physical thin shell model Zhao et. al [21]
proposed for surface registration.



3 Elasticity Estimation via MAP

We assume some observed material deformations are the realization of tissue
elasticity of a single patient. Then a common way to estimate elasticity param-
eters is to solve an inverse problem given such deformations and external force
measurements. However, when only the material deformations are available, the
parameter estimation can be highly ill-posed. Therefore, we opt for energy-based
models that are commonly used in statistical mechanics. In these models high
probability states are associated with low energy configurations. Here we pro-
pose a Physical-Energy-Based Markov Random Field (MRF) model to estimate
the elasticity parameters from a probabilistic point of view.

Problem Statement. With some abuse of notation we useM to represent
both a shell and its middle surface domain. Given a reference shell M and a
set of N example deformations D = {Dα : M → R3|α = 1...N}, our goal is
to find the canonical orthotropic stiffness matrix function C : M → SPDC

and the canonical angle function θ :M→ S1, namely the orthotropic elasticity
parameters of every location on the shell. To simplify the problem, we start off by
discretizing the continuous shell M to a triangle-mesh {T j |j = 1...M} with M
triangles. We associate each triangle T j with its own local elasticity parameters
(Cj , θj). Each deformation Dα is then reparameterized locally on the tangent
planes (triangles). In other words, each triangle T j has its own local stretching
strain ϕαj and bending strain καj . Finally, the goal is to estimate the set of
elasticity parameters (C,θ) = {Cj , θj} given the set of local strains {ϕαj , καj}.

The MRF Model. Our idea is that the elasticity parameters that “best fit”
the observed deformations should yield small total elastic deformation energy.
Meanwhile, we assume the parameters should vary smoothly across the shell.
Finally, due to the scale ambiguity caused by the lack of external force measure-
ments [8,16], we assign the parameters with a prior to avoid the trivial solution
(similar to [8,16], we compute parameters relative to the prior).

We build an MRF model on the dual graph of the triangle mesh as shown in
Fig. 1b. Each node on the graph represents the elasticity parameters associated
with the underlying triangle. We want to find (C,θ) to maximize the posterior
distribution p(C,θ|D):

p(C,θ|D) ∝ p(D|C,θ)p(C,θ). (6)

The likelihood p(D|C,θ) is associated with the total deformation energy of all
example deformations. Assuming local deformation energy follows independent
Boltzmann distributions, we design our the likelihood as the following:

p(D|C,θ) =
∏
α

∏
j

p(ϕαj , καj |Cj , θj) ∝
∏
α

∏
j

exp(−W (ϕαj , καj , Cj , θj)) (7)

Consider the prior distribution of (C,θ) = {Cj , θj}, the second term of Eq.
6. Following the idea from Gaussian MRFs, each node has its own per-node prior
function ψj , and each edge has an edge potential function ψjk:

p(C,θ) ∝
∏
j

ψj(C
j)
∏
j,k

ψjk(Cj , θj , Ck, θk). (8)



The ψjk function models the spatial smoothness nature of the shell’s orthotropic
property by penalizing the difference of stiffness matrices between neighbouring
nodes and the smoothness of the natural-axes direction field. We assume C and
θ are independent and design

ψjk(Cj , θj , Ck, θk) ∝ exp(−d(Cj , Ck)2) · exp(−(pjk(θj)− θk)2), (9)

where d(·, ·) is a proper distance metric for SPDC . We use the Log-Euclidean
metric [22] for its computational convenience. p(·) is the Levi-Civita parallel
transport operation [23] that transports a vector associated with θj from T j to
the neighbouring triangle T k.

For the per-node prior function ψj , we assume anisotropy is distributed in
a Gaussian sense with the isotropic case being the mean situation. Therefore,
given an isotropic prior Young’s modulus E and Poisson’s ratio ν, we design
ψj(C

j) ∝ exp(−d(Cj , C̄)2), where C̄ is the commonly used isotropic stiffness
matrix derived from E and ν. Finally, we optimize the negative log posterior in
the following form:

−log p(C,θ|D) =
∑
j,k

[λ1d(Cj , Ck)2 + λ2(pjk(θj)− θk)2]+

∑
α

∑
j

W (εαj , καj , Cj , θj) +
∑
j

λ3d(Cj , C̄)2
(10)

where the λ parameters are the global weights.

4 Joint Estimation of Registration and Elasticity

In many groupwise registration analysis [24], both the material deforma-
tions and elasticity parameters are unknown variables. Formally, we want to
investigate the joint probability of the group of deformations D and elasticity
parameters (C,θ), given a reference shell M and its many deformed version
{Mα|i = α...N}. A common approach is to treat one set of variables, e.g.,
(C,θ), as latent variables and perform an Expectation-Maximization algorithm
to estimate the posterior

p(D|M, {Mi|i = 1...N}) =

∫
C,θ

p(D,C,θ|M, {Mi|i = 1...N}). (11)

In this study, we opt for a simple alternating optimization algorithm that uses the
mode over the (C,θ) parameters to approximate the posterior for computational
simplicity.

Our alternating optimization approach iterates between the following steps:

1. Input : a reference shell M and a set of deformed shells {Mα|α = 1...N}.
The elasticity parameters are initialized to be C̄ everywhere.



2. With the current estimate of (C,θ), perform MAP on

p(D|C,θ,M, {Mα|α = 1...N}) =

N∏
α=1

p(Dα|C,θ,M,Mα) (12)

This step is essentially a set of independent pairwise surface registrations
between (M,Mα) with inhomogeneous and orthotropic energy as the de-
formation regularization. We adopt the Thin Shell Demons method [21] to
accomplish this step. It uses curvature-based geometric features to drive the
deformation and allows thin-shell-based elastic regularization.

3. Using the framework in Section 3, perform MAP on p(C,θ|D,M) with the
deformations estimated from Step 2 to update the elasticity parameter.

4. Iterate to Step 2 until convergence.

5 Experiments

Proof of Concept. In this experiment we tested on a toy example the
capability of elasticity parameter estimation from known deformations without
any registration involved. We mainly investigated the estimation accuracy of the
canonical angle and the two Young’s moduli, which are the three most impor-
tant parameters in characterizing local orthotropy. A bar-shaped surface shown
in Fig. 2a was manually assigned ground truth elasticity parameters (Fig. 2b),
including both the orthotropic canonical stiffness matrices and natural axes di-
rections. The bar is more elastic at the center (inhomogeneity) and more elastic
along the vertical direction (orthotropy). The other elasticity parameters were
set to satisfy νxyνyx = 0.252 and Gxy = 2kPa. We created 20 synthetic defor-
mations to the bar (Fig. 2c) by first fixing its two ends at random positions as
boundary constraints and then optimizing Eq. 7 to solve for the deformations
using ground truth elasticity. We tested our framework introduced in Section 3
to estimate the elasticity parameters from this set of simulated deformations.
The weighting parameters {λ1 = 1, λ2 = 10, λ3 = 0.1} were chosen empirically
to best fit this toy problem. We found that the natural axes first have to be
accurate to yield meaningful anisotropy, so we set a larger λ2 to regularize the
vector field. Other model parameters {λs = 80, λb = 10} and the isotropic prior
{E = 2kPa, ν = 0.25} were chosen the same as in [24]. Fig. 2d shows the two es-
timated Young’s moduli and the estimated natural axes directions. The average
canonical angle error is 0.74 degree, which shows we can successfully estimate
the natural axes directions. Fig 2e shows that with the estimated orthotropic
elasticity parameters the simulated deformation is more accurate in the sense
that the center-elastic part has a larger bending effect than the one simulated
from isotropic elasticity under the same boundary constraints.

Synthetic Head-and-Neck Data. We tested joint registration and elastic-
ity parameter estimation with synthetic deformations on 5 real patients’ head-
and-neck CT data. In particular, a pharyngeal surface (Fig. 3a) from the pharynx



Fig. 2: (a) A reference bar-shaped surface. (b) The two ground truth Young’s
moduli are respectively color-coded across the surface. Red regions indicate s-
maller Young’s moduli (more elastic). Each local Young’s modulus is associated
with a natural axis direction (black vector fields) (c) A deformed surface derived
from ground truth elasticity. Red regions are the fixed boundary constraints. (d)
Estimated Young’s moduli and the associated estimates of natural axes. (e) De-
formed surfaces derived from ground truth elasticity (blue wireframe), estimated
elasticity (gray surface) and isotropic elasticity (red frame). (f) The two ground
truth Young’s moduli (the orange curves) and the two estimated Young’s moduli
(the blue curves) on all faces.

down to the vocal cord was segmented from a 3D CT image. Each surface has
about 6k facets. We manually assigned ground truth orthotropic elasticity pa-
rameters and natural axes directions to the reference surface to reflect known
anatomical facts: the epiglottis being stiffer than the vallecula and the pharyn-
geal wall being more elastic cross-sectionally (Fig. 3b). Similar to the previous
example, we simulated 20 synthetic deformations to each patient’s surface by
assigning 20 manually constructed boundary conditions. These deformations in-
clude the expansion/compression of the pharyngeal wall and the opening/closing
of the larynx. These deformations were also used as ground truth deformations
for testing the accuracy of the later registration. We tuned down λ1 to 0.1 to
avoid overly smoothing the estimation. All the other algorithm parameters were
kept the same.

To further test the elasticity estimation framework, we first estimated the
elasticity parameters directly from the ground truth deformations (not for the
registration purpose). Fig. 3c shows that the general pattern of the two Young’s
moduli and the natural axes can be reasonably recovered, but the scale difference
with the ground truth suggests our method only recovers parameters up to a
scale relative to the prior isotropic elasticity. Moreover, the elasticity-smoothness
term in Eq.10 tends to yield blurred estimation. Due to these artifacts, the
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Fig. 3: (a) A pharyngeal CT segmentation surface (gray surface) and one of its
synthetic deformations (red wireframe). (b) Ground truth Young’s Moduli along
the two natural axes. The epiglottis (blue region in the top figure) is set to be
stiffer than the vallecula (yellow region in the bottom figure). (c) Estimated
elasticity using ground truth deformations.

(a) (b)

Fig. 4: (a) Registration accuracy over registration iterations under different op-
tions. (b) Final registration accuracy under different levels of noise.

average error over all facets for the two Young’s moduli are 0.41kPa and 0.38kPa
respectively. The average canonical angle error is 12 degrees.

To test joint estimation accuracy, we performed one iteration of the frame-
work introduced in Section 4. To be specific, we first performed 20 independent
registrations between the reference surface and the 20 deformed surfaces using
isotropic elasticity, followed by an elasticity estimation using the 20 resulting
deformations. This gives us estimated orthotropic elasticity across the reference
surface for a second round of registrations. Fig. 4a gives accuracy measurement
under different registration options. The error is computed as the average per-
vertex Euclidean distance error (compared against the aforementioned ground
truth deformations) over all vertices and all 3 patients. Note that the x-axis in
Fig. 4a denotes the iterations within the Thin Shell Demons [21] registration,



not to be confused with the overall joint estimation iteration discussed in Sec-
tion 4. The 2nd-round orthotropic registration (blue curve) performs better than
the isotropic registration (black). Meanwhile, it is only slightly worse than using
orthotropic elasticity estimated directly from ground truth deformations. This
means that further elasticity update won’t improve the results too much.

We also tested the robustness of this joint estimation framework under the
effect of noise. Different levels of white Gaussian noise were added to all vertices.
Fig. 4b shows that the 2nd-round orthotropic registration performs better than
the isotropic registration in all 4 cases.

Real Endoscopic Data. We further used our framework to investigate the
pharyngeal deformations contained in live nasopharyngoscopy. An endoscopic
video provides direct visualization of a patient’s pharyngeal surface and usually
captures its rich swallowing motion. Elasticity estimation on this frame-by-frame
surface deformation can help us better understand tissue characteristics and
facilitate further analysis, such as the registration between the endoscopy and
CT of the same patient for radiation treatment planning.

We first reconstructed a surface model from the video as the reference sur-
faceM. This reconstructed surface, called an endoscopogram, was computed by
first applying Shape-from-Motion-and-Shading (SfMS) [25] to produce a set of N
single-frame reconstructions {Mα|α = 1...N} and then fusing {Mα|α = 1...N}
into a unified and complete surfaceM [24]. Next, we computed the set of defor-
mations D = {Dα|α = 1...N} from the endoscopogram M to each single-frame
reconstruction by using independent isotropic registration. Finally, we applied
our elasticity estimation framework on D and M. The algorithm parameters
used in this experiment were the same as before.

Fig. 5: (a) Endoscopogram surfaces reconstructed from video. Red circles indicate
the arytenoid cartilage. Green circles indicate the epiglottis. (b)(c) Estimated
Young’s moduli and the associated natural axes.



We tested on two patients’ endoscopic video data. For each video sequence
we sampled 20 individual frames focusing on the laryngeal region to produce the
endoscopogram. Fig. 5 shows the results are consistent with throat anatomy:
the epiglottis and the arytenoid cartilage be stiffer than the laryngeal region,
the larynx being more elastic along the patient axial direction.

6 Discussion

We have introduced a statistical framework to estimate inhomogeneous and
anisotropic elasticity parameters of a thin shell structure from a set of its known
deformations. We have shown that an MAP analysis on a novel MRF-based
probability distribution can automatically recover both the orthotropic stiffness
matrix and natural axes directions of every location on the shell. We have also
shown that this framework can be further used as a part in a joint registration
and elasticity estimation framework. Both the elasticity estimation framework
and the joint estimation framework can be helpful in studying within-patient
deformations of anatomical surfaces. Despite the promising results shown in our
experiments, we still have to address the following concerns in future work:

1. In many situations anatomical surfaces are deformed by the underlying
muscles, so it is not appropriate to simply model the surface as a shell structure.
We should generalize our framework to the 3D volume situation.

2. Model parameters selection needs to be further studied.
3. Further evaluation in other parts of the body needs to be done to evaluate

the effectiveness of our elasticity estimation framework.
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