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ABSTRACT

Discrete m-reps use tolerance-based, sampled medial skeleta as an underlying

framework for boundaries defined by displaced subdivision surfaces. They provide

local and global shape information, combining the strengths of multiscale skeletal

modeling with the multi-resolution, deformation and shading properties afforded by

subdivision surfaces. Hierarchically linked medial figures allow figural, object-based

deformation, and their stability of object representation with respect to boundary

perturbation shows advantages of tolerance-based medial representations over Blum

axis and Voronoi-based skeletal models.

M-rep models provide new approaches to traditional computer graphics modeling,

to physically based modeling and simulation, and to image-analysis, segmentation

and display, by combining local and object-level deformability and by explicitly in-

cluding object-scale, tolerance and hierarchical level-of-detail. Sampled medial repre-

sentations combine the solid modeling capabilities of constructive solid geometry with

the flexibility of traditional b-reps, to which they add multiscale medial and boundary

deformations parameterized by an object-based coordinate system.

This thesis research encompassed conceptual development on discrete m-reps and

their implementation for MIDAG (the Medical Image Display and Analysis Group)

at UNC-Chapel Hill. Prototype and application code was created to support the

following: medial atoms in 3D that included a quaternion frame to establish a local

coordinate system; data structures for medial mesh topologies; a new algorithm for

interpolating Catmull-Clark subdivision surfaces for m-rep boundaries; a medially

based coordinate system parameterizing the m-rep boundary, interior, and local exte-

rior; displacement texturing and displacement meshing of m-rep boundaries; methods

of medially based deformation; figure/subfigure blending by implicit surface methods

or (with Qiong Han) using remeshing of subdivision boundaries; and C++ code li-

braries for m-rep modeling in geometric design and image-segmentation applications.

iii



Along with discussion of these achievements, this document also includes discussions

of current m-rep applications and of design-methodology issues for m-rep-based mod-

eling systems.
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For Nancy and Robby.

On writing

Of the making of many books there is no end;

and much study is a weariness of the flesh.

—Ecclesiastes 12:12

On the thesis topic

We asked our captain what course of action he proposed against

so formidable a beast. He thought judiciously for a moment

and then replied, “I think I shall praise it.”

—epigram on a book of love poems, Praise, by Robert Hass

On setting forth

“In the Great House and the House of Fire,

on the Day when all days and years are numbered,
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—the Osiris-scribe Ani, ca. 1500 B.C.E.
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Glossary

Throughout this dissertation, special terminology is used to convey precise meanings

or to draw specific distinctions. This glossary is provided as a convenient reference

for the reader.

Displacement Subdivision Surface Any of a class of subdivision-based surfaces

that include a boundary displacement field applied to the vertices at any given

subdivision level. The field may be stored on a per vertex basis in the subdivision

meshes or as values in displacement maps.

Iteratively Interpolating Subdivision Surface (IIS-surface) An interpolating

subdivision surface, created by iteratively solving for an initializing mesh that

will interpolate the desired mesh locations.

Medial involute Involute has several geometric meanings; in the context of this pa-

per, the medial involutes (typically paired) are opposing points on the boundary

of a solid equidistant from their associated point on the medial axis. In terms of

the Blum axis, they are the boundary points tangential to the maximal enclosed

circle/sphere with the medial point at its center.

M-rep A medial representation for a solid object, basing the shape geometry on

medial positions and a medial radius function. A discrete m-rep is a medial

representation based on meshes of discrete medial atoms; a cm-rep is a con-

tinuous, spline-based medial representation. In this dissertation, m-rep, unless

qualified, will typically refer to a discrete m-rep, and the unabbreviated medial

representation will be used for the more general definition.

Modeling A word with too many diverse meanings. In this document, modeling will

always be used for the process of shape synthesis to create a 3D geometric model

for use in a computer graphics or image analysis application. Model, likewise,

will always be used (unless otherwise qualified) for the product of such a shape

xvi



synthesis. This, as distinguished from a statistical model, especially statistical

shape descriptors or statistical variations placed on a 3D geometric model for

shape analysis or procedural instancing.

Multiresolution vs. multiscale Multiresolution methods utilize level-of-detail in

object definition and encompass spherical harmonics, wavelet-based methods,

and multilevel editing of subdivision surfaces. Multiscale methods are distin-

guished by their use of multiple measurement apertures—such as those afforded

by Gaussian scale spaces or width-based sampling tolerances—in place of in-

finitesimally precise definition of geometry based on Euclidean coordinates.

Pablo and Rakshasa Pablo is a 3D model-building and image-analysis tool which

uses m-reps for model-based image segmentation. Pablo was developed by a

team of researchers at MIDAG. Rakshasa is a similar modeling tool developed

by me for discrete m-reps with emphasis on subdivision boundaries with dis-

placement maps and on medial-based deformation.

Regular quadrilateral mesh A boundary mesh having only quadrilateral faces. A

regular vertex is one with only quadrilateral faces in its 1-neighborhood.

Representational polymorphism The ability to represent a shape by different

descriptions; e.g., m-reps and CSG provide this polymorphism; Blum medial

descriptions do not.

Representational transparency A quality of shape design software, whereby mod-

els are created by shape-specifying operators and the underlying data represen-

tation is invisible to the user.
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Chapter 1

Overview

In the little more than 40 years since computer-based 3D geometric modeling has been

practiced, the choice of geometric primitive has controlled the capabilities in terms of

both modeling and rendering. Applications in computer-aided design (CAD), com-

mercial advertising, motion picture special effects, physically based simulation and

dynamics all have been algorithmically dependent on their respective choices of carri-

ers for the geometric information their models require. Trends in graphics hardware

development have tended toward simplifications of geometry allowing highly parallel

and pipelined acceleration of rendering, with the use of image-textures, bump and

displacement maps, and even procedural textures making up for the lack of under-

lying geometric complexity. Image-based rendering (IBR) is another example, where

all geometry is reduced to view-specific height-field information to give O(1)-time

rendering, independent of scene complexity. For modeling purposes, geometric primi-

tives have been primarily surface-based—polygons, splines, or subdivision surfaces—

or, in CAD applications, solid models based on constructive solid geometry (CSG)

performed on simple geometric solid primitives.

Figure 1.1: M-rep based models.



This research introduces the discrete m-rep1, a versatile solid-modeling primi-

tive based on sampled, tolerance-based medial axes with small-scale boundary dis-

placements. M-reps are intended to deliver greater capabilities in computer graphics

modeling and rendering, in image analysis (as a superior 3D shape descriptor for

segmentation and registration tasks), and in physically based simulation. The work

shows ways in which m-reps can work within the standard modeling and rendering

paradigms and explores their strengths and weaknesses vis-a-vis traditional tech-

niques. Original contributions are also made in interpolating subdivision surfaces for

object boundaries based on m-reps, finding distance and near-point functions for such

objects, and constructing Blum medial axes for them.

This chapter provides a brief overview of conventional modeling primitives and

explains their common drawback—overprecision or intolerance. Such overprecision,

as will be explained below, provides too much information at the wrong scale and

at the wrong stages during shape analysis, shape synthesis, or shape display, rather

than providing appropriate shape information at each given stage in the respective

process. Following the overview, I propose the central thesis of this work, establishing

its claims and listing completed contributions and accomplishments. The chapter then

discusses ways in which m-reps overcome drawbacks of conventional primitives, and

it concludes with a chapter outline of the dissertation.

1.1 Conventional geometric modeling primitives

Geometric modeling and rendering primitives can be grouped into a number of broad

categories (with a good deal of overlap), the most important of which are b-reps, solid

models, volumetric representations, medial models, and IBR models.

1.1.1 Boundary representations

The simplest b-reps are first-order surfaces, i.e., triangulated or polygonalized tiles,

joined edgewise to produce polyhedra or approximations to smooth surfaces. These

have a long history in CG and modeling and are typical final-output primitives for

rendering APIs such as OpenGL or DirectX. There are well-established methods for

interpolating lighting effects, normals, and image or displacement textures across

polygonalized surfaces. Main drawbacks: (a) they are fixed-scale (rather than

1from medial representation, akin to b-rep, boundary representation
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multiresolution) primitives and require considerable work for model simplification;

(b) they can only approximate smooth surfaces, requiring properties such as surface

normals and boundary curvature to be either estimated or computed by assumptions

about the object geometry not based on the surface tiling.

Higher order b-reps can be based on spline patches or subdivision. In modeling,

these can interpolate known boundary positions and normals or be used for free-form

surface design. Typically, spline-based surfaces are subdivided and polygonalized

for rendering and thus can be rendered to any given image-scale/resolution. They

have well-defined normals and curvatures within each patch. Main drawbacks:

(a) it is difficult to maintain high-order surface continuity between adjacent patches

on a surface, especially when tiling objects of arbitrary topology; (b) patch-based

representations are inherently local and give little explicit information about solid

shape properties..

The development of subdivision surfaces in the 1970’s and their rise in popu-

larity in the 1990’s was in response to the above drawbacks; they established their

usefulness as a b-rep for representing surfaces of solids with arbitrary Euler num-

ber (i.e., with holes) and in providing for intuitive, multilevel mesh editing. Their

ability to either interpolate or approximate boundary positions made them ideal for

capturing surface geometry from 3D scanning devices, and techniques were quickly

developed for mapping texture coordinates to them and for creating ridges, sharp

edges and cusps. Subdivision surfaces are generalizations of spline-based ones. Their

parametric evaluation and curvature properties near extraordinary points has been

studied by Stam [137] and others. In recent years, multiresolution surfaces, based on

displaced subdivision surfaces and wavelet methods, have been gaining prominence

for their ability to define their surfaces to the necessary, task-related scale. Main

drawback: subdivision surfaces can be used to bound solid volumes, but their modes

of deformation remain based on manipulation of mesh points describing boundary lo-

cations; as such, they fail to provide a parametric basis for solid object deformation.

This drawback is common to all b-rep primitives, and motivates the use of skeletal

methods for manipulating boundary meshes. This will be discussed more fully in

Sec. 1.3.

A summary of problems with all common b-reps:

• there is no global (solid) object—only surfaces described by linear or higher

order patches (subdivision-bounded solids are an exception to this, as noted

above);
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• there is no inherent deformability based on natural modes of variation for a

particular shape; deformations typically manipulate vertices or control points,

or apply axial or free-form deformations (FFDs) on the embedding space as per

Barr [7] or Sederberg [130], respectively; alternatively, finite-element methods

provide physically-based solid deformation, but at a high computational cost;

• critically, there is no notion of object scale or tolerance—points, lines and sur-

faces are defined at infinitesimal scale, to floating point precision, regardless

of the accuracy required—and there is no statistical foundation for describing

natural object variability; multiresolution surfaces provide a partial solution to

this problem; other insights may be drawn from multiscale, Gaussian scale-space

techniques (see Sec. 2.3);

• b-reps provide no inherent figural basis for shape organization.

1.1.2 Solid modeling primitives

The use of CSG in CAD applications was the earliest and is still the main practical

application of solid modeling primitives. By describing objects by Boolean combi-

nations of simple solid primitives, CSG methods provide global information about

object shape and structure, allowing precision design and computation of mechanical

properties. Main drawbacks: for our purposes, (a) CSG models are not inherently

deformable—they’re very solid solid models; (b) CSG models are unstable with re-

spect to changes in the modeling primitives used for the Boolean construction—small

changes to an additive or subtractive element can have unpredictable effects on the

geometry of the final solid; (c) CSG models have no built-in notions of scale and

tolerance—objects are defined geometrically in Euclidean space, to either fixed-point

or floating-point accuracy. Attempts to do CSG on multiresolution primitives such as

objects bounded by subdivision surfaces (e.g., Biermann, et al. [8]) are still in early

stages of research.

In the early 1980s, blobby modeling and similar implicit techniques were developed

by Blinn [11], the Wyvill’s [160, 161], Bloomenthal [15] and others. These provide

deformable solid models, bounded by the level-sets of various implicit functions—

Gaussian blobs and the like—which can be combined and blended through simple

compositing operators on their defining functions. Convolution surfaces, as developed

by Bloomenthal and Shoemake [14] and with continuing work by Sherstyuk [132, 133,

134], give another approach to implicit modeling by using convolutions over polygonal
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skeletal elements. Main drawbacks: (a) as above, there is no inherent notion of

scale or tolerance—while it is possible to sample the implicit functions more coarsely,

this may introduce artifacts and can’t be done in an object-based fashion because the

objects are defined by the results of the implicit function evaluation when sampled;

(b) also as above, changes to modeling elements can have unpredictable effects on

the output, including unintended changes in object topology; (c) blending of objects

at joins is automatic, based on the blending of the implicit functions, but it is tricky

to impose restrictions on joins, making them sharper or more gradual as desired.

While convolution surfaces provide more control of object-level deformation, due to

their skeletal structure, fine control is still an issue; (d) in general, implicit models

have the opposite problem from b-reps—local, fine-scale deformation (and surface

parameterization) is difficult, while global deformation is simpler.

A recent idea in solid modeling is the solid subdivision model of McDonnell et

al. [103], building from methods developed for free-form deformation (FFD) by Mac-

Cracken and Joy [100]. The authors combine subdivision solids—as generalized from

tricubic b-spline-based FFD volumes—with physically based models to create dy-

namic subdivision solids, for use in real-time dynamic sculpture with haptic inter-

faces, so called “virtual clay.” This method will be discussed in more detail in Ch. 2;

it is near in spirit to my own goals for a new modeling primitive. Main drawbacks:

(a) as always, the lack of a multiscale, tolerance-based framework for modeling; (b)

no clear framework for multifigural representation.

1.1.3 Volumetric models

Volume-rendering techniques such as ray-casting and splatting arose for explicitly

displaying 3D datasets, primarily for medical imaging applications. Volume graph-

ics has developed subsequently as a way to render objects by a 3D rasterization to

produce a dataset, then volume-rendering for a particular viewpoint; representative

research in this area is by Kaufmann [90], Avila [4], and Sclaroff [129]. Volume-

primitives have been proposed—e.g., the SGI OpenGL Volumizer system [75]—to

provide a way to define volume-based “objects” that can be manipulated and de-

formed. Another approach, hypertextures, imposes a function (frequently, a time-

varying, scale-dependent function based on Perlin noise) on a volume of space, which

is then evaluated by ray-casting from the eyepoint through the image-plane into the

scene, until maximum opacity is achieved.

Besides ray-casting and splat-based methods, implicit surface techniques can al-
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ternatively be applied to volume data, treating it as a discretely sampled function

and finding level-set surfaces between object interiors and exteriors.

Main drawbacks: (a) volumetric techniques allow rendering to image-scale, but

they have an “inner scale” fixed by the voxel size—they are not a tolerant model-

ing primitive (see Sec. 1.3.2); (b) surface-definition and rendering are typically slow,

though there has been work on hardware speedups; (c) ray-casting and splatting

both require recomputation for changes in the viewpoint—tiled level-sets can, how-

ever, be rendered as easily as other polygonal primitives; (d) “objects” are generally

defined only implicitly, as level-sets or regions of opacity, making manipulation and

deformation difficult (OpenGL Volumizer was created to overcome this); and (e) 3D

rasterization remains an awkward and slow way to render traditional b-reps.

1.1.4 Medial modeling primitives

Recent years have seen a rise in medial-based primitives in both modeling and ren-

dering. Implicit surfaces, in particular the convolution surfaces of Bloomenthal and

Sherstyuk, can make use of medial/skeletal elements for object creation and defor-

mation. Skeletal modeling and techniques for skinning polyhedral skeleta are finding

wider application in computer graphics and animation. This work will be discussed

in more detail in Ch. 2, but worth noting here are these researchers: (a) Gascuel,

Verroust and Puech [67], who developed a system for animation and collision detec-

tion of models based on rigid articulated skeleta fleshed by spline-based deformable

boundary surfaces; (b) Markosian et al. [102], who created Skins using subdivisions

surfaces offset from skeletal elements by the blending of implicit distance functions;

(c) Storti et al. [142] in 1997 and Blanding et al. [10] in 1999, who each developed

solid editors based on the Blum medial axis [16, 18] and using Voronoi methods for

converting between b-rep and skeletal representations; (d) Gagvani [65], who devel-

oped techniques for volume animation using skeletal trees for volume rendering and

volume graphics.

Main drawbacks: (a) many of the techniques use piecewise linear or polyhedral

skeletal elements, lacking the generality of a medial primitive based more intimately

on the solid geometry; (b) while some of the methods discuss the level-of-detail (LOD)

editing afforded by pruning a Blum-based medial axis, none of them make the jump

to a tolerance-based realization based on multiscale medial techniques as developed

in the image analysis community. A more detailed critique of current art in medial

modeling will be given in the next chapter.
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1.1.5 Image-based rendering techniques

Along with IBR methods I include methods such as height fields, light-field-rendering,

and relief-textures. Pure IBR is a scene-rendering technique with no concept of

object—the “modeling primitive” is an entire image or collection of images. IBR

greatly enhances scene complexity by replacing geometric models by images acquired

either from the real world or from CG rendering. Main drawback: the inner scale,

pixel-scale, is both fixed and ill-defined, as each viewpoint-dependent pixel samples

over a potentially infinite volume of space. This is deliberate to give a constant

rendering time, but primitives may not be edited in any simple fashion, as there

is no concept of “object” apart from the images themselves. Hybrid methods, like

the relief textures of Oliveira [111], combine image-based “objects” in traditional CG

scenes; while allowing object-based scene creation, they still have the drawbacks of

fixed sampling scale and lack of intrinsic editing and object-level deformability.

1.2 Thesis statement, claims and contributions

To confront the drawbacks seen in the above techniques, a modeling primitive should

have the following properties:

• precision based on necessary tolerance, with a notion of intrinsic scale and

modeling aperture (see Sec. 1.3.2),

• medial attributes to give better reflection of global geometry than boundary

primitives,

• boundary attributes to give better reflection of fine-scale, local geometry than

medial primitives,

• object-based deformability,

• hierarchical organization based on object-shape,

• a framework for incorporating statistical shape variations into a model.

Although many of the primitives discussed above have some subset of these attributes,

none off the primitives have the entire set. In particular, the need for tolerance in

shape-description, while sometimes understood at a conceptual level, has only rarely
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been seen in actual modeling systems (see below in Sec. 1.3.2). The rise of mul-

tiresolution methods in surface geometry shows that shape descriptors can effectively

encapsulate multiscale information for efficient use in rendering, sidestepping the

computational costs otherwise associated with model simplification. The usefulness

of medial attributes is acknowledged by the prevalence of skeletal techniques in com-

puter animation, and, similarly, statistical shape variation has been used in CG films

to produce populations of similar but distinct objects.

Seeking a modeling primitive combining all of these attributes and driven by the

need in MIDAG2 at UNC-Chapel Hill for a modeling system based on multiscale

medial methodology, we have developed the m-rep, a geometric representation based

on a sampled medial sheet that implies a subdivision-surface boundary. From this

work comes the statement of my thesis:

Discrete m-reps use tolerance-based, sampled medial skeleta as an underlying

framework for boundaries defined by displaced subdivision surfaces. They pro-

vide local and global shape information, combining the strengths of multiscale

skeletal modeling with the multi-resolution, deformation, and shading properties

afforded by subdivision surfaces. Hierarchically linked medial figures allow fig-

ural, object-based deformation, and their stability of object representation with

respect to boundary perturbation shows the advantages of tolerance-based medial

representations over Blum axis and Voronoi-based skeletal models.

M-reps are based on the medial atom, a discrete point on an implied medial locus

which designates paired points (medial involutes) on the object boundary. Implicit in

this description is a radius-proportional tolerance on the boundary positions implied

by the medial atoms. These atoms are then grouped into a linear chain or planar

mesh to define a single-figure m-rep, representing a discrete medial sampling of an im-

plied solid object. Multi-figure objects may then be created hierarchically by joining

figures to one another as protrusions (additive subfigures), indentations (subtractive

subfigures), or associated, neighboring figures.

During my research on m-reps, I have achieved the following results:

• Shown how m-reps provide a tolerance-based skeletal technique that avoids the

instabilities of Blum-style/Voronoi-based skeletal methods; this enables their

2Medical Image Display and Analysis Group—an interdepartmental research group including
members of Computer Science, Radiology, Radiation Oncology, Psychiatry, Biomedical Engineering,
Biostatistics, Statistics, Mathematics, Surgery, Family Medicine, and Ophthalmology.
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(a) (b)

Figure 1.2: (Tom Fletcher) Example medial atom and medial end-atom. Medial atom
(a) shows the frame vectors and vectors to medial involutes at the boundary. The
end-atom (b) has an additional vector describing the crest region at distance ηr along

the �b vector.

use as robust shape-descriptors allowing natural shape variations to be included

in models as statistical priors (in a Bayesian sense);

• Built on earlier work on sampled medial primitives in 2D and 3D to create

the medial atom, a discrete point on an implied medial locus defined by m =

{p, F, r, θ}, where p is a point in R3, F ∈ Q is a coordinate frame (stored as

a quaternion rotation from canonical basis, but visualized as the right-handed

frame {�b,�b⊥, �n}), r is the medial radius, and θ is the object angle in the {�b, �n}
plane (see Fig. 1.2(a));

• Created modified medial end-atoms for the edges of the medial mesh, allowing

a parameterized elongation term (see Fig. 1.2(b));

• Created data structures for representing nets of medial atoms with different

topologies, including simple quadmeshes, trimeshes, linear chains, circularly

connected chains, and toroidally connected quadmeshes;

• Developed techniques for deforming m-reps by operations on selected groups of

medial atoms while preserving object topology;

9



• Explored techniques for interpolating a continuous medial axis based on the

sampled medial atoms;

• Developed (with Pizer and Fletcher) a medially defined (u, v, t) coordinate sys-

tem for positions on the boundary of quadmesh figures, extensible to (u, v, t, τ)

for specifying spatial locations in the coordinate system of the medial figure;

• Created a new algorithm for interpolation using Catmull-Clark approximating

subdivision, thus allowing a close fit of a subdivision surface to the medially

implied boundary of an m-reps; this fast interpolation technique generalizes to

other stationary subdivision surfaces;

• Created proximity/nearpoint tests for the above surfaces that generalize to prox-

imity detection on hierarchically refined stationary subdivision surfaces of other

types as well;

• Explored techniques for finding true medial loci for the above-described subdi-

vision solids;

• Implemented techniques (with Fletcher and Gash) for blending figures and sub-

figures using implicit-surface methods on subdivision boundaries;

• Developed a technique (with Qiong Han) for smoothly joining figures and sub-

figures, using remeshing of bounding subdivision surfaces to create a join region

with user-specified curvature properties;

• Using the above technique, shown how CSG-style addition and subtraction op-

erations can be done using figure-subfigure hierarchies;

• Demonstrated m-rep’s inherent representational polymorphism, multiple ways to

represent the same object depending on the desired operations and deformations

upon it;

• Used displacement meshing of subdivision surfaces, similarly to techniques de-

veloped by Lee et al. [96], to produce boundary perturbations within the medi-

ally defined, width-proportional tolerances;

• Used image textures on m-reps and used displacement textures to produce

boundary perturbations within the medially defined, width-proportional tol-

erances;
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• Created animations (with Tom Fletcher) in realtime illustrating the natural

appearance of medially based deformation of m-rep models;

• Developed Rakshasa, a research tool and code-base for experimenting with me-

dial deformation and image and displacement texturing of m-reps;

• Collaborated in the development of Pablo, a research tool and code-base for

applying m-reps to medical image segmentation of 3D computed tomography

and MRI data.

I will give a brief explication of the advantages afforded by m-reps and then give

a chapter outline of this dissertation.

1.3 Advantages of m-reps

This section provides a short overview of the advantages of m-reps that will be

described in subsequent chapters; it also discusses the concept of tolerance as it is

used in this work. There are five main advantages of m-reps over other CG modeling

and rendering primitives: the multi-local nature of medial representations over local

b-reps; the stability of medial representations with tolerance versus tradition Blum

or Voronoi skeleta; their natural separation of object shape into intuitive, figural

hierarchies; the power gained by using displacement subdivision techniques for fine-

scale modeling; and the stochastic model generation possible due to m-reps’ design

as robust statistical shape descriptors. Table 1.1 gives a comparison of m-reps with

common modeling primitives, and the following sections briefly explain each of the

advantages.

1.3.1 Of medial primitives

The global shape information provided by the medial skeleta gives m-reps a figural

basis of shape description, much more directly than in b-rep modeling, where often a

skeletal structure will be imposed on the b-rep for purposes of articulated modeling

and deformation. Skeletal methods are used commonly in modeling tools and anima-

tion work today, in such systems as MayaTM and 3D-Studio MaxTM ; m-reps fit into

this paradigm and have advantages due to the integration of medial structure into

the basic modeling primitives. M-reps thus allow medial-based figural deformation,

providing natural movement for articulated models.
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Primitives Global geometry Tolerance Multiscale Shape statistics
B-rep models No No No Yes

subdivision models Somewhat No Yes No
sph. harm. models Only! No Somewhat Yes

CSG models Yes No No No
Implicit models No No Somewhat No

convolution surface Yes No Somewhat No
Volume models No No No No
Medial models Yes No Some Yes
IBR models No No No No
M-rep models Yes Yes Yes Yes

Table 1.1: Modeling primitives and their features.

1.3.2 Of tolerance-based methods

The term tolerance has been used so far in this work without definition but requires

clarification to prevent confusion with other usage. Tolerance, as commonly used

in graphics and modeling (e.g., by Jackson [85]) describes a necessary numerical or

geometric precision in modeling an object. In this sense, multiresolution surfaces,

systems involving interval arithmetic for bracketing shape intersections, and even

simple render-to-pixel-scale surface-spline subdivision algorithms, are all tolerance-

based modeling or rendering systems.

Tolerance, as the term is used in m-rep research, has a broader meaning than

simply “necessary numerical or geometric precision.” The notion of tolerance devel-

oped for m-reps is based on a statistical description of shape, with objects having

a probabilistic nature—a mean description and a distribution of possible deviations

from this mean. The statistics for a given shape may be implicit—implied by samples

from a real population—or explicit, determined by a shape-synthesis methodology.

For a modeling primitive to act effectively as a tolerance-based shape-descriptor, it

must therefore describe not a single geometric object but a class of related objects,

and it must include necessary machinery for supporting a statistical description of

object shape.

It is for this reason that m-reps use a medial and figural description of object

shape, supporting descriptions of classes of objects by two key aspects:

• the development of statistics on coarse-scale variability and intuitive object-

shape characteristics such as thickening, bending, and elongation;

• the separation of coarse-scale shape characteristics from fine-scale details.
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In this way, statistical characteristics of shapes being modeled (in geometric design)

or segmented (in image analysis) can be reflected in Bayesian terms by statistical

priors on the m-rep modeling primitives. The tolerance of the base primitive—which

for a medial primitive is a width-proportional tolerance, see Sec. 2.3.1—is merely a

reflection of the need to model the tolerances in the description of a natural object.

This tolerance provides a modeling aperture, akin to the sampling aperture of shape-

analytic techniques, tying the medial sampling to the shape-characteristics of the

object being modeled.

M-reps allow a population-statistics approach to creating or analyzing m-rep shape

descriptors, using the techniques of Fletcher et al. [55, 56] as discussed in Sec. 6.3.4.

Using Lie algebra techniques, a shape can have a mean m-rep description within a

population of m-reps that describe it within statistically defined tolerances. Similarly,

the problem of medial atom interpolation (discussed in Ch 4) requires an understand-

ing that there is not a single correct interpolating atom but, rather, a distribution of

possible medial atoms within acceptable tolerances.

M-reps decouple coarse, large-scale shape from fine surface-detail. This provides

the advantages of skeletal primitives while avoiding the instabilities of medial meth-

ods based on Blum or Voronoi skeleta, which are extremely intolerant of boundary

noise and perturbation. Two similar shapes—in the same conceptual shape-class—

may have very different Blum axes due to the instability of the boundary-to-medial

transformation. M-reps present a multi-tiered approach, allowing medial description

based on different medial sampling densities, using the hierarchical LODs of subdivi-

sion surfaces to provide detail within implied boundary tolerances, and finishing with

a displacement texture applied to the boundary surface.

1.3.3 Of hierarchical object definition

M-rep models, because of their hierarchical nature, have advantages for animation

and deformable modeling and such. Hierarchical modeling is nothing new in CG:

hierarchical transformations are stock-in-trade in most modeling and rendering APIs,

and tree-based scene-graph hierarchies are the rule in computer game design. In offer-

ing pseudo-Boolean construction operators, m-reps share some of the characteristics

of CSG models in CAD application. They differ from CSG techniques in the inher-

ent object-based deformability of the figural primitives, through bending, thickening

and elongation operations applied medially and through fine-perturbations applied at

the boundaries. This allows CSG approaches to be applied to the deformable shape
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primitives, and the figural coordinates discussed in Ch. 3 allow the figural hierarchy

to impose its own coordinates for figurally-based shape description and deformation.

1.3.4 Of displaced subdivision surfaces with sampled medial

skeleta

Displacement subdivision surfaces are a recent development in CG modeling, coming

from initial work by Lee et al. [96] as well as work by Guskov et al. [76], whose normal

meshes are similar, though not identical to displaced subdivision surfaces. My own

development work on displacement images and displacement meshes for subdivision

surfaces paralleled development of these techniques: [148] from 2000 has mention of

at-the-time ongoing work on displacement textures for m-reps bounded by subdivision

surfaces.

Displaced subdivision surfaces are an ideal representation for m-rep boundaries;

by restricting boundary displacements to be within the desired medially implied toler-

ances, they provide precise, fine-scale modeling of the surfaces within the framework

of the coarse shape description afforded by the sampled medial skeleta. This allows

coarse shape modifications to be made skeletally and independent of fine-scale detail.

Tolerances must be not only width-proportional but also inversely proportional to

boundary curvature to prevent local self-intersection—see Sec. 5.1.3.

Displaced subdivision surfaces—and multiresolution surfaces, in general—are ex-

citing tools for shape modeling and design, and new developments will continue to

add power to m-rep techniques and methodology.

1.3.5 Of primitives designed as robust statistical shape de-

scriptors

Because m-reps were also developed as a tool for medical image analysis, they were

designed to allow statistical description of shape variation across a population. Thus,

an m-rep with its statistical priors (in a Bayesian sense) can be used to generate

multiple instances of an object with natural variation in their structure. Recent work

in this area is by Fletcher et al. [55, 56] and will be discussed in Sec. 6.3.4. Statistical

priors may be generated by analyzing natural objects or by simply faking them. Using

statistical methods, shape variations can be added to m-reps using ideas of procedural

texturing, specifying stochastic shape textures either explicitly or automatically based

on Bayesian priors.

14



1.4 Dissertation outline

This chapter listed advantages and drawbacks of current geometric modeling prim-

itives and presented my thesis, which addresses the drawbacks through the devel-

opment and use of m-reps to provide non-local boundary information based on a

tolerance-based medial axis representation.

Chapter 2 provides a discussion of related work, including research on 2D and

3D medial axes and on skeleton-based modeling in computer graphics and CAD and

also discussion of the state of the art in subdivision surface research. It also outlines

other approaches to m-reps being explored in parallel with this dissertation research

by myself and other members of MIDAG and associated researchers.

Chapter 3 discusses object description using sampled medial sheets, including an

introduction to the theoretical and the practical ideas behind tolerance-based geomet-

ric primitives. It discusses medial coordinates and medially implied correspondence,

and Sec. 3.4 discusses the ways m-reps allow topology-preserving deformations in a

very natural manner.

Chapter 4 discusses creation of medially implied boundaries for m-reps using sub-

division surfaces fit to a boundary polyhedron implied by the boundary involutes of

the sampled medial points in the m-rep. (An alternate method, using implicit sur-

face techniques akin to blobby modeling or convolution surfaces, is discussed in the

Related Work in Sec. 2.4.3.) Techniques are developed for mapping medial coordi-

nates onto such boundaries. Section 4.2 develops a proximity test for finding surface

near-points on an interpolating Catmull-Clark boundary of an m-rep, based on the

Phong-normals of the boundary polygons at different levels of subdivision. Section 4.3

develops a method for computing medial atoms and for interpolating a continuous

medial axis based on locations on the subdivision boundary as specified in medial

coordinates.

Chapter 5 discusses how interpolating subdivision surfaces on a medial skeleton

form the basis for 3D object modeling by m-reps. It discusses the following sub-

jects: (a) tolerance-based surface deformation using either displacement textures or

displacement meshing on subdivision surfaces; (b) use of medial coordinates for lo-

cating and joining subfigures at figural boundaries; (c) remeshing for smooth joining

between figure and subfigure subdivision boundaries.

Chapter 6 discusses the systems that have been created for modeling with discrete

m-reps. This includes a discussion of the implementation in Rakshasa (in Sec. 6.1), a
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prototype CAD tool for creating models for use in computer graphics; and the Seurat

library and Pablo application (in Sec. 6.2), tools for designing m-reps of anatomical

organs from 3D medical datasets and using them as deformable models for segmen-

tation and statistical analysis. It also discusses work by others using discrete m-reps

for shape analysis and solid-body deformation applications.

Chapter 7 explores the necessary conceptual shifts required to implement multi-

scale modeling using m-rep hierarchies. It discusses directions for future work and

promising applications for m-reps in computer graphics, CAGD, and image analysis.
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Chapter 2

Related Work

M-rep research has drawn from a substantial body of prior work on computer graph-

ics primitives, especially medial methods in both in CG and IA, multiscale image

analysis, and multi-level subdivision surface modeling. Ch. 1 discussed some per-

ceived drawbacks with traditional modeling and rendering primitives. In coming to a

displacement subdivision, multiscale medial approach to geometric modeling, I drew

upon a wealth of prior research, as well as on discussions with Stephen Pizer, Gary

Bishop, Turner Whitted and others. The main ideas that form the foundation of

m-rep modeling come from the following research directions:

• skeletal methods in IA: image-analysis techniques based on the Blum symmetric

axis, and, conversely, model-based image segmentation based on medial meth-

ods; and skeletal methods in CG, especially those based on Blum and Voronoi

skeleta;

• ideas of resolution-independence in modeling primitives based on implicit func-

tions and volume graphics concepts;

• tolerance-based image-analysis techniques based on Gaussian scale-space no-

tions, particularly the multiscale medial axis (MMA or Core);

• developments in subdivision surface modeling.

This chapter will discuss prior research in these areas that either influenced my own

ideas or provided good indications that others saw the same drawbacks and sought

similar solutions. I will, as well, discuss other directions in m-rep research at UNC

which grew out of the same fertile soil as my own work but bore different fruits, with

their own strengths and weaknesses.



2.1 Medial skeleta: the Blum symmetric axis and

Voronoi-based techniques

skeleton (’ske-l&-t&n), noun, New Latin, from Greek, neuter of skeletos dried

up; akin to Greek skellein to dry up.—Webster’s.

H. Blum, in his seminal 1967 work [16], first described the medial-axis transform

as a tool for shape analysis; in later work in the 70’s, he renamed it the symmetric

axis transform as it included other symmetry axes beside medial ones [17, 18]. Each

point on the axis gave both position and radius for a maximal circle bitangent to the

object boundary; the connected loci of these points created the continuous medial

axis.

In 3D, work by Nackman [106] and Nackman with Pizer [108] explored medial-

to-boundary relationships for objects defined by a 2D medial sheet in R3, extending

the work of Blum and Nagel and deriving curvature relationships between medial

positions and corresponding positions at their boundary involutes. Most recently,

James Damon [39, 40, 41] provided theoretical results on generalized offset surfaces

(including Blum-axis based surfaces as a subset) in n-dimensions, deriving metric and

curvature tensors and describing singular events such as local self-intersections.

Concurrent with Blum’s work were the development of Voronoi region techniques

(and their duals, Delaunay triangulations) in the computational geometry community;

one can see that the internal Voronoi regions of a closed polygon are separated exactly

by its Blum medial axis.

2.1.1 Geometric analysis—b-rep to m-rep versus m-rep to

b-rep

There exists a long history of boundary-to-medial research in the image analysis com-

munity; hundreds of papers have been devoted to the medial-axis transform and its

implementation. The amount of interest in the topic reflects the power of medial

representations for understanding object geometry; the multiplicity of methods, on

the other hand, reflects the fact that the boundary-to-medial transformation is in-

herently unstable. For explicit geometric models, most techniques involve analytic

computation of Voronoi-based medial structure (e.g., see Culver [36]). Even slight

perturbation of boundary positions can cause profound changes in such medial struc-

tures. This is especially problematic in image analysis, where any measurement noise,
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pixelation error or other uncertainty in the measured boundary positions can produce

wildly different medial branching structures. Fundamentally, the notion of “bound-

ary” itself is an abstraction from and not an intrinsic property of image data. Thus, for

any but the most primitive and contrived binary images, deriving a stable, semanti-

cally valid medial transformation requires an explicit regularization of the image data.

This requires either (a) preprocessing to eliminate noise and boundary uncertainty,

or (b) enforcing geometric relationships during processing, e.g., by a pruning process

or by establishing a probability measure over the medial branches giving the degree

to which they represent semantically meaningful elements of the medial skeleton (see

Katz [89]).

A distinction can be drawn between image-analytic shape definition and model-

based image segmentation based on synthetic models. Stephen Pizer contrasts medial

image analysis (whether by Blum or Voronoi skeleta, cores, core atoms, etc.) with

reality analysis via medial models such as statistical m-reps. The dichotomy may

be likened to Plato’s Allegory of the Cave [124], wherein an unseen “ideal” object

casts a “shadow” onto the “wall” of our perceptions. A 3D data-set is the shadow

of a real object: image-analytic techniques treat the shadow as the object of study

itself, while model-based techniques work from a priori knowledge based on shape

properties and statistics, trying to fit known attributes of the object to the shadow

being cast. In shape design, this is akin to fitting models to match desired shapes

such as in parametric modeling in CAD [101]. This dichotomy may be expressed as

image-analytic a posteriori deductive, data-derived

model-based a priori inductive, knowledge-derived.

In terms of medial shape description, this expresses itself as

b-rep–to–m-rep analytic unstable

m-rep–to–b-rep synthetic stable.

The idea thus developed in the work of Pizer and his colleagues in image analysis

was to reverse the medial transform, define objects medially and allow the medial

structure to imply the boundaries [120]. Further, we chose a discretely sampled

medial representation rather than a continuous one. This, in an analytic approach,

would be seen as a geometrically lossy boundary-to-medial transformation; instead,

as a synthetic, medial-to-boundary transformation, it determines the object boundary

to within a sampling-proportional tolerance. This shape-synthetic approach provides

the foundation on which m-reps have been constructed. Section 2.3 will discuss
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this in more detail, and, in particular, why a multiscale approach is advantageous—

why the boundary tolerance makes sense independent of the medial sampling and is

proportional to the medial width.

2.1.2 Medial-primitive representations in CG

Skeletal methods in 2D or 3D have been used in computer graphics, CAD and anima-

tion for more than 25 years. In 1976, Burtnyk and Wein [22] used skeletal models for

interpolation in key-framed 2D animation (in-betweening). Rather than being based

on a Blum axis, these skeleta were instead point-mappings into a deformation coordi-

nate system, specifying guide-points in the image for producing “rubber-sheet”-style

deformations of the images. The use of medial skeleta in 3D modeling and animation

has been popularized by the need, similarly, to tie motion and physical dynamics to

traditional b-rep models. Surface polygons and vertices are associated with a skeletal

structure that can then be used to manipulate the model using key-framed motions,

physically based dynamics, or motion-capture systems. This has found widespread

use in commercial modeling and animation software such as SoftImageTM , MayaTM

and 3D-Studio MaxTM .

J. Brandt [19] in 1992 described the use of pruned Voronoi skeleta as a 3D ge-

ometric modeling tool, based on ideas inspired by Nackman and Pizer, and by the

theoretical work of Rosenfeld [128] on axial representations of shape. Brandt devel-

oped algorithms for both skeletonization and reconstruction; he acknowledged the

problems of spurious axes produced by boundary noise and introduced techniques

for pruning 3D axes as well as for classifying medial points based on maximal-sphere

tangency conditions.

Gascuel, Verroust and Puech in 1991 proposed a method for applying a bound-

ary “skin” to articulated skeletal primitives using a spring-network for boundary-

to-medial attachment [67]. In 1993, Gascuel proposed another skeletal modeling

representation based on isosurfaces of potential fields, as a tool for precise-contact

computation between deformable solids [66].

Lazarus et al. [95] in 1994 developed techniques for axial deformation, extending

earlier work on free-form deformation by Barr, Sederberg, et al. By first establishing

a correspondence between a surface and a control axis, simple axial deformations

could control boundary modification. Shapira and Rappaport [131] discuss 2D shape-

blending (morphing) deformations using a star-skeleton derived from a polygonal

model.
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Teichmann and Teller [147] derive an articulation skeleton from a 3D polygonal

model using Voronoi skeletonization and pruning, and they bind the boundary to the

skeleton by a spring network. This process has been highly automated; with little

user-interaction, it can import polygonalized models into a skeleton-based deforma-

tion system for dynamic modeling and key-frame animation.

The work of Storti et al. [142] on skeleton-based modeling comes the closest of

any to m-reps, including using a discrete sampling of a medial-axis to determine

the boundary, which can be iteratively modified according to desired object con-

straints on volume, inertial moments, etc. They also discuss LOD control, hexahedral

mesh generation based on the medial surface for finite element modeling (FEM ) and

shape interpolation/morphing, and they use Catmull-Clark surfaces to bound their

3D models—though not interpolating ones; rather, they solve for a final desired shape

by manipulating their initializing, medial-derived boundary mesh. Storti’s sampled

skeletons have several important differences from m-reps:

• they use a continuous branching skeleton as an intermediate representation, not

as a primary one;

• they lack a width-based tolerance on boundary position;

• they lack explicit medial frames and the shape statistics derivable from such

frames;

• they lack a figural basis of shape based on linked figures and medial coordinates.

Despite these difference, Storti’s method represents a parallel approach to addressing

many of the same issues as m-reps.

Blanding et al.[10] created a skeletal-based solid editor, which could import polyg-

onal models, derive medial axes (with radius information), apply medial-based de-

formations and then reconstruct the modified boundary using an implicit-function

approach.

Igarashi’s Teddy modeling system [84] fleshed hand-drawn closed figures into 3D

solids by implying rotational symmetry about derived chordal axes for the figures.

While it used only 2D chordal axes based on hand-sketched outlines, it showed the

power of a figural-based modeling system for intuitive shape-modeling and also fleshed

the 3D surfaces about the axes using (Loop) subdivision surfaces. Thus, while not

directly related to m-reps, this work shared both technical and theoretical aspects.
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A medial deformation technique from the volume-graphics domain was that of

Gagvani et al. in 1998 on volume animation using the skeleton tree [65]. Using a

volumetric skeleton tree (i.e., without polygonalization) based on a reversable thin-

ning procedure on the distance function, a voxelized skeletal tree could be generated,

transformed, and then regrown into the full volume object. This allowed physically

based deformations upon objects in volume data without the expense or drawbacks

that volumetric deformations would entail.

Cameron and Robb [23] use similar axial-skeleton based surface deformation meth-

ods for modeling anatomical organs in 3D data. Their driving application was inter-

active simulation in virtual-reality style applications, as an alternative to the slower

finite-element or mass-spring models. Their 3D medial axes were generated by thin-

ning of segmented 3D volume data, while maintaining correspondences between me-

dial points and their boundary involutes.

Recent work by Allen, Curless and Popović [1] has derived kinematic skeletons

based on range-scan data with landmarks to create articulated subdivision models of

human figures allowing interpolated poses and deformation. They used normal dis-

placements on their subdivision surfaces and used 1D linear skeletons with quaternion

coordinate systems set at skeletal joints at positions where a physical joint would be

located in a human figure.

Also from Curless’s group at the University of Washington is the work of Capell et

al. [24] on dynamic model deformation using interactive skeletons. Their techniques

used piece-wise linear skeletons to accelerate the physically based (finite-element)

deformation of a 3D character imbedded in a volumetric control lattice. By their use of

skeletal methods, they were able to simulate the deformation of elastic solids without

requiring a regular grid and avoiding the computational cost of FEM techniques.

Yoshizawa et al. [162] employ extracted Voronoi skeletons to drive deformation of

surface meshes. They use mesh-smoothing based on tangent-flow on the medial axis,

and use mesh-evolution techniques to eliminate local and global self-intersections of

the deformed boundary meshes.

With the availability of computationally efficient b-rep to m-rep routines (e.g., the

hardware-based Voronoi acceleration algorithm of Hoff et al.[81] and the advanced

analytic techniques of Siddiqi et al.[136]) and with the steady research on m-rep to

b-rep methods, the use of medial representations and skeletal methods in CG and IA

will only continue to grow.
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2.2 Implicit surfaces, volume modeling and convo-

lution surfaces

M-reps base their shape description on a deformable, sampled medial skeleton, with

an implied boundary that is subject to fine-scale perturbation at a resolution ap-

propriate to the modeling or rendering task. A precursor to these ideas is the use

of implicit functions and functional composition to represent deformable solids as

regions bounded by isosurfaces—level-sets of the combined functions in R3.

Initial work on blobby volume models—models defined by isosurfaces of scalar

fields in space—was that of researchers such as Blinn, McPheeters and the Wyvills

(as already noted in Sec. 1.1) and the metaball work from Nishimura and others at

Osaka University [109]. Using implicit surface representations, soft objects (the term

used by Wyvill, McPheeter and Wyvill) could be created by functional composition

of structural sub-objects and then rendered either by raytracing the isosurface or by

polygonalizing the boundary. Such representations give both a coarse figural hierarchy

and a resolution-independent shape-representation—the boundary can be sampled at

the desired scale either (a) by the raytraced sampling frequency, or (b) by the grid-size

specified for the particular marching algorithm used for polygonalization.

Sclaroff and Pentland [129] developed generalized implicit functions, wherein they

could combine implicit surfaces with boundary offset fields for fine surface detailing,

and other researches have worked with problems such as the parameterization of

implicitly defined boundaries for texture-painting and other applications.

Convolution surfaces were developed by Bloomenthal and Shoemake [14] and con-

tinued in work by Sherstyuk [132, 133, 134]. Like other implicit models, objects are

defined by level-curves of volumetric fields; the structural emphasis of convolution

surfaces, however, is on the articulated skeletal elements over which the implicit-

izing function (a Gaussian or piece-wise polynomial approximation) is convolved.

This makes them akin to m-reps, with model-deformations directly conceptualized

as changes in the figures comprising the skeletal axis; similarly, Gascuel, Blanding,

and Storti, as discussed above, all used a implicit surface reconstruction based on a

derived medial axis. More recent work by Bloomenthal [13] has used convolution over

medial skeletons to produce boundary vertex deformation for articulated models.

The Skin technique of Markosian et al. [102] used polyhedral skeletal primitives to

generate implicit fields, which were combined into articulated figures and then polyg-

onalized by converting the isosurface to a Loop subdivision boundary. While their

23



choice of polyhedral skeletal elements was somewhat ad hoc, their modeling technique

showed many of the same advantages common to convolution surfaces and m-reps—

skeletal modeling techniques based on figural elements with implicit boundaries.

Perhaps the most advanced implicit-surface modeling technique is the adaptively

sampled distance field (ADF ) of Frisken, Perry et al. [60], which they incorporated

into their Kizamu character sculpting system [114]. Using signed distance fields

that are sampled adaptively using spatial octrees, the authors created an implicit,

volumetric primitive capable of precise carving, volume-data representation, multi-

level complexity and LOD modeling, collision detection and so on. Fine detailing

is created by precise distance offset functions applied to local regions; rendering is

performed using a raytracing approach for which the octree structure gives excellent

ray-traversal efficiency. ADFs easily lend themselves to “virtual clay”-style modeling

systems—sculpting with distance fields has a lot in common with sculpting with

continuous m-reps, without the ideas of the width-proportional tolerances. Thus,

they are similar to convolution surfaces but have the LOD properties brought out by

the adaptive sampling.

2.3 Multiscale and tolerance-based medial meth-

ods

One of the most important factors differentiating m-reps from other geometric prim-

itives is their focus from the inception on tolerance-based, multiscale techniques for

shape modeling. This should be distinguished from the multi-resolution aspect of var-

ious modeling techniques such as spherical harmonics modeling, wavelet approaches,

and subdivision modeling. While these approaches allow coarse-to-fine, LOD hierar-

chies to be constructed, they lack a theoretical basis founded on the idea of aperture:

A necessary and sufficient aperture size for describing a shape can be based on a

medially based, width-proportional description of that shape.

This concept arose from ideas in multiscale image analysis based on Gaussian scale-

space theory, ideas dating back to 1962 in the work of Taizo Iijima but becoming

an established research topic in the image analysis and vision community only in

the 1980s. (Weickert et al. [155] give a discussion of the early history of scale-space

axiomatics, including work on 2D scale spaces by Otsu in 1981.) In 1983, Witkin

proposed the use of scale-space filtering, applying Gaussian convolution to a 1D image
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to form a 2D scale-space [159]; that is, given a function f(x), form a 2D function

F (x, σ) = f(x) ∗ g(x, σ) =

∫ ∞

−∞
f(u)g(x − u, σ)du (2.1)

=

∫ ∞

−∞
f(u)

1

σ
√

2π
e−

(x−u)2

2σ2 du (2.2)

where “∗” denotes convolution with respect to x, and g(x, σ) is a 1D Gaussian kernel.

The Gaussian was seen as ideal due to its well-behavedness vis-a-vis a number of

properties, including its ease of differentiability and integrability, its causality1—

i.e., the fact that Gaussian blurring will not create new structure in an image—and

its spatial invariance. Witkin described extending the idea to 3D scale-spaces for

2D images, an idea which indeed led to their use in image analysis, followed by

extensions to 4D scale-spaces for 3D images. Scale-space theory and practice was

furthered by the work of Koenderink[94] and Hummel [83], Florack, ter Haar Romeny,

Lindeberg, and others. A different path was taken by Perona and Malik [113] and by

Grossberg [74], diverging from the equating of scale-space formation with solving the

diffusion equation, It = c∇2I, an idea presented by both Koenderink and Hummel.

Instead, they proposed to solve a non-linear/anisotropic diffusion equation

It = ∇ · (c(x, y, t)∇I)

based on a variable conductance function c dependent on image structure across the

image and over time. In this way, they sought to eliminate noise while preserving

semantically meaningful detail such as boundaries even at coarse scales. This work

was continued by many others, including Whitaker in his work on geometry-limited

diffusion [156, 157].

2.3.1 Object description by scale-based representations

Scale-space methods in image analysis deal with problems arising from the ill-defined

behavior of traditional edge-based image analysis when faced with anything besides

precisely defined binary objects—i.e., any image based on grey-level data and with

noise and varying intensity gradients across visually apparent boundaries. Simplistic

ideas of edge-detection are replaced by boundariness-detectors, boundary functions

B(x, y, σb) in R2 or B(x, y, z, σb) in R3, which depend both on position and scale or

1a term used for this first by Koenderink.
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measurement aperture. From this comes the idea of an image as a sampling in Rn

defining an Rn+1-dimensional scale space produced by a convolution of the dataset

with a Gaussian-derived measurement kernel across a continuous scale-space with

scale dimension σ.

Along with these ideas came also a shift from boundary representations to medial

ones. Influenced to a large degree by arguments based on studies of the human visual

system (see Burbeck and Pizer [21], and with Morse and Ariely [20]), it was found that

scale-based medialness-measures provide fundamentally stabler descriptions of 2D

object shape than do simple boundariness-measures. Thus, rather than constructing

scale-spaces based on boundary-gradient information, a medialness-kernel M(x, σm) is

used instead to define an Rn+1 dimensional measurement space of medialness-across-

scale for positions x ∈ Rn. Loci of maximal medialness on subdimensional manifolds

in the (x, σm) space form the multiscale medial axis (MMA) or core of the object

being analyzed; these are 1D ridges in R2+1, for example, or 2D surfaces in R3+1. The

value of σm at a point x along the axis provides a measure of object-width-at-scale at

the point, similar to the radial value at points along a Blum medial axis. Importantly,

the boundariness measurements that are used to derive the medialness function use a

σb which is proportional to σm. Thus, σm, the object-width-at-scale, gives a natural

sampling aperture for boundary measurements and—thinking synthetically rather

than analytically—indicates a natural, width-proportional tolerance for fine surface

detail.

Eberly explored the differential geometry of scale space in [49], showing that

Gaussian scale spaces have a non-Euclidean, hyperbolic geometry. He also developed

techniques for tracking curves of maximal medialness in such spaces, allowing the

computation of cores without requiring full-image convolutions at multiple scales (as

was previous required by Morse [105]). Fritsch produced parallel approaches to the

same problem [61, 62] and applied MMA-based methods to problems in medical image

segmentation and in x-ray portal-image registration for radiation treatment planning

in radiation oncology.

The work on ridge-tracking methods for MMA-extraction led to the first practical

techniques for using extracted cores as multiscale, multi-figural shape descriptors, in

the work of Pizer et al. [122]. The axes thus produced differ from Blum axes in being

non-branching structures; objects are represented by linked figure-subfigure or figure-

co-figure combinations of simple sheet or chain axes whose boundaries are implicitly

defined in a similar manner to the unions of fields defining convolution surfaces. The
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Blum Axis (pruned) MMA MMA, given noise

Figure 2.1: The Blum medial axis vs. the MMA. These are simulated medial axes,
using the famous “Whitaker blob” to illustrate the difference between the Blum axis
and multiscale medial axes extracted using methods of Fritsch or Eberly. A crucial
difference between the Blum axis and the MMA is that the former requires well-
defined boundaries, whereas the latter makes direct “medialness” measurements using
sampling apertures proportional in size to object width. A Blum axis also requires
extensive pruning of fine-scale branches to produce a medial axis describing the large-
scale object shape.

width-proportional measurement apertures also make MMAs much more suited to

analysis of noisy, grey-scale images, for which the Blum axis is not well-defined (see

Fig. 2.1).

This work began the shift from the shape-analytic paradigm to the statistical,

model-based segmentation methods for which m-reps were developed. Image struc-

ture could be segmented by medial-based primitives which inherently accounted for

boundary-deviations from the norm based on the width-proportional sampling aper-

ture about the medial axis. Segmentation thus became a process of

1. perturbing a medial model to fit an image-structure based on optimization over

width-proportional “medialness” measures, and

2. perturbing the medially implied boundary according to its surface normals

to match fine-scale image-structure, within width-proportional boundary tol-

erances.

The final shift to m-reps came with the realization that a continuous medial axis con-

tained redundant information, due to the allowable tolerance for boundary deviation,

and that it therefore could be replaced by a chain or grid (for 2D axes of 3D objects)

of discretely sampled medial atoms (or diatoms) that specified location, radius, and

direction of boundary involutes. Originally called Deformable Shape Loci (DSLs), m-

reps retain the non-branching structure of MMAs, attaching subfigures to boundary
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locations implied by the parent meshes. Early work on DSLs was by Fritsch et al. [63]

and by Alyson Wilson of Duke University [158].

2.3.2 Multiscale methods in computer graphics

Multiscale medial methods have not been applied extensively in computer graph-

ics or CAD (though see Chen’s work in Sec. 2.4 below). Multiresolution methods,

however, have risen to prominence in areas such as multiresolution surface-meshing,

level-of-detail (LOD) modeling and model-simplification. Many of these methods are

based on wavelet approaches or subdivision surfaces, which are in fact related—see

Stollnitz, DeRose and Salesin [141]. Recent work on such methods includes that of

Guskov on normal surfaces [76] (described below in Sec. 2.5 on displacement surfaces)

and that of Carr et al. [25] on radial basis functions. Spherical harmonics provide an-

other approach to multiresolution surface-modeling, allowing compact descriptions of

surfaces with spherical topology by frequency-based decomposition, allowing higher

frequencies to be added or subtracted as necessary for computational efficiency or

rendering resolution. As with all Fourier-style techniques, such models lack local

control for modeling operations. None of these methods are multiscale in the sense

of scale-space geometry, but they endorse the usefulness of object-to-rendering-scale

and LOD techniques in computer graphics.

In CAD, ideas of tolerance arise in arithmetic methods for computing accurate

Boolean operations in CSG. Methods employing exact arithmetic are combined with

heuristics for determining when such costly computations are necessary. One of the

few solid modeling methods to explicitly include tolerance is David Jackson’s work [85]

on solid-model editing with boundary tolerances.

2.4 Other approaches to M-reps

As explained in Sec. 2.3.1, m-reps grew out of the work on MMAs and core-based

image analysis. There have been and still are other techniques based on this work

that parallel the sampled medial m-rep approach or explore different directions using

similar ideas.
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2.4.1 Volume-rendering using MMAs

The chief among prior graphics applications using core-based models was the volume-

rendering work of Chen [29, 28], which used core-based models for both segmentation

and volume-rendering of objects from 3D medical images. A multifigure, core-based

model of an organ (such as a kidney figure with an indentation subfigure) would

fit itself automatically to an instance of that object in a CT dataset; a splat-based

approach would then render the object at an appropriate resolution and LOD based on

its screen-space projection. Using his core-based m-rep segmentation, Chen reduced

the time for a splat-based volume rendering from O(V ), the number of voxels in the

object region, to O(S), the number of projected pixels of the visible “surface”. Chen

used nets of sampled medial atoms for his basic shape representation, essentially the

first implementation of sampled m-reps; he used scaled boundariness measures both

to fit his medial model to the image and to define the collar, the region of the medially

implied boundary relevant for rendering.

Chen’s work has been subsumed by current m-reps, which use displaced subdi-

vision surfaces to both represent the medially implied surface and to describe the

boundary displacements within the collar region. Chen’s approach to protrusion and

indentation subfigures was effective for the volume-rendering application but insuf-

ficient for the task of multiscale modeling for CG and CAD applications. Chen’s

core-based models also lacked medial-based coordinates to parameterize his medial

figures.

2.4.2 Core atoms as fuzzy shape descriptors

Another approach to core-based primitives was the statistically based, core-atom

approach of Stetten [138]. While this use was analytic and not synthetic, it utilized

a statistical description of object shape based on a multiscale medial correspondence

of sampled boundary points, allowing classification of object regions as sphere-like,

tube-like, or slab-like to varying degrees. It is this aspect of fuzzy shape-description

that makes core-atoms worth mentioning vis-a-vis related notions involving m-reps.

Stetten developed methods to determine the volume of arbitrary shapes based on

boundary curvature and medial scale [139]. In a multiscale framework, this gives a

fuzzy volume function, a volume-at-the-scale-of-the-core.
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Wireframe Unblended Blended

Figure 2.2: An m-rep figure and subfigure blended in Pablo using an implicit surface.

2.4.3 Implicit boundary m-reps

M-reps were conceived as a new carrier for geometric information, a new primitive for

both modeling and rendering, and thought was given to directly rendering the object

based on the sampled medial axis without a conversion to a polygonalized or spline-

based boundary. Experiments in this direction were implemented by Fletcher [53]

using an implicit function approach, treating objects as the unions of blobby medial

primitives interpolated across their medial meshes. In this way, m-reps became a

multiscale convolution-surface primitive, being renderable by either ray-casting or a

surface-marching polygonalization.

Implicit m-reps have the advantages of other implicit surface methods, especially

the ease of creating additive and subtractive subfigures, joining figures and subfigures,

and the resolution independence of the model. Their disadvantages lie in control of

blends, the awkwardness of going from medial to implicit to b-rep, and their lack of

a medially implied parameterization for texturing, boundary offsets and correspon-

dence. Implicit surfaces were used initially in Pablo for figure-subfigure blending

of m-reps, based on a blending function developed by Pizer and Fletcher and imple-

mented by Gash and Thall (see Fig. 2.2); they have since been replaced by subdivision

surface remeshing code developed by Thall and Qiong and described in Sec. 5.2.

2.4.4 Continuous medial surface methods

M-reps are constructed of meshes of discrete medial atoms, each giving position,

radius, and object angles as a sampling of the object geometry. Work has also been

done on 2D and 3D shape synthesis using continuous medial representations, based

on fitting splines to the medial information and constructing a continuous Blum
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Figure 2.3: [Paul Yushkevich] A 2D continuous m-rep (cm-rep) of a vertebra in
cross-section, based on a b-spline fit to the medial structure.

representation for figural geometry. Initial work in the Seurat library (see Sec. 6.2.2)

and by Fletcher [54] used 2D Bezier patches for the medial surface and radius function;

Fletcher also worked out mathematical “legality” checks for determining when the

∇r-interpolation produced an illegal boundary—i.e., one with cusps, folds, or other

local self-intersections. A medial interpolation function was also used by Crouch [33]

in her m-rep-based FEM research.

Working with the same ideas, Yushkevich [163] developed a continuous m-rep

(cm-rep) based on a b-spline interpolation of the medial surface and r-function, using

the same legality checks as Fletcher, as well as ideas from Damon [38]. While 3D

cm-reps are limited at present to single-figure models, 2D cm-reps are fully realized,

multifigure-modeling primitives. Fig. 2.3 shows a 2D cm-rep created for a cross-

section of a vertebra.

Continuous m-reps have the advantage over discrete m-reps of a true Blum-medial

correspondence between the medial surface and the boundaries generated by the

offset radius and directions at each point on the axis. Consequently, cm-reps suffer

from the overprecision and intolerance associated with the Blum axis; legality checks

are much more important to preserve boundary-legality than for discrete m-reps,

where boundary smoothing by the subdivision, within tolerances, serves to prevent

most such occurrences. In the view of m-rep purists (i.e., this author), Blum-based

continuous m-reps simply store too much information at the medial locus, which

should restrict itself to the coarse-scale shape information and store the fine detail—

including smoothness—at the boundary where it belongs. The large-scale smoothness

of an object considered with a width-proportional sampling aperture, as provided by
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a discrete m-rep boundary, must not be confused with the fine-scale smoothness of a

highly polished object. A cm-rep fails to make this distinction.

2.5 Subdivision surfaces

Subdivision surfaces have become one of the most powerful and useful tools in the 3D

modeling toolbox. In generalizing spline-based surfaces for meshes of arbitrary topol-

ogy, they allow easy fitting of (almost everywhere) C1 or C2 surfaces to a polygonalized

mesh. Subdivision surfaces are now being added as primitives in inexpensive graphics

hardware and are supported in modeling tools such as MayaTM and in graphics APIs

such as DirectX 9 and OpenGL Performer.2

2.5.1 Interpolating and approximating surfaces

The earliest works subdivision surfaces were the face-splitting Doo-Sabin method and

the vertex-splitting Catmull-Clark method from the late 1970s, both of which gave

almost everywhere C2 limit surfaces [26, 47]. Both of these were approximating sub-

division methods—they did not interpolate their initializing control mesh—and both

were generalizations of bicubic splines from regular quad-grids to arbitrary meshes.

In the late 1980s, Charles Loop produced another approximating subdivision method

for triangle-based meshes which generalized triangular box-splines [99].

Interpolating subdivision methods have been developed subsequently, whereby the

limit surface passes through the initializing mesh-points. Dyn et al. [48] produced a

butterfly method for interpolating triangle meshes; Hoppe et al. [82] produced a modi-

fied Loop subdivision for reconstruction purposes; and Halstead et al. [77] constructed

a modified Catmull-Clark interpolating subdivision, using a bending-energy minimiza-

tion to eliminate rippling effects in the interpolating surface. Of these methods, the

Halstead technique approaches most closely the requirements for m-rep modeling,

including normal interpolation; this will be discussed in more detail in Ch. 4. Most

recently, Litke et al. [97] produced an interative, quasi-interpolating approach using

Catmull-Clark surfaces; the iteratively interpolating approach for m-reps, described

in Ch. 4, is similar to that of Litke.

One other idea worth mentioning is the research of McDonnell et al. [103] on virtual

clay using solid subdivision models. This builds from earlier work by MacCracken

2http://www.sgi.com/software/performer/announce.html
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and Joy [100] where they extended Catmull-Clark subdivision surfaces to subdivision-

based deformation based on a 3D subdivision lattices. While MacCracken used these

subdivision lattices as tools for specifying spatial deformation, McDonnell developed

them as modeling primitives in their own right.

2.5.2 Parameterization

Many applications for m-reps require a boundary parameterization, one based ide-

ally on an associated medial-parameterization. For many years, it was not believed

possible to establish a closed-form parameterization of surfaces defined by stationary

subdivision algorithms. The work of Jos Stam [137] changed this notion, describing

a way to parameterize stationary subdivision surfaces (such as Catmull-Clark and

Loop surfaces) based on an eigenanalysis of surface behavior in the neighborhood of

extraordinary points; elsewhere, the surfaces are simple spline surfaces and can be

parameterized accordingly. The work of DeRose et al. [43], more simply, presented

the idea of splitting texture parameters according to the same surface-subdivision

rules for vertex-averaging to create a smooth parameterization of a subdivision sur-

face. It will be seen in Ch. 3.1.5 that a medial parameterization can be derived

straightforwardly from the sampled medial axis and be extended to the solid volume

it defines; Ch. 4.1.6 will discuss how these coordinates can be usefully associated with

the subdivision surface bounding an m-rep, by methods similar to DeRose’s.

2.5.3 Displacement subdivision surfaces

Displacement subdivision surfaces are very recent ideas, though their foundation in

displacement mapping goes back the original texture-mapping work of Catmull in

the early 70s. Using the various means of parameterization available for subdivision

surfaces, it follows naturally to map boundary displacements to them to provide the

fine detail that otherwise is eliminated by the inherent smoothing of the subdivision

process. Thus, my own ideas (as described in Ch. 5) were developed in parallel

with the work of Lee et al. at Princeton [96] and the work of Guskov on normal

surfaces [76]. The Guskov paper—mentioned above in the context of LOD modeling—

actually describes a more general class of hierarchical meshes; it specifies vertices with

only a single scalar displacement rather than by (x, y, z) positions, with successive

displacements being applied hierarchically from a base-mesh. Guskov et al. regarded

the DS-surfaces of Lee as a bi-level version of their multiresolution approach; m-reps

33



can be thought of similarly.

Some interesting work on more general boundary displacements (not restricted to

the normal direction) is that of Kobbelt et al. [93] on feature-based surface extraction

from volume data. In this work, they create an enhanced distance field representa-

tion for their marching cubes algorithm, with applications to Boolean operations on

volume data for CAD purposes. This is not really a subdivision approach and is more

an analytic than a synthetic tool, but the work is worth mentioning for its aspects of

LOD modeling, displacement fields and Boolean shape composition. Recent work by

Ju et al. [88] and by Varadhan et al. [152] extend and improve Kobbelt’s algorithm.

2.5.4 Boolean operations on subdivision surfaces

As an essential part of figural modeling using m-reps, this thesis promotes the suit-

ability of subdivision surfaces for Boolean—or approximate Boolean—operations for

solid modeling. This is another recent development in subdivision surface modeling,

with much research from the Multi-Res Modeling Group at CalTech.3 The key pub-

lication in this area is the SIGGRAPH paper of Biermann et al. [8] on approximate

Boolean operations on subdivision surfaces, which drew on concurrent work by Litke

et al. [98] on trimming subdivision meshes. Biermann developed techniques for addi-

tive and subtractive operations to minimize the size and optimize the quality of the

new control meshes, employing a multiresolution-mesh-based approach with adaptive

remeshing and using the concept of a parametric domain of a surface for their cutting

curves; this parametric domain, set by the initial triangularization for their control

mesh, is directly paralleled in the (u, v, t) coordinates that m-reps establish on their

boundaries. See Sec. 5.2.3, where, as will be seen, Biermann’s use of cutting curves

in these parametric domains is paralleled independently by our use of curve-dilation

in (u, v, t) in the m-rep boundary remeshing scheme.

The finding of subdivision surface intersections remains an open problem—for

example, see work by Grinspun et al. [73] on detecting subdivision surface interference,

including self-interference. The remeshing of subdivision surfaces in join regions also

presents challenges. Igarashi’s Teddy application [84] did such stitching for non-

interpolating surfaces, using ideas from Barequet and Sharir [6]; older work on mesh-

stitching goes back at least as far as the dynamic programming algorithm of Fuchs

et al. [64] for reconstructing surfaces based on contours.

3http://www.multires.caltech.edu/
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The Markosian Skins paper [102] also deserves mention, since it blends protrusion

figures based on the subdivision surface generated by distance fields about the skeletal

polyhedra. It is thus an implicit-surface technique that uses subdivision surfaces as

boundary interpolants.

2.5.5 Physically based operations on subdivision surfaces

As subdivision surfaces become ubiquitous in computer graphics and CAGD, the

need to provide physically based operations on objects enclosed by subdivision sur-

face boundaries will be expanding likewise. The most relevant current work in this

area is that of Jörg Peters and Ahmad Nasri, on “Computing Volumes of Solids En-

closed by Recursive Subdivision Surfaces” [116]. This work was in turn based on

that of Gonzalez-Ochoa, McCammon and Peters [72], which presented the initial the-

ory for objects enclosed by piecewise-polynomial surfaces, from which the stationary

subdivision surfaces generalize. The authors show that it is possible to do rapid,

on-the-fly computation of volume and higher-order inertial moments for subdivision-

surface-bounded solid; such techniques should be applicable to m-reps under medial

deformation, as will be discussed in Ch. 7.3.2. The work by Stetten cited above, on

determining the volume of arbitrary shapes based on boundary curvature and medial

scale, is also relevant to physically based m-rep modeling, as is the FEM research of

Crouch.

2.6 Concluding remarks on prior work

In this chapter, both direct and “spiritual” ancestors of m-reps were discussed, as

drawn from a wealth of theory and practice in image-analysis and model-based im-

age segmentation, skeletal modeling in computer-graphics modeling and CAD, and

current research in subdivision-surface modeling. M-reps, as it will be seen, are a

synthesis of trends found in each of these research areas and are well-poised for ap-

plications in all of them.

The next chapter will define the tolerance-based medial atom, showing how dis-

crete meshes of these atoms form the basic primitives for shape modeling by m-reps.
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Chapter 3

Object Description by Sampled

Medial Sheets

Section 2.1 discussed the Blum symmetric axis and its relationship with Voronoi

skeleta. Blum and Voronoi axes form the basis of most methods for skeletal modeling

and reconstruction. A key observation of multiscale medial research, however, is that

Blum medial methods are overprecise—intolerant—in describing object geometry and

that they pay for this intolerance with their sensitivity to boundary perturbation.

This is inevitable: because the Blum axis representation is isomorphic to the boundary

representation, all boundary perturbations map directly to branches of the medial

skeleton [18]. An object with fine surface detail must therefore map to a bushy

skeletal tree; minute changes in the boundary may produce major changes in the

skeletal structure, and any pruning of this tree produces a loss of related surface

detail. Such pruned skeleta thus produce a lossy compression of the shape-related

geometric information.

M-reps are founded on the idea that, for a shape-synthesis task, the information

loss can be seen in reverse as rather a feature than a bug—i.e., rather than settling

for a lossy geometric representation, we insist upon one. M-reps replace Blum- and

Voronoi-axis-based methods by one with a multiscale medial axis as its theoretical

foundation. By assuming from the start that a stable skeletal representation requires

insensitivity to fine surface detail, m-reps divide the shape characteristics of an object

into two parts:

• a coarse-scale, medial representation based on object width but with a width-

proportional boundary tolerance, and



• a fine-scale, boundary representation giving perturbations within the width-

proportional tolerances at each surface location.

The idea of sampled medial sheets as modeling primitives grew out of these real-

izations, driven by the need for a multiscale representation for image-analysis based

on geometric models. The initial ideas for a sampled medial representation belonged

to Stephen Pizer, and most of the critical ideas of sampled m-rep modeling can be var-

iously credited to Pizer jointly with members of his research group, including Fritsch,

Wilson, Chen, and me; my own contributions included the following:

• creating data-structures for discrete 3D medial atoms with explicit quaternion-

based medial frames;

• creating sampled medial sheets of various topologies and defining medial-based

deformations upon them;

• developing the (u, v, t) parameterization for quad-meshes with planar connec-

tivity and extending this to a (u, v, t, τ) parameterization of the space inside

and outside the m-rep;

• exploring boundary interpolation based on medial interpolation, on polygonal

boundary tessellation, and ultimately on the displacement subdivision bound-

aries that are used in m-reps in their present form.

These ideas have been implemented in Rakshasa—an experimental platform for me-

dial shape creation and boundary deformation experiments—and in MIDAG’s Pablo

project; these implementations will be discussed in detail in Ch. 6. This chapter will

discuss the following topics: medial atoms and the sampled medial sheet; medial-

based coordinates; figural hierarchies; medial interpolation; and topology preserving,

medial-based deformations. It will conclude with a discussion of drawbacks and lim-

itations of sampled medial representations, both theoretical and as currently imple-

mented in m-reps.

3.1 The sampled medial sheet

The structural unit of the m-rep model is a single-figure medial mesh made up of me-

dial atoms linked in chains or grids. The atoms, as discussed in the previous chapters,

provide a width-proportional sampling of the medial structure and describe discrete
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boundary involutes within a width-proportional tolerance. This section describes (a)

the medial atom with its explicit, medially derived coordinate frame, (b) the single-

figure medial mesh, (c) the invariance of m-reps under similarity transformation, and

(d) the parameterization by medially derived coordinates which provides correspon-

dence between the implied medial axis and the implied single-figure boundary. This

parameterization can be extended to a parameterization of space in the neighborhood

of the medial figure. The section concludes with discussion of the central concept of

width-proportionality as introduced in Sec. 2.3.1.

3.1.1 The medial atom

The medial atom represents a Blum-style sampling from a smoothed boundary, a

boundary viewed at a width-proportional scale—Blum-like in including ∇r informa-

tion in the medial representation. Other approaches to medial atoms (notably Stet-

ten’s) have used a chordal axis, where surface-normals at boundary involutes are not

parallel to the involute-vectors themselves. Individual medial atoms in these chordal

representations contain only 0th order boundary information, however—they store no

information on the change of the medial radius-function in the neighborhood of the

medial atom.

In implementation, medial atoms contain medial position, radius, object angle,

and medial frame information. Formally, a medial atom is a discrete point on an

implied medial locus defined by Mp = {p, F, r, θ}, where p is a point in R3 on the

implied medial manifold M, F ∈ SO(3) is the medial frame orientation with respect

to a canonical basis, r is the radius, and θ is the object angle (see Fig. 3.1).

The object angle θ is found by the relationship

cos θ = ||∇r||

where the gradient is with respect to arc-length on the medial surface along geodesics

through the point p.

The frame orientation F is represented by a unit-length quaternion q ∈ Q. Unit-

length quaternions are ideal for specifying frames in R3 relative to a canonical basis-

frame, due to their providing a double-cover of the space of rotations SO(3). They

have well-established advantages over rotation matrices for representing orientation.1

1Their only drawback is the need to transform them to a traditional rotation matrix to multiply
them into a composite transformation matrix pipeline in homogeneous coordinates. They work well

38



r

r

b

n

v1

v2

b

T

T (M)p θ
p

Figure 3.1: A medial atom at position p and its frame {�b,�b⊥, �n} relative to the tangent
space of the medial surface, Tp(M).

(See Shoemake [135].) The frame, as shown above, orients the vectors �b and �b⊥ in the

tangent space Tp(M) of the implied medial surface M with �n normal to it; �b is in the

−∇r direction in Tp(M)—the direction of maximal narrowing of the object vis-a-vis

its medial surface—and thus �b and θ together give

∇r = −�b cos θ, (3.1)

the established Blum relationship in 3D. When p is a critical point in r and thus

||∇r|| = 0, the boundaries are parallel at the involute positions p + �v1 and p + �v2; �n

is then in the �v1 direction and is both the medial and the boundary normal. In this

case, the choice of �b direction is ambiguous and can be made arbitrarily in Tp(M) to

suit the needs of a given modeling or deformation task. The existence of a coordinate

frame at each medial atom allows medially based deformations to be specified relative

to a particular atom; such deformations will be discussed in Sec. 3.4.

There are special-case constructs for end-atoms—those at the edge of the sampled

medial lattice. The edges of the medial sheet generically imply the crest regions of the

implied boundary, regions where osculating spheres of radius r may have higher-order

contact with the boundary than the bitangency of atom involutes in slab-like regions,

though not necessarily at the sampled atom positions. The special end-atoms which

in an OpenGL-style rendering pipe, however, since they store rotations in vector-angle form ideal
for input.
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Figure 3.2: A width-proportional sampling of a fat and a thin object. No exact
constant of proportionality is used; the sampling reflects the inherent medial de-
formability of an object region based on the width vs. the distance along the medial
axis.

deal with crest regions will be discussed in the next section.

3.1.2 The single-figure medial mesh

Single-figure m-reps in 3D are made up of 1D chains or 2D lattices of medial atoms.

For Blum medial axes, 1D medial curves are non-generic primitives—any boundary

perturbation may cause the 1D medial structure to split and generate 2D medial

regions represented flattened regions along the tube-like boundary. For m-reps, how-

ever, 1D chains are generic primitives; boundary perturbations within tolerance do

not affect the medial structure. The sampling density of the medial atoms in the

chains or lattices should be inversely proportional to the object width, in keeping

with the medial deformability required by the model. Fig. 3.2 shows how coarse de-

formation of the model at the medial level is constrained by the object width—a fat

object has less medial variability and requires fewer samples than a thin object of

equal length. (Intuitively, a snake can be wigglier than a knockwurst.)

Width-proportional sampling is akin to the radius-of-curvature-proportional sam-

pling required for boundary reconstruction, as, for example, in the work of Amenta et

al.[2] (where the authors also use an approximate medial axis to guide reconstruction).

Radius-of-curvature-proportionality is a bad sampling choice for an m-rep, however,

because the sampled medial skeleton needs to model the coarse-scale variability of

an object with the given widths. Thus, a sparse medial representation for a long,
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Semi-rigid m-rep More deformable m-rep

Figure 3.3: Two m-reps allowing varying medial deformation, based on sampling
density.

straight object would fail to model the possible curves and wiggles of the medial

structure which might be encountered, as in Fig. 3.3. If an object is known to be

rigid (e.g., bricks, which seldom wiggle), a sparse sampling can be used; conceptually,

this varies the constant-of-proportionality of the width-based sampling to accommo-

date the desired medial “stiffness”. Another alternative is to adaptively resample the

medial surface based on an underlying continuous model when the need for curvature

variability may change across a sample-space or across time. This approach is taken in

work by Yushkevich [163] on continuous m-reps (cm-reps) mentioned in the previous

chapter. Such a resampling is also possible with discrete m-reps by interpolating new

medial atoms based on boundaries in regions needing more variability; this method

will be discussed in Sec. 4.3.

The dependence of the medial sampling on the expected modes of deformation

for an object provide a description of the tolerance of the object being modeled, as

discussed previously in Sec. 1.3.2. The sampling for a model will thus be based on

average r values, the base-rs for the shape, and the relative spacing of medial sam-

plings will be held unchanged thereafter for that class of object; this is central to the

way m-rep-based segmentation and shape-analysis is carried out, with deformations

being quantifiable in terms of deviations from the base model (see Sec. 6.2.1).

The most commonly used m-rep in our current research is based on a regular

quadmesh of medial atoms. Interior atoms represent medial position, positions and

normals at a single pair of boundary involutes, and also the object angle and medial

frame, giving the local orientation of the medial surface and the behavior of r and ∇r
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(a) Catastrophic behavior as ||∇r|| → 1 (b) m-rep end-atom with η

Figure 3.4: Catastrophic behavior of �v1 and �v2 in crest region at the edge of medial
sheet (in cross-section).

in that region. Edge atoms are modified to reflect the behavior of the medial manifold

at edge of medial sheet. In these crest regions, in the Blum case, as a medial point

approaches the crest along the medial surface, there is a catastrophic collapse of the

�v1 and �v2 vectors to the �b as ||∇r|| → 1. (This is described by Giblin et al. [69] and

Damon [38].) See Fig. 3.4(a). The crest region is a maximum of curvature for the

object, and the cusp in the loci of boundary centers-of-curvature lies along the edge

of the medial sheet. Rather than attempting to model the behavior of the �v1 and �v2

vectors in the neighborhood of this cusp, end-atoms are placed which assume distinct

�v1 and �v2 vectors with object angle θ from �b, and with a circularly cross-sectioned

endcap connecting them. An elongation factor η can then be used to specify endcap

deviation from this circular cross-section, as shown in Fig. 3.4(b). This also partially

eliminates the problem given width-proportional sampling of infinite sampling density

where the width r → 0, as discussed below.

Pablo currently includes the elongation factor η for crest atoms, though the degree

of deviation of the cross-section from circularity is determined automatically by the

subdivision algorithm used for surface fitting to the medial skeleton. This is described

in Ch. 4.

While the η-parameter can vary the shape of a crest to approach a sharp point, the

medial skeleton of an m-rep alone implies an inherently blobby object—the boundary

represented is intended as an approximation to a mean density isosurface as sampled

at an r-proportional scale and tolerance. Boundary details such as corners, creases,

and other first-order discontinuities have been “blurred away” by the fuzziness of

the represention. This prevents the branching of the medial surface as in the Blum

case. It also prevents sampling problems at corners: the medial structure of a corner

has problem of infinite regress for medial sampling at r-proportional scale; as r →
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0, the sampling density increases without bound. Thus, while there can be coarse

representation of corners by medial atoms and elongations along crests, the fine-

scale surface-detail in an m-rep is achieved at the boundary level. This can be (a)

by boundary perturbation techniques such as displacement maps or (b) by adding

creases, corners, and cusps to subdivision surfaces as by techniques of DeRose et

al. [43]. Such methods will be discussed in detail in Ch. 5.

3.1.3 Invariance under similarity transformation

An m-rep of a solid object is invariant under similarity transformation: rotation,

translation, and uniform scaling of an object is equivalent to the same rotation,

translation, and uniform scaling of its medial representation. Similarity transfor-

mation thus preserves the relationship between the boundary involutes and their

corresponding medial positions—this is a property of medial axes in general and one

of the cardinal virtues of m-reps as originally proposed by Pizer et al. for image-

analysis [120]. Consequently, object shape, if based on local figural relationships

defined by medial shape descriptors, is similarity-transform invariant. Let T be a

similarity transformation (s,R, T ) for s ∈ R+, R ∈ SO(3), and T ∈ R3, where

T : R3 → R3 as T (x) = s(Rx) + T for x ∈ R3. Then the equivalent transformation

for Mp = {p, F, r, θ}, an atom on the medial locus, is

T (Mp) = {T (p), R ◦ F, s · r, θ}.

A similarity transformation thus transforms the medial location, rotates the medial

frame, and scales r, while leaving θ unchanged.

M-rep behavior under affine transformation is problematic. Blum medial topology

is not invariant under affine transformation; Boundary-point pairs that are mutual

involutes may no longer be so after a skewing or non-uniform scaling. Thus, for a

discrete medial atom, there is no simple transformation of the {p, F, r, θ} structure

corresponding to a given non-uniform scaling of the boundary.2 This means that

m-reps cannot be naively manipulated by free-form deformation techniques, since the

medial structure of the undeformed object does not correspond to the medial struc-

2In differential geometric terms, this is because the boundary positions transform contravariantly
under affine tranformation while the boundary normals tranform covariantly. Thus, in computer
graphics, when a matrix transformation M is applied to surface positions, the inverse-transpose
(M−1)T is applied to surface normals [59].
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ture of the object after deformation. Although some warpings might be acceptably

within shape tolerances for a particular m-rep, m-reps are in general not amenable to

free-form deformation. One can attempt to modify a prior medial structure to match

a deformed object (as done in Pablo), or one can fit a new medial structure to a non-

uniformly transformed boundary. Conceptually, however, the “correct” deformations

of an m-rep are medial deformations—width-changes and bendings based on alter-

ation of the medial-atoms and their embedding mesh—and boundary displacements

within tolerance (see Sec. 3.4.1).

3.1.4 Connectivity and topology of sampled medial meshes

In implementing discrete m-reps, there is latitude in the choice of mesh topologies

and mesh connectivity. Section 3.2.1 discusses the inherent polymorphism in figu-

ral representation by medial representation—particular structural topologies can be

generated by different figural representations, making the need for a particular struc-

turing primitive somewhat contingent. Primitively and locally, medial structure can

be categorized according to dimensional symmetry as spheres (symmetric about a

point), cylinders (symmetric about a 1D axis), and slabs (symmetric about a 2D

sheet) [140]. Sampled medial structures must model these symmetries as manifest in

all manner of solid shapes if they are to be robust geometric primitives. My work

on m-reps has focused mainly on quadrilateral meshes, but it has also explored the

following mesh topologies:

• sphere-figure—the simplest medial figure, with a single medial primitive and

with radius-proportional boundary tolerance;

• tube-figure and ring-figure—single chains of medial atoms with rotational sym-

metry about a 1D space-curve locus, forming solid tubes or tori;

• quad-figure, tri-figure, slice-figure—2D medial meshes of regular quadrilaterals

or triangles modeling slab-like symmetry; slice-figures are regular quad meshes

with rows of medial atoms constrained to lie within planes;

• hollow-tube-figure—a 2D quad mesh with cylindrical connectivity, creating a

hollow tube with walls deformable proportionally to their thickness;

• hollow-sphere-figure—modeling a sphere as a hollow shell of radius 2r by a

(triangle-based) tessellation of a sphere by medial atoms of radius r.
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quad-figure quad-figure

tube-figure tube-figure

Figure 3.5: Examples of medial mesh topologies. On the left are the meshes of medial
atoms; on the right are the coarse polygonalized boundaries. Only the quad-figure is
in active use in current m-rep research.

Figs. 3.5 and 3.6 show examples of the most important of these. The following are

some particular points about these representations.

• A sphere-figure is a generic object: unlike its analogue in Voronoi-based skeletal

methods, a spherically symmetric figure with a single medial atom is stable un-

der small boundary perturbations. Its surface may be parameterized by [φ, θ] or

by quaternion frames giving both position and rotation for subfigure placement.

As with other figures, surface displacements are in the normal directions.

• Slice-figures have the drawback of modeling only the in-slice 2D medial structure

and not the 3D medial structure of the object, thus limiting the types of figures

that could be modeled. They were used in early prototype applications of

3D m-reps in medical image segmentation for two reasons: (1) they could be

superimposed on a corresponding plane of volume-image data, allowing one
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loop-figure loop-figure

hollow-tube-figure hollow-tube-figure

tri-figure tri-figure

Figure 3.6: More examples of medial mesh topologies. On the left are the meshes of
medial atoms; on the right are the coarse polygonalized boundaries. The tri-figures
were from early experiments with non-quad-based medial mesh connectivity.
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to visualize the match of M-rep to the underlying image; (2) they allowed the

design of objects formed by a generalized extrusion in which a deforming medial-

curve sweeps through space, possibly with twisting.

• Tri-figures provide a triangular mesh for the medial sheet; triangles were used

rather than a regular quad mesh to simplify adaptive resampling of meshes, with

an eye toward future work on interactive modeling and shape deformation.

Pablo currently supports quad-figures and tube-figures, which suffice for most mod-

eling tasks. Chapter 6 discusses implementation details.

3.1.5 Medial coordinates and correspondence for quadmeshes

A Blum medial description provides correspondence between positions on the medial

surface and their associated boundary involutes. Given a continuous, parameterized

medial surface, one might then extend the medial surface parameterization to as-

sociated involute positions on the boundary. This presents difficulties in situations

that we define as non-Blum—where there are folds or cusps in a continuous medial

representation and thus no uniquely or well-defined involute relationships between

boundary positions and points on the continuous medial axis, as shown in Fig. 3.7.

This will be discussed below in Sec. 3.1.6. This is another case where the intolerance

of exact representation creates problems. Because discrete m-reps have no underlying

continuous representation, a parameterization is possible which respects known in-

volute positions and approximates involute relationships between boundary positions

and implied medial positions elsewhere.

A discrete m-rep quad-figure can parameterize its boundary in terms of a medially

based coordinate system, and this parameterization may be extended to the interior

of the object and to a local neighborhood of the exterior. M-rep medial coordinates

(u, v, t, τ) were developed by Pizer, Fletcher, and Thall for parameterization of the

single-figure m-rep models being used for medical image analysis [87, 123] and were

later extended to allow parameterization of the blend regions between figure and

subfigure.

Given a quadmesh of medial atoms Mij, where (i, j) ∈ [1, N ] × [1,M ] are the

integer-valued indices for the N rows and M columns of mesh atoms, the correspon-

dence between a medial position pij and its boundary involutes v1 = pij + �v1 and
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Figure 3.7: [Paul Yushkevich] Boundaries with a non-Blum medial axis. When |∇r|
is too large or other “Blumness conditions” are violated, a continuous medial axis
will exhibit catastrophic behavior such as cusps and swallowtail events.

v2 = pij + �v2 can be established as

v1(u, v, t) = v1(i, j, 1) (3.2)

v2(u, v, t) = v2(i, j,−1) (3.3)

where 1 ≤ u ≤ N and 1 ≤ v ≤ M and (as will be explained) −1 ≤ t ≤ 1. Thus, the

involute position is parameterized by the medial atom’s mesh indices and with t = 1

or −1 indicating the top or bottom involute. For end atoms, the boundary position

b = pij + rη�b is parameterized as well by

b(u, v, t) = b(i, j, 0). (3.4)

These relationships are shown in Fig. 3.8. Once the medial coordinates have been

assigned to the boundary positions, they are interpolated over the boundary when it

itself is interpolated (based on the involute positions and normals, as will be described

in Ch 4). When a subdivision algorithm is used for the boundary interpolation, a

simple midpoint subdivision is used for the corresponding (u, v, t)-coordinates. Thus,

top and bottom surfaces retain their t = 1 or t = −1 character, and coordinates

at known boundary involutes do not change. Along the crest regions, the midpoint

subdivision interpolates the t value between 1 and −1 and interpolates the u or v
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.

Figure 3.8: Parametric correspondence between medial atoms and boundary invo-
lutes.

value while holding constant the other along that side of the crest.

Often in subdivision methods, texture coordinates will be subdivided using the

same splitting and perturbation scheme as for the vertices, a technique developed by

DeRose [43] at Pixar. For m-reps, however, this would result in “coordinate creep”

near the crest, with top or bottom surface points getting values of t < 1 and > −1,

and it would also cause medial coordinates to shift from known values at sampled

medial involute positions being interpolated.

Approximate medial correspondence can be established, thus, between interpo-

lated boundary positions and interpolated medial positions, without dependence

on an exact medial interpolation—which is difficult and will be discussed below in

Sec. 3.3—nor upon on exact medial correspondence. These figural coordinates are

therefore well-defined for non-Blum situations, since they depend only on the initial

(known) medial positions and involutes.

The (u, v, t)-coordinate system parameterizes the medially implied surface of the

object in a way that is invariant under similarity transformation. By adding an

addition parameter τ representing r-proportional distance from the boundary, it is

possible to extend this parameterization to the space inside and outside of the object,
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subject to certain restrictions. The point y(u, v, t, τ) is thus defined by

y(u, v, t, τ) = B(u, v, t) + τrB�nB (3.5)

where B(u, v, t) is the boundary position corresponding to the given (u, v, t) values,

rB and �nB are the interpolated radius and surface normal at the boundary point,

and −1 ≤ τ ≤ α gives the distance from the boundary position B(u, v, t) in units of

rB—thus, y(u, v, t,−1) gives the medial position and y(u, v, t, 0) the boundary point

B(u, v, t) itself. The upper limit α on the value of τ is dependent on the surface

geometry. In a concave or saddle-shaped region, the τ value must be less than the

minimum radius of positive curvature for the surface at B(u, v, t) to make it a local

nearpoint to the y(u, v, t, τ) point in space. There need not be similar restrictions

on values of τ < 0 related to curvature in convex regions, because, given (a) τ = −1

corresponds to the medial point itself, (b) the internal radii of curvature are minimal

at the crests where their value is ≥ r, and (c) τ ≥ −1, it is therefore known that

||B(u, v, t) − y(u, v, t, τ)|| ≤ r for τ < 0. More accurately, τ is in units of ηr, with

η ≥ 1 and > 1 only for elongated crest regions. The same argument holds.

3.1.6 Restrictions on boundary curvature of m-reps

It is a postulate of this work that object shape must be captured within width-

proportional tolerances; the rationale for this was presented in previous sections.

Therefore, surface deformation must be within width-proportional tolerances. In ad-

dition, perturbation in the normal direction at a boundary point must be within

the (signed) radius of curvature at a point to avoid surface self-intersections in the

local neighborhood of the surface point.3 Thus, boundary curvature must be width-

proportional as well, or else there must be an additional, lower limit placed on allow-

able deviation. An example, of a fat sausage being bent, is shown in Fig. 3.9(a). A

real object probably would show buckling and pleating at the point of maximum cur-

vature; this can be (a) avoided, by constraining the allowed bending, or (b) modeled

realistically using volume-preserving deformation methods, such as Gentaro Hirota’s

free-form deformation techniques [80].4

A more m-rep-ish solution would be to model the bent object by two blended fig-

3This does not prevent global self-intersections, which require other methods, e.g., see Capell [24].
4Work on finite element modeling using m-reps for physically based deformation was the focus

of dissertation work by Jessica Crouch at UNC-Chapel Hill. See the discussion in Sec. 6.3.
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(a) Bending disproportionate to width (b) Avoidance by two-figure model

Figure 3.9: An m-rep with with a bend disproportionate to object width, beyond its
curvature tolerance. The image on the right shows a two-figure m-rep which avoids
this problem.

ures, as in Fig. 3.9(b). This might be necessary as well for modeling of objects which

are no longer Blum, i.e., have boundaries that cannot be produced by a smooth,

unbranching medial surface, as already seen in Fig. 3.7. Such objects have medial

curves with swallowtail cusps and other “bad” behavior; alternately, an object may

have a smooth, continuous axis but cusps or folds on the boundary, due to inadequate

constraints on the r-function along the medial curve or surface, as in Fig. 3.10 on the

following page. Tests for Blumness have been explored by Fletcher and Yushkevich

in their work on continuous medial axes as well as in the theoretical results of Da-

mon [41] and of Giblin [70]. It is a strength of m-reps, however, that single-figure

models can often represent such non-Blum figures, due to the boundary tolerances

and displacements, as will be shown in later chapters.

3.2 Figural hierarchies

Because m-reps do not use a branching skeletal structure, a boundary displacement

exceeding the allowable tolerance is represented as an attached subfigure. This allows

the logical division of an object’s shape into a quasi-hierarchy made up of several

possible types of figural relationships:
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Figure 3.10: A continuous m-rep with a knotted boundary due to inadequate con-
straints on the medial r-function. [Thanks to Paul Yushkevich for use of his spline-
based cm-rep prototype code for this image.]

• figure-subfigure relationships, where the parent figure is the main body of the

object;

• co-figure relationships, where no unique parent-child relationship is apparent;

• figure-self relationships, where, e.g., the “tail” of a figure may be attached as a

protrusion from part of the same figure;

• figure-neighbor-figure relationships, where associated figures may be unattached

to the main figure (and may be internal or external) but use the figural hierarchy

to specify the geometric relationship between figure and neighbor just as for

attached figures.

Thus, one can construct a directed graph (not necessarily a tree) describing figural

relationships within a multifigure object. Fig. 3.11 illustrates some of the possible

inter- and intra-figural relationships.

A subfigure is attached at the boundary of a parent figure along locations specified

by their (u, v, t)-medially based surface coordinates—thus differing from traditional

skeletal modeling methods, which employ a connected, branching skeleton. This is

in accord with theoretical results arising from the study of multiscale medial axes; in

generic cases, a multiscale medial axis or core does not branch; rather, protrusions and

indentations have separate axes at different levels of scale (see Damon [37]). Fig. 3.12
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(a)

(b)

(c)

(d) (e)

Figure 3.11: Inter- and intra-figural relationships. Figure (a) shows parent-child
relationships; Figure (b) shows a child-figure with multiple attachments to the parent;
Figure (c) shows figure-neighbor-figure relationships; Figure (d) shows a co-figure
relationship; Figure (e) shows a figure-self relationship.
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Figure 3.12: An illustration of the non-branching of multiscale medial axes in scale-
space for an object in a 2D image. The space curves represent the medial axis path
in a 3D scale-space, where height above the image approximates r at that point
on the axis. The medial axes of the subfigures increase in scale as they join the
main figure, then break—cease being ridges of maximal medialness for the object in
scale-space—rather than connecting to the parent axis.

illustrates this idea. The subfigure attachment positions are thus subject to the figural

boundary tolerances of the parent exactly as are other boundary attributes. Under

deformation, the subfigure attachment moves in (u, v, t) and the subfigure itself is

deformed in accord with the deformation of the parent-figure in the neighborhood of

(u, v, t). Figure-subfigure deformation will be discussed in Ch. 5.

Attached subfigures may form either protrusions or indentations, allowing approx-

imate Boolean operations to be performed using m-rep figures as primitives. Fig. 3.13

illustrates this for a 2D m-rep, with a main figure and two attached subfigures, one of

which is an indentation figure and the other of which has a protrusion subfigure of its

own. Fig. 3.14 shows a 3D m-rep and subfigure as generated by Pablo. Pablo initially

used implicit surfaces to compute blended boundaries between figures and subfigures

and could not fit blended surfaces to indentation figures; this was an implementation

issue, not a theoretical restriction, since implicit construction can be either additive

or subtractive. The subdivision-surface-remeshing now used for subfigure attachment

allows both additive and subtractive subfigures. Object synthesis can thus be based
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Figure 3.13: A 2D m-rep with 2 attached subfigures—a protrusion and an indentation
figure. The protrusion subfigure has a subfigure of its own. Attachments of the
subfigures are in the medially implied boundary coordinates of their respective parent.

Wireframe Blended

Figure 3.14: A 3D m-rep with figure and subfigure generated by Pablo. This example
uses implicit surface blending; current Pablo code uses subdivision surface remeshing
for figure-subfigure joins (see examples in Ch. 5).
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on sequential attaching of protrusions and indentations to an object, as approximate

Boolean addition and subtraction operations allowing a CSG approach. Chapter 5

will discuss subfigure attachment by subdivision surface remeshing, and Chapter 7

will discuss its use in modeling interfaces.

3.2.1 Representational polymorphism

Because m-reps take a CSG-style approach to shape modeling, using protrusion and

indentation subfigures, they have an inherent representational polymorphism. While

an object will have a unique Blum medial skeletonization, there can be many equiva-

lent m-rep combinations producing the same 3D object. In fact, the tolerance-based

nature of m-reps requires that there be continuous families of m-reps, with mean

and statistical deviations, describing any particular shape. Different families may

describe the same complex shape, and representation can and should be based on

desired modes of deformation. For example, a torus can be seen as either a tube

connected end-to-end or an ovoid with a hole through; thus, an m-rep of a torus can

be represented as either a toroidal mesh of medial atoms or as a slab-figure with a

piercing indentation subfigure. See Fig. 3.15.

In designing m-reps to be used as deformable models—e.g., for image-based seg-

mentation applications or statistically varied object instancing—the designer should

therefore choose a structure which reflects the desired modes of variation most di-

rectly. In the case of a torus, if it seen as a ring to be twisted, stretched, or bent, then

a single-figure, toroidally linked structure is most appropriate. If it is seen as a solid

with a hole which may expand or contract, shift in location, or have various surface

characteristics (rifling or a screw-like displacement texture) as perhaps a machined

part, then a blended figure-subfigure combination is most appropriate.

3.3 Interpolation of medial atoms

Given a sampled medial axis, there are numerous methods to construct a boundary for

it, based on the boundary involutes, surface normals and other information provided

by the medial atoms. These include simple boundary tessellations based on involutes,

implicit surface methods, fitting of spline-based or subdivision surfaces to the bound-

ary, or adaptive refinement of boundary meshes based on interpolative-refinement of

the medial mesh to generate a finer mesh of involutes. The m-rep-to-b-rep trans-
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(a) (b)

(c) (d)

Figure 3.15: A 3D object with a hole, achieved by a 1- or 2-figure m-rep. Images (a)
and (b) show a single-figure torus. Images (c) and (d) show a torus made by a figure
with piercing subfigure.
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formation will be discussed in the next chapter, but there is a preliminary question

which can be asked here: how can we describe the medial relationships of the created

boundary surface in terms of the generating medial mesh? That is, how can the

implied medial surface be interpolated based on the coarse medial sampling?

I have explored three approaches to this problem, two based on a Blum point-of-

view and one of which takes a tolerance-based, MMA approach. These are

• fitting a spline or interpolating subdivision surface to the medial grid and inter-

polating the entire Mij = {pij, Fij, rij, θij} 2D medial mesh for either arbitrary

(u, v) parameterized positions on M (for a spline fit) or for discrete medial

positions on a subdivided medial grid;

• fitting a boundary and then computing (using a root-finding technique, perhaps)

interpolating medial positions;

• fitting a boundary and then using the B(u, v, 1) : B(u, v,−1) correspondence to

imply perturbed medial involutes on the boundary and computing a perturbed

medial atom with these as involutes.

Independent work (and some collaboratively with me) on medial interpolation has

been done by Fletcher [54], Yushkevich [164, 163], and Crouch [33]. Related theoreti-

cal results have been produced by Fletcher, Yushkevich, Damon [38], and Giblin [70].

I will discuss the above three techniques in the three subsections that follow.

3.3.1 Interpolating a continuous Blum axis from a sampled

mesh

I explored two approaches for interpolating medial sheets: one, based on fitting Bezier

patches to each quad in the initial medial mesh, interpolating r as well as (x, y, z)

locations for the surface; the other, an iterative, interpolating subdivision of a medial

quadmesh to a desired density to create boundary involute meshes for surface defi-

nition and rendering. This latter technique was used prior to the use of subdivision

surfaces for boundary fitting.

Bicubic medial interpolation

It might seem that fitting a mesh of bicubic Bezier patches to the mesh of medial

atoms would be straightforward; this was the first method I developed. For a mesh
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“Blum” boundary Swallowtail catastrophe smooth but knotted

Figure 3.16: 2D M-reps which fail to be “Blum” due to an unconstrained r-field.
Left: a Blum boundary. Middle: a boundary with a swallowtail catastrophe, cusps
of infinite curvature. Right, a boundary with a knot-shaped fold but finite curvature
everywhere. (This code, by Yushkevich, uses continuous b-splines for the medial
positions and radii. Similar problems arise using Bezier splines and in 3D.)

Mij = {pij, Fij, rij, θij}, bicubic Bezier patches pij(u, v) are created for each quad of

medial positions {pi,j,pi,j+1,pi+1,j+1,pi+1,j}, with the control points chosen so as to

interpolate the positions and the medial surface normal �nij (known from the frame

Fij) at each medial atom and to get C1 continuity at patch boundaries. At the same

time a bicubic interpolation rij(u, v) is done based on the rij and their derivative

values at the atom locations. The result is a piecewise C2 function, C1 at the patch

boundaries, giving {pij(u, v), rij(u, v)}. Because rij(u, v) is at least C1 everywhere

on the interpolating surface, it is possible to analytically compute ∇rij(u, v) and

therefore, with the analytic �n(u, v) derivable from pij(u, v), to compute both Fij(u, v)

and θij(u, v) for the interpolated surface, giving a full medial atom

Mij(u, v) = {pij(u, v), Fij(u, v), rij(u, v), θij(u, v)}

for u, v ∈ [0, 1] on each patch.

Difficulties arise when one forgets to pull back the ∇r(u, v) field to the parameter

space for the surface patch, since the gradient—which defines −�b cos θ—is with respect

to arc-length on the surface (see Fletcher [57]). A more serious difficulty results from

lack of proper constraints on the behavior of the interpolating r(u, v) function with

respect to the curvature of the medial surface to ensure that the boundary remains

“Blum”. Without such constraints on r(u, v) and its derivatives, surfaces may be

generated which fold or self-intersect, as illustrated in 2D in Fig. 3.16. Fletcher and

Yushkevich explored this problem, extending the theoretical work of Nackman [107],

and derived conditions for testing an interpolating medial surface for “Blumness”;
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James Damon derived mathematical results for these same (or equivalent) conditions

based on the properties of curves and surfaces with generalized offset fields, of which

Blum axes are a special case [39, 40, 41]. The tests involve operations such as checking

the sign of the Jacobian of the medial-to-boundary function.

Paul Yushkevich dealt with this problem (and some others) by shifting to a cm-rep,

a continuous, spline-based medial representation rather than a sampled m-rep, where

objects were designed directly by modifying positions and radius values for b-spline

control points for the medial surface, thus giving more control over the properties

of the spline-based functions. He was able to create multifigure models in 2D and

single-figure 3D models with his cm-reps. Given their explicit interpolating represen-

tation, it was more straightforward to implement Blumness criteria for the generated

boundaries.

Subdivision-based medial interpolation

My work on the above method, while predating that of Fletcher, Yushkevich, Crouch,

et al., was stalled first by a mistake in the pullback function on ∇r and then by the

general lack of understanding at the time of the necessary constraints to preserve

Blumness. Instead, the method I explored and used initially in Pablo was an inter-

polating medial subdivision based on separately interpolating p, F , r, and θ for new

edge and face medial atoms for a subdivision of an initial M ×N diatom mesh. The

method used various heuristics to independently interpolate the frame, width, and

object angle, while sticking with a Bezier interpolation of the position p. This tech-

nique met with limited success—the interpolated boundary involute positions were

only a very crude approximation to what seemed intuitively to be the correct inter-

polated boundary. One difficulty was that the medial frames could not be näıvely

interpolated according to (for instance) a lerp or slerp formula. A standard quater-

nion averaging of two orientations q1 and q2 would be Lerp(q1, q2, h) = (1−h)q1 +hq2

for h ∈ [0, 1], or Slerp(q1, q2, α) = q1(q
−1
1 q2)

α for α in the same [0, 1] range.5 Such

quaternion methods fail to keep the {�b,�b⊥, �n} vectors oriented with the {�b,�b⊥} vec-

tors in the medial tangent space and the �n vector perpendicular to it. Heuristics were

5Numerically, this is usually computed as

Slerp(q1, q2, α) =
sin(1 − α)θ

sin θ
q1 +

sinαθ

sin θ
q2

where α ∈ [0, 1] and cos θ = q1 · q2, as given in the canonical Shoemake paper [135].
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necessary instead for rotating the frame about the medial normal, with special cases

required for crest atoms. The subdivision method was used, rather than continuous

interpolation, in an attempt to smooth over problems with these techniques and only

subdivide as finely as necessary.

This method was discarded as ad hoc and overly complex once alternative methods

were made possible by the switch to a subdivision-based explicit boundary. In terms

of medial-based approaches, Paul Yushkevich’s b-spline based cm-reps are the correct

solution—since the medial meshes used here are regular quad-grids, a Catmull-Clark

subdivision of them is equivalent to a b-spline fit, and Yushkevich’s methods correctly

interpolate r and its gradient to give the correct medial frames. Another approach

to this in the future may be provided by the Lie algebra methods for medial-atom

interpolation developed by Fletcher et al. [55]; work on correct medial interpolation

using these methods has been undertaken by Kerckhove [91].

3.3.2 Interpolating a Blum axis from an m-rep-based b-rep

As already stated, there is a tremendous body of literature on skeletonization and the

extraction of medial axes from 2D and 3D b-reps. The problem under consideration

here is different: given a b-rep generated by an underlying m-rep, how can the medial

structure defined by this object be interpolated for medial atoms away from those

sampled ones. An application for this from 2D image analysis was the desire to

resample an m-rep to maintain an equal distance (in an r-proportional sense) between

each atom in a 2D chain to establish a homology across a population of images for

statistical studies (Yushkevich [165]). In this way, m-reps could provide a consistent

correspondence using atoms as shape features, invariant under limited deformations.

The key insight for the interpolation was that, given a boundary representation based

on a spline boundary fit to an m-rep skeleton, one can attempt to find interpolating

medial positions based on a root-finding approach taken on offsets from the boundary

surfaces on opposing sides of an object.

The 2D method devised by Yushkevich had three steps:

1. Hermite-interpolating splines are fit to the boundary involutes and normals,

giving a C2 continuous boundary;

2. a point is selected on the boundary;

3. an equation is solved giving as its root the corresponding medial involute on a
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spline on the opposite side, if it exists.

These are not the previously mentioned cm-reps—they represent a boundary-to-

medial approach developed prior to his medial b-spline methods. This technique was

possible due to the ability to solve for the medial involute in closed form given the

bounding cubic spline curves.6 This method had problems with non-Blumness, similar

to the case of the spline-based medial curves, but producing instead cusps and self-

intersections on the medial curve derived from the spline-based b-rep. Significantly,

Yushkevich tagged medial regions where the object failed to be Blum, and this raised

awareness within MIDAG that led to the practical and theoretical ideas for constraints

to ensure Blumness.

Yushkevich applied his method to simple 3D m-reps with bicubic spline boundaries

as well. My own work in 3D, which will be dealt with in detail in Ch. 4.3, was based

on trying to achieve a similar result for an m-rep with a subdivision surface boundary.

No closed-form equations for these boundaries are available, unless one fits b-splines

to the subdivision boundaries and performs Stam-style interpolation in extraordinary

regions [137]. Another method is possible, however. Given point B(u, v, t) on the

boundary, an opposing involute B(u′, v′, t′) on the opposite side can be solved by using

a numerical root-finding technique. The paired involutes thus define an approximate

medial atom—depending on the subdivision level of the mesh—which approaches a

correct Blum medial atom for the limit surface as the mesh is refined.

3.3.3 Interpolating a multiscale axis from (u, v, t) correspon-

dence

A major point of m-rep based medial modeling is to avoid the rigid overprecision and

intolerance of Blum-based methods. For interpolation of new medial atoms based on

a particular m-rep, the tolerance-based nature of m-rep modeling actually means that

there is no single correct interpolating atom, but rather a whole family of possible

interpolants. In this subsection, I will describe a simple method for medial interpo-

lation in a tolerance-based, multiscale framework; more advanced methods based on

Lie algebras and other methods will be discussed in Ch. 6.

6In fact, Yushkevich originally used Pythagorean hodograph curves for his boundaries, 5th-order
curves which act like cubics with additional properties of arc-length parameterization and rational
offset curves. These were studied by Farouki et al. [52, 51] in the mid-1990s; they do not, alas,
generalize to 2D surfaces.
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Parametric correspondences on a m-rep are established between boundary points

by the involute locations of the sampled medial atoms. This allows approximately

medial atoms to be found that associate boundary positions that are approximate

medial involutes of one another. Given a (u, v, t) parameterization of the boundary

as discussed above in Sec. 3.1.5, a medial atom can be fit to the boundary points

B(u, v, t) and its associated B(u, v,−t). Because of the somewhat arbitrary nature

of the boundary parameterization (dependent on midpoint subdivision rules in the

current implementation), it is seldom that these are corresponding medial involutes in

a Blum sense, nor is it necessary that they should be, given the boundary tolerances

already built into the model. It is enough to establish a metric for the deviation of

the relationship from involution and to show that the deviation is acceptably small

in most cases.

To create an approximately medial atom for a given pair of corresponding bound-

ary points, a technique was developed that projects from the boundary positions in

their normal directions and finds an averaged medial point. The algorithm has three

steps:

1. project associated points Pa and Pb along their respective normals �na and �nB

inward by their respective ra and rb values as interpolated on the boundary;

2. connect these projected positions by a line segment;

3. project the midpoint of this segment to a point p̃ on an approximated medial

plane;

4. taking this as the approximate medial position, create vectors �v1 and �v2 from p̃

to the Pa and Pb boundary positions, respectively;

5. use p̃, �v1, and �v2 to compute the components of a complete, approximating

medial atom {p̃, F, r, θ}.

The medial plane used is the plane bisecting the chordal segment connecting the two

boundary points. Figure 3.17 illustrates this method, and Fig. 3.18 shows a medial

surface tiled using interpolated atom positions based on the (u, v, t) correspondences

of the m-rep subdivision.

The r-proportional distance between inwardly displaced boundary locations serves

well as a metric for the deviation-from-medial-involution of the parametrically asso-

ciated boundary points. This will be discussed specifically in the context of m-rep
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Figure 3.17: Interpolating a medial atom (with tolerance) given a boundary corre-
spondence.

Medial mesh Subdivision boundary Interpolated atoms

Figure 3.18: Interpolating a medial axis using boundary correspondence. New medial
atoms are computed by sampling evenly in (u, v) along the B(u, v, 1) and B(u, v,−1)
boundary surfaces and computing new medial atoms by treating the sampled bound-
ary positions as medial involutes.
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subdivision boundaries in Section 4.3. While these interpolating medial atoms can

be used to resample the implicit medial surface, there are no Blumness or continuity

constraints imposed on the interpolation and thus no guarantee that there is even

a C0 continuous medial surface being interpolated. This would create problems for

Blum-based medial modeling but works well in the context of a multiscale, width-

proportional representation, where medial positions themselves need not be accurate

at the continuous sampling density of a Blum medial axis. The interpolated positions

should thus be used for resampling only to maintain a good sampling density for the

medial mesh.

For C0 interpolating boundary subdivision, the medial atoms created do not match

those of the sampling medial mesh at the known integral (u, v, t) locations; given C1

interpolating subdivision surfaces, however, the above algorithm gives correct medial

atoms at the sampled (u, v, t) locations.

3.4 Topology-preserving deformation

An advantage of a skeleton-based modeling system is the ability to perform topology-

preserving deformations by manipulating the underlying skeleton. In the case of

m-reps, we can also produce local boundary deformations. Both of these may be

based on statistical priors describing normal modes of variation for instances of a

class of objects. Such statistical deformations have applications in image-analysis—

in model-based shape segmentation—and in mechanical and other shape-modeling

tasks. For example, in computer graphics, statistical descriptors can be used to

select average members stochastically from a class of objects for modeling purposes.

The most advanced applications of statistical deformation in image-analysis is in the

previously mentioned work of Fletcher, using a Lie algebra over the medial atom

components {p, F, r, θ} to enable principal components analysis (PCA) to compute

the shape statistics necessary for Bayesian analysis. The discussion of deformation in

this section predates Fletcher’s techniques.

3.4.1 Medially based object deformations as a primitive op-

erations

While medial deformation will be discussed in more detail in Ch. 6, there is a vo-

cabulary of primitive deformations that can be defined on a single figure given no
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(a) medial-based propagated twisting (b) medial-based propagated bending

Figure 3.19: Object deformation by medial mesh modification. These illustrate the
bending and twisting operations propagated along the medial mesh; the effect is
similar to an axial-based space warp, but all deformation is relative to the local
medial frames.

more than the medial mesh and the medial-based coordinate frames of the individual

atoms. Because each atom has its own medial frame, which can be used as a coordi-

nate basis for the entire model, a medial deformation—a bending, twisting, rotating

or scaling—can be centered at a specific mesh atom and then propagated according

to any of a number of possible methods to the other atoms in the mesh, producing

non-local medial deformations. The Yaksha program (part of the Rakshasa project)

was designed as a prototype to test such techniques, using slice-constrained single-

figure m-reps as a modeling primitive. Medial changes centered at an atom could be

propagated along the mesh—e.g., to convert a bending along a row of atoms into a

curling up of the medial figure, as in Figs. 3.19 and 3.20.

Other Rakshasa operations involved medial scaling or twisting centered at a vertex

and propagating to neighboring atoms or, for a quadmesh, in one direction or the other

down rows and columns. Similarly, translations can be propagated directionally along

the medial mesh to produce object-elongations, using the local medial frames to center

and direct the deformations.

Another means of medial deformation is the specifying of medial “joint” atoms,

by their (u, v, t, τ) positions, to serve as joints for skeletal deformation. Thus, a joint

atom may be located at a position in space neither on the medial grid nor even on its

implied medial axis, to serve as a pivot for medial-based bending and twisting. This is

similar to the use of skeletal control points in 3D animation—virtual puppetry—but

rather than having to “skin” our skeleta about joints (as per Markosian [102] and

the general state-of-the-art in the animation industry), m-reps have their continuous
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Figure 3.20: Object deformation by medial mesh modification. Another example
showing the propagation of a bending operation across the medial sheet. (This in-
stance was created manually, not using Yaksha.)
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boundary structure built-in. One can place restrictions on joint movement, have

“scaling joints” and other non-standard operations, and one can place procedural

“textures” on joint movements as is standard in the field.

3.4.2 Boundary deformation

The mesh of medial atoms provides the coarse-scale shape description, leaving the fine-

detail to boundary displacement and deformations. The main approach I have consid-

ered for incorporating boundary perturbation in a generic m-rep model—irrespective

of the particular boundary fitting method—operates over the entire boundary by

applying a scalar displacement field to either boundary patches or to subdivision

vertices. This produces the fine-scale boundary definition required for m-reps to be

robust and general modeling primitives. Given a medially implied boundary B(u, v, t)

with an associated interpolated r(u, v, t) width-function (that need only approximate

the true medial width at B(u, v, t)), a displacement map D(u, v, t) is created for the

surface giving a perturbed boundary B′ such that

B′(u, v, t) = B(u, v, t) + r(u, v, t)D(u, v, t)�nB (3.6)

where �nB is the boundary normal at B(u, v, t). For modeling purposes, it may also be

necessary to compute new boundary normals for the perturbed positions. Currently,

new normals are computed on-the-fly by averaging neighboring vertices in the per-

turbed meshes. Speculatively, quaternion-textures might be used to map rotational

perturbations of the normal relative to the medial-coordinate system.

For a subdivision boundary, displacements may be seen as a MIP-map, describing

deviations in the normal direction on a per vertex basis at progressively finer sub-

division levels. Considering displacements as scalar height fields, it is non-trivial to

resample such displacement fields at different LODs; this difficulty arises as well in

IBR research when resampling disparity maps.

While the displacement fields I consider are restricted to the �nB directions, it

is possible to have more general, vector-valued displacements as well, or multilevel

displacement strategies such as in Guskov [76]. Discussion of m-rep boundary defor-

mation will be expanded upon in Ch. 5 on displacement subdivision surfaces, and

Ch. 6 will give implementation details and considerations for both medial-based and

boundary-based m-rep deformation in application.
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3.5 Drawbacks and limitations of m-reps

This chapter concludes with a discussion of some the drawbacks and limitations of m-

reps—vis-a-vis their basis in sampled medial sheets—as modeling primitives in CG

and IA, both theoretically and as currently implemented. I will discuss four main

topics:

• quadmeshes and their limitations as the only currently implemented m-rep

mesh;

• corners, creases, and other surface discontinuities and how they can be imple-

mented;

• the Correspondence Problem—how to establish shape homologies given the tol-

erant placement of medial atoms in an m-rep mesh describing an object;

• arguments for discrete m-reps versus cm-reps.

Each of these will be discussed briefly.

3.5.1 Quadmeshes and their disadvantages

Regular quadrangular meshes of medial atoms have many advantages, including sim-

plicity of indexing and storage, and ease of converting to a quadmesh boundary for

Catmull-Clark subdivision. Ch 4 discusses the latter in detail. Quad meshes are

adequate for many and perhaps most modeling tasks, but the necessity for a constant

number of rows and columns regardless of the needs of width-proportional sampling

is at least a theoretical drawback and perhaps a practical one as well. Having to pro-

vide special behavior at quadmesh corners is another drawback. There are certainly

many objects that do not naturally lend themselves to quadmesh representation—

it is a tribute to the flexibility and polymorphic nature of m-reps that quadmeshes

have sufficed for so much work in image-segmentation. Arbitrary trimeshes with

planar connectivity are one alternative (hex-mesh simplices are another); they are

trickier to store, less straightforward to index, and less trivial to generate boundary

tessellations. Given such a tessellation, however, a modified Loop subdivision can

substitute for Catmull-Clark, using a similar interpolating variant as that presented

in the next chapter for Catmull-Clark quads. Trimeshes would provide for simpler

interactive remeshing of the medial mesh to maintain a desired sampling density, and

they eliminate non-planarity issues found with quad-based representations.
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3.5.2 Corners, creases, and other surface discontinuities

As discussed above in Sec. 3.1, the medial skeleton of an m-rep alone implies an

inherently blobby object with corners, creases, and other first-order discontinuities

“blurred away” by the fuzziness of the representation. This has not been a problem

in Pablo, where most of the anatomical objects being modelled are somewhat blobby

in nature; but it can be misleading to equate the boundary has been fit to the medial

skeleton for the “true” shape of the m-rep-implied object. Even if the medial atoms

can be so arranged as to produce a sharp crease along a subdivision boundary, this

is not the medially implied boundary but simply an accident of the boundary fitting.

The medially implied boundary always includes its width-proportional tolerance, and

fine surface detail must be produced at the boundary level, whether by displacement

maps or subdivision vertex- and edge-freezing. It becomes a philosophical argument

between Blum and non-Blum representations, wherein one argues about whether a

brick is simpler than an ovoid. Creation of objects with corners and creases will be

discussed in detail in Ch. 5.

3.5.3 The Correspondence Problem

While correspondence is not a problem for synthetic model generation, the user of m-

reps in image analysis must face the problem of establishing correspondence between

m-reps fitted to different members of a sampled population. Because the locations

of the medial atoms may vary within the implied medial sheet and still produce a

similar boundary, a näıve atom-to-atom correspondence does not suffice. In 2D, this

problem was addressed by Yushkevich [165] by enforcing a maximal, r-proportional

spacing of sampled atoms along the implied medial curve. This method in 3D is

problematic, due to the additional degrees of freedom for medial atom displacement

and due to the difficulties of computing accurate medial interpolants based on the

implied boundary. Finding homologies needed for 3D m-rep-based segmentation and

data analysis is the subject of ongoing research.

3.5.4 Discrete m-reps vs. cm-reps

Given a continuous medial representation such as the cm-reps of Yushkevich, one

might ask why a discrete m-rep is required at all. This will be the topic of some debate

in MIDAG over the next few years; its resolution may rest as much on convenience

and the existence of a large body of legacy code as on theoretical results. On my
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side of the debate, I would argue that the continuous cm-rep, as well as continuous,

branching 3D medial representations by Fletcher, are Blum axis methods at heart.

As such, while they have been tuned as tools for 3D shape design, and while they have

really lovely mathematics behind them, they nonetheless do not avoid the intolerances

and overprecision of other Blum medial methods, making them somewhat “brittle”

and overly reliant on “Blumness” constraints and tricks to get medial branching to

work effectively. It may be that, in practical applications, there will be little difference

in their utility vis-a-vis discrete m-reps, but that will be because a lot of cleverness

went into getting past some of their serious drawbacks.

3.6 Concluding remarks on sampled medial sheets

This chapter has presented the medial atom and medial mesh framework at the heart

of modeling with sampled m-reps. It described a medially based coordinate system

for parameterizing the boundary and the surrounding regions of space. It discussed

figural hierarchies and the inherent polymorphism of shape design using m-reps, and

it discussed both Blum- and non-Blum-based methods for interpolating medial loca-

tions based on a coarse sampling grid. It discussed topology-preserving deformation

techniques and concluded with a brief discussion of some drawbacks and limitation

to m-rep object representations.

The next chapter will present techniques for fitting boundary surfaces to an m-rep

skeleton, focusing on the use of a new form of iteratively interpolating subdivision

surface to produce boundaries within desired boundary tolerances. It will show how

nearpoint distance tests may be done on these boundaries to give (u, v, t, τ) coordi-

nates for points in space near an m-rep, and it will show how such proximity tests

can be used to create a near -Blum medial interpolation based on Phong normals of

tessellated boundaries.
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Chapter 4

M-rep Boundary Fitting by

Interpolating Subdivision Surfaces

A sampled medial skeleton must be fleshed out by a surface which can carry the fine-

scale geometric information. The difficulties of fitting a boundary based on medial

interpolation and exact Blum medial correspondence were discussed in Section 3.3.

One alternative to cm-reps is to use an implicit surface representation, treating the

medial radius function as a density field with an isosurface at the medially defined

boundary. Such an approach is similar to methods for rendering convolution surfaces

and was explored in preliminary work by Fletcher [53] (see Fig. 4.1). Implicit repre-

sentations simplify figure-subfigure blending but have several drawbacks: they still

require medial resampling, as discussed previously, and they present difficulties in

parameterizing the surface for medial correspondence and boundary displacement.

One alternative to a direct medial approach to boundary definition is to use the

coarse medial sampling alone to derive the boundary, fitting a surface to the medially

implied boundary involutes. Subdivision surfaces are ideal for these medially implied

boundaries for a number of reasons:

• they allow surfaces of varying mesh connectivity and topology, requiring less

attention to special cases and continuity constraints than would spline-based

surface patches;

• they can interpolate boundary positions and normals for the known involute

positions of the medial atoms;

• they are a multiresolution surface representation, which fits in well with the

multiscale modeling paradigm of m-reps;



• they are a subject of much current research—including research on CSG-style

approximate Boolean operations—and are being implemented in graphics APIs

and rendering hardware.

This chapter discusses the creation and use of interpolating subdivision surfaces for

m-rep boundaries. Section 4.1 describes a new iterative algorithm for interpolative

subdivision and shows that it is equivalent to solving a linear system for an in-

terpolating Catmull-Clark subdivision surface. This method is equally applicable

to interpolating Loop subdivision on triangle meshes. The section also discusses

methods to interpolate normals and gives an error metric (from the implied medial

atoms) when normals are not interpolated. In particular, Section 4.1.3 presents a

method for directly computing limit positions for irregular mesh vertices (i.e., with

non-quadrangular face-neighbors), thus allowing the new interpolation technique to

be used on general closed meshes. Section 4.2 describes an algorithm and associated

heuristics for computing approximate nearpoints on an interpolating subdivision sur-

face that uses Phong normals (barycentric normal interpolation across triangulated

tiles) to approximate nearpoints on meshes of varying subdivision levels. In the limit,

as the subdivision level increases, the nearpoint distance approaches a true normal

distance from point to surface. The described technique is for Catmull-Clark surfaces

but is equally amenable to Loop subdivision surfaces. The section also discusses other

proximity tests such as plane-to-m-rep and m-rep-to-m-rep. Section 4.3 discusses the

use of the nearpoint test for computing approximate interpolating medial atoms for

the mesh, illustrating a Phong-normal medial axis for a tessellated surface. In the

limit, as subdivision levels increase, this gives points on the Blum medial axis for the

subdivision surface. This chapter concludes with some drawbacks and limitations of

iteratively interpolating subdivision surfaces for m-rep boundaries.

Following these discussions, Ch. 5 will explore (a) the fine-scale modification of

subdivision boundaries using displacement textures and (b) the joining of figures and

subfigures represented by subdivision meshes. These are the last two ideas required

to make m-reps a useful multiscale modeling primitive.

4.1 Iteratively interpolating subdivision surfaces

The classic methods of uniform, stationary subdivision surfaces—Doo-Sabin and

Catmull-Clark—are approximating subdivision techniques, as is Loop subdivision for
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M-rep skeleta Implicit boundaries Blended boundaries

Figure 4.1: (Tom Fletcher) A figure-subfigure blend based on an implicit-function.
This uses interpolated medial positions as centers of Gaussian density fields, and thus
differs from the implicit blending in Pablo (Fig. 2.2) which is based on an implicit
boundary function, rather than a medial one.

trimeshes.1 Vertices at the coarsest level are linearly transformed at each iteration to

new locations, approaching their corresponding points on the limit surface. They can

be transformed immediately to these limit points using a modified subdivision matrix,

and this is generally done after the surface mesh has been subdivided to adequate

fineness, often adaptively based on boundary curvature approximations.

For fairing of polyhedral objects—attempting to fit a smooth surface exactly to

known vertices and vertex normals—other methods have also been developed. Jorg

Peters [115], for example, performed C1 interpolation using piecewise-bicubic patches

for mesh-fitting, with linear normal-interpolation along patch boundaries. Implicit

techniques such as those of Bajaj and Ihm [5] create algebraic patches of C1 continuity

for closed polyhedra. Moreton and Séquin [104] employed a functional optimization

approach to flesh surfaces based on point, normal, and curvature constraint sets.

Subdivision methods have risen to prominence, however, due to their conceptual

simplicity, their equivalence to spline-based surfaces away from extraordinary points,

and their requiring only minimal constraints on object-topology and mesh connectiv-

ity. Surface interpolation is attainable by several means. The Butterfly interpolation

scheme of Dyn et al. [48] or the techniques of Zorin [166] can give C1 continuity on

trimeshes subject to tension constraints or other parameters. Halstead, Kass, and

1A reminder on nomenclature: stationary subdivision means that the same subdivision rules
are used at each subdivision level; uniform subdivision means that the same set of rules are used
everywhere on the mesh. Non-stationary methods may be used to adjust surface normals, as below;
non-uniform methods may be used for forming cusps, edges and corners, as per DeRose [43].
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DeRose [77] employed a modified Catmull-Clark technique to produce interpolat-

ing subdivision of quadmesh structures, using thin-plate and membrane energies to

constrain the subdivision and interpolate both positions and normals at the desired

boundary points. The advantage of Catmull-Clark surfaces and others like them is

that they are almost everywhere C2 and have closed-form limit positions and limit

normals for vertices at any subdivision level.

4.1.1 Interpolating Catmull-Clark boundaries

For m-rep surface-fitting, a technique like that of Halstead et al. [77] would be satis-

factory but is in fact more exact than necessary, and it pays for that exactness with

its complexity and implementation details. What is needed instead is a subdivision

surface that creates a limit surface with boundary positions and normals lying within

the tolerance regions of the medial primitives. Such a surface should be C2 as well, al-

lowing displacements in the normal direction to be limited by the radius of curvature

in concave or saddle-shaped regions. Such a technique has been developed for m-reps

boundaries by means of an iterative algorithm applied to the initial, coarse mesh of

involute positions, which gives approximately interpolating subdivision boundaries

within the desired tolerance. Figures 4.2 and 4.3 show examples of this boundary-

fitting. While the method has been applied to Catmull-Clark subdivision, it would be

effective for any subdivision method where the limit masks can be simply computed

for a local 1-neighborhood. While it was designed for m-rep boundaries, it can be

used to interpolate any closed, two-sided polygonal mesh; Figs. 4.4, 4.5, and 4.6 show

details of a polygonal mesh of a cow model interpolated by the algorithm.

The technique developed for m-rep boundaries, like that of Halstead, involves solv-

ing the linear system for an initial subdivision grid that will produce limit positions

interpolating the required boundary positions. Unlike Halstead’s algorithm, however,

it uses an iterative solution method, requiring only 1-neighborhoods of mesh vertices

and producing successively closer approximations to the involute positions by an al-

gorithm that is O(m ·n), where n is the number of vertices being interpolated and m

is the number of iterations. In practice, with m small, this effectively adds a constant

cost per coarse-level mesh-vertex over the cost of non-interpolated subdivision using

the same mesh. Similar iterative techniques have been used in CAGD for b-spline

interpolation (see Farin [50], pg. 125). The rest of this section will detail the theory

and practice of iteratively interpolating subdivision surfaces (IIS-surfaces).
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Figure 4.2: Medial mesh (upper left), boundary involutes and generating mesh (upper
right), interpolating subdivision boundaries after one and three subdivisions (lower
left and right, respectively).

Figure 4.3: Near -interpolation of medial involutes by subdivision boundary.
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Figure 4.4: (a) Detail of an initial polygonal model cow.ply. This model was obtained
from the Computer Graphics Group at the University of Virginia.
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Figure 4.5: (b) One level of interpolating subdivision applied to the mesh of Fig. 4.4.
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Figure 4.6: (c) Two levels of interpolating subdivision applied to the mesh of Fig. 4.4.
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4.1.2 IIS-surfaces—regular vertices

Consider first an initial regular vertex mesh—one with only quadrangular faces. The

IIS-surface is produced by creating a Catmull-Clark surface based on a modified

initializing vertex grid; this modified grid is created by the following algorithm:

1. Initialize a boundary mesh v0
n with vertices vlimit

n of positions to be interpolated

2. For iteration i = 1 to m

3. For each vertex vi
j and its immediate edge ei

jk
and face f i

j k
neighbors

4. Compute perturbation δj 
: vi
j + δj gives vlimit

j as its limit position,

based on current ei
jk

and f i
j k

5. Let vi+1
j = vi

j + 1
2
δj

Fig. 4.7 illustrates the indexing of vertices by k in a regular neighborhood of vi
j. Step

(4) is computed directly by solving the formula for the limit point given a vertex and

its neighbors in an intermediate-level mesh. For a regular vertex of valence n and its

2n-neighborhood

[v, f1, f2, . . . , fn, e1, e2, . . . , en]

the limit point of Catmull-Clark subdivision is computed as

vlimit =
1

n(n + 5)

[
n2v +

n∑
k=1

[4ek + fk]

]
. (4.1)

(Halstead [77]) Solving this for a perturbed v + δ to produce a desired vlimit gives

v + δ =
n + 5

n

[
vlimit −

1

n(n + 5)

n∑
k=1

[4ek + fk]

]
. (4.2)

Thus, given a mesh of limit positions, a perturbed mesh could be produced by sub-

stituting the perturbed vi values. One would expect that such a perturbed mesh

would over-correct for the expected vertex shifts under Catmull-Clark subdivision,

since it ignores changes to a vertex’s neighbors which would affect the actual subdivi-

sion. Therein lies the reasoning behind step (5), where the perturbation is averaged

between vi
j and the perturbed vi

j + δj. The above equation thus yields the iteration

vi+1
j = vi

j +
1

2
δi
j

= vi
j +

1

2

[
n + 5

n

[
vlimit −

1

n(n + 5)

n∑
k=1

[4ek + fk]

]
− vi

j

]
(4.3)
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Figure 4.7: Vertex labeling in a regular 1-neighborhood. The ei share an edge with
the central vertex v and the fi share a face.

for a vertex vj of valence n. While this iteration appears messy, it actually amounts to

a simple computation with a precomputed mask in the local 1-neighborhood of each

vertex, thus requiring only local connectivity information on the initial involute mesh.

Only one or two iterations produce a good approximation to the desired boundary;

the iterative process, in fact, is computing a solution to the linear system defining the

global problem by performing a successive overrelaxation (SOR) on a Jacobi iteration.

To see that this is so, for the global subdivision, express the problem of solving

�vlimit = A�v

= (D + U + L)�v

and thus, elementwise,

vlimitj
= Aj�v

= (Dj + U j + Lj)�v

= Dj�v + (U j + Lj)�v

=
nj

nj + 5
vj +

1

nj + 5

n∑
k=1

[4ekj + fkj]. (4.4)
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for �v, where A is the (sparse) subdivision limit-surface matrix for the entire mesh and

�vlimit is the vector of mesh vertices to be interpolated. As defined, each row j of the

matrix A computes the weighted sums in equation 4.1.2 for the vj limit element of

�vlimit. From this A = (U+L+D) decomposes A into its upper and lower triangular

and its diagonal components, where the Dj component is the vertex weight for the

vj vertex, and the [U j + V j]�v gives the weighted sum of the edge and face neighbors

of vj. Inverting this to solve for vj + δj gives

vj + δj =
nj + 5

nj

[
vlimitj

− 1

nj + 5

n∑
k=1

[4ekj + fkj]

]

=
1

Dj

[
vlimitj

− (U j + Lj)�v
]
.

Thus, the solution for the linear system can be expressed as

�v + �δ = D−1 [�vlimit − (U + L)�v] (4.5)

where �δ is the vector of perturbations δj for each respective vj.

Each iteration of equation 4.3 above can therefore be combined in the linear

equation

�v i+1 = �v i +
1

2
�δ i

= �v i +
1

2

[
D−1

[
�vlimit − (U + L)�v i

]
− �v i

]
= �v i +

1

2
D−1

[
�vlimit − (U + L)�v i − D�v i

]
= �v i − 1

2
D−1

[
(U + L + D)�v i − �vlimit

]
= �v i − 1

2
D−1

[
A�v i − �vlimit

]
= �v i − 1

2
D−1�ξ i

= �v i − ωD−1�ξ i

where �ξ i is the error residual vector for �v i. This is the canonical form for an SOR

on a Jacobi iteration, as discussed in Press et. al. [125], Strang [143], and Golub and

Van Loan [71]. (Actually, it is an underrelaxation, since ω in the ωδj term is less than

1.) For diagonally dominant matrices, one expects good convergence for this method,

and while ω = 1
2

is a simple guess, the iteration converges so rapidly in test cases that
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no fine-tuning was deemed necessary. The global subdivision matrix A is not in fact

diagonally dominant, and I have no formal proof of convergence. We know that the

spectral radius is 1, and the 2nd and 3rd eigenvalues are 0.5. The algorithm has not

failed to converge for any closed, two-sided m-rep boundaries to which it has been

applied.2

To further illustrate this method, consider the cases of regular vertices of valence

3 and 4. For an ordinary even vertex and its 8-neighborhood

[v, f1, f2, f3, f4, e1, e2, e3, e4]

the limit point of Catmull-Clark subdivision can be computed as

vlimit =
4

9
v +

1

9

∑
k

ek +
1

36

∑
k

fk (4.6)

and solving for a perturbed v + δ producing a given vlimit gives

v + δ =
9

4

[
vlimit −

1

9

∑
k

ek −
1

36

∑
k

fk

]
. (4.7)

Similarly, for a valence-3 vertex with its 6-neighborhood, one has

vlimit =
3

8
v +

1

6

∑
k

ek +
1

24

∑
k

fk (4.8)

and thus

v + δ =
8

3

[
vlimit −

4

9

∑
k

ek −
1

9

∑
k

fk

]
. (4.9)

The formulas in equations 4.7 and 4.9 yield the iterations

vi+1
j = vi

j +
1

2
δi
j

= vi
j −

1

2

[
vi

j +
9

4

[
1

9

∑
k

ei
k +

1

36

∑
k

f i
k − vj limit

]]
(4.10)

2Given that a Jacobi iteration converges on an acceptable limit boundary, one might wonder if
a Gauss-Seidel approach would be equally effective. Preliminary experiments show that this is the
case. Gauss-Seidel has advantages over Jacobi, as well, in allowing vertex perturbations to be made
in-place, thus giving both faster convergence and using less memory.
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and

vi+1
j = vi

j +
1

2
δi
j

= vi
j −

1

2

[
vi

j +
8

3

[
1

6

∑
k

ei
k +

1

24

∑
k

f i
k − vj limit

]]
(4.11)

for a vertex vj of valence 3 or 4 respectively.

Special issues are raised by the presence of non-quad faces in the initializing mesh.

Given a vertex with adjacent faces with greater or fewer than 4 sides, one would like

to avoid special cases in the formulae for inverting the limit point equations, which

themselves would have to be based on an altered eigenstructure for the subdivision.

Traditionally, limit positions at irregular vertices are computed by first performing

a single Catmull-Clark splitting and averaging, which results in a regular mesh, and

then applying the limit masks to the new vertices. Attempts to invert this two-stage

approach are complicated by the arbitrary number of vertices possible in neighboring

polygons of a given mesh vertex. Instead, as will be shown below, it is possible

to regularize the neighborhood about a vertex to create a regular 1-neighborhood

with the same limit-structure. Given such a regularized neighborhood, the standard

limit-position and limit-tangent masks can be applied, and the above inversions and

iterative interpolation method can be applied without modification. This technique

will be discussed below.

4.1.3 IIS-surfaces—irregular vertex limit positions and in-

verses

Recall that an irregular mesh is one with non-quadrangular polygons, and an irregular

vertex is one at the corner of such a polygon. Because an initial Catmull-Clark mesh

(such as one produced by blending a figure and subfigure) may contain irregular

vertices, it is necessary to compute their limit points as well. This is frequently done

in two stages:

1. a single Catmull-Clark split-and-average, after which all vertices are regular,

followed by

2. the application of the limit mask for a regular vertex at the level-2 vertices.

This is inadequate for the needs of interpolating subdivision as developed above,

where the limit equations must be inverted for use in the iterative, SOR interpolation
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scheme. Instead, going back to first principles for Catmull-Clark subdivision and

working again from Halstead et al. [77], one can directly compute the limit point and

tangent vectors for an irregular vertex, either ordinary or extraordinary. There is

no standard matrix form for the subdivision at a vertex with an irregular one neigh-

borhood. Instead, Catmull-Clark subdivision proceeds equivalently in the following

way.

1. New face vertices f i+1
1 , . . . , f i+1

n are created at the centroid (arithmetic mean)

of the bounding polygon vertices for each bounding polygonal face P1, . . . , Pn.

2. New edge vertices are created

ei+1
j =

vi + ei
j + f i+1

j−1 + f i+1
j

4
. (4.12)

3. The new vertex vi+1 can now be computed as

vi+1 =
n − 2

n
vi +

1

n2

∑
j

ei
j +

1

n2

∑
j

f i+1
j (4.13)

After the initial splitting, the new mesh is and remains regular. In regard to vertex va-

lences, extraordinary vertices will be created as new face-vertices of non-quadrilateral

polygons, but all subsequent splittings leave vertex valences unchanged and create no

new extraordinary vertices.

In the above algorithm, for a vertex v0 having an irregular 1-neighborhood, the new

1-neighborhood {v1, f 1
1 , f 1

2 , . . . , e1
1, e

1
2, . . . } depends only on {v0, f 1

1 , f 1
2 , . . . , e0

1, e
0
2, . . . }.

That is, the only difference an irregular mesh element makes is in the computation of

the f 1
i face vertices for the respective Pi polygons. Let |Pi| be the number of vertices

in polygon Pi.

Theorem: Assume that Pi is in a 1-neighborhood of v0 that contains edges to

vertices e0
i and e0

i+1. If |Pi| �= 4, a new polygon P ′
i can be constructed such that

1. |P ′
i | = 4,

2. P ′
i contains v0 and the edge-vertices e0

i and e0
i+1, and

3. P ′
i has the same centroid as Pi.
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The proof is fairly trivial.3 If |Pi| = n > 4, the vertices of Pi can be ordered as

{v0, ei, c1, c2, . . . , cn−3, ei+1}. Then it is necessary to find an P ′
i = {v0, ei, R, ei+1}

having the same f 1
i as its centroid, i.e.,

f 1
i =

1

n

[
v0 + ei + ei+1 +

n−3∑
j=1

cj

]

=
1

4

[
v0 + ei + ei+1 + R

]
⇒

R =
4

n

[
n−3∑
j=1

cj

]
− n − 4

n

[
v0 + ei + ei+1

]
. (4.14)

For the case |Pi| = 3,

f 1
i =

1

3

[
v0 + ei + ei+1

]
=

1

4

[
v0 + ei + ei+1 + R

]
⇒
R =

1

3

[
v0 + ei + ei+1

]
,

and the new R is simply the centroid of the three vertices in Pi. This is simply

Eqn. 4.14 for case n = 3, with
∑

cj nil, and not really a special case. Fig. 4.8 gives

an illustration of the process.

Corollary: An irregular 1-neighborhood of a vertex v0 can be replaced by a

regular neighborhood producing the same {v1, f 1
1 , f 1

2 , . . . , e1
1, e

1
2, . . . } and therefore

having the same limit structure (position and tangent space) in the neighborhood

of vlimit.

This corollary follows directly by applying the above method to all irregular polygons

adjoining a vertex, given the known facts:

1. the level-(n + 1) 1-neighborhood for an ordinary or extraordinary vertex vn+1

is determined completely by vn, by the level-n edge vertices en
i , and by the

level-(n + 1) face vertices fn+1
i ;

2. the limit structure can be derived explicitly by eigenanalysis, given a regular

1-neighborhood about an ordinary or extraordinary vertex.

3Feynman’s Observation: anything that can be proven is trivial.
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Figure 4.8: Regularizing the neighborhood of an irregular vertex.

These results show that a per-vertex mesh regularization allows limit positions to be

determined directly from the initial mesh positions; this, in turn, allows the iterative

SOR technique be used to interpolate original mesh positions for irregular vertices

just as for regular ones.

Figs. 4.9 and 4.10 illustrate the iterative interpolation applied to two different

initial meshes; the former shows the algorithm applied to a coarse genus-1 mesh;

the latter illustrates the algorithm’s effectiveness given triangular faces in a mesh.

(Figs. 4.5 and 4.5 show the algorithm applied to a triangulated mesh, as well.) These

images illustrate the rapid convergence of the iteration on the initializing mesh posi-

tions.

4.1.4 Error metrics for IIS-surfaces relative to medially im-

plied boundaries

IIS-surfaces do not interpolate mesh normals; thus, the �v1, �v2, and �b vectors of the

medial atoms defining the mesh of boundary involutes will not match the surface

normals of the interpolating subdivision meshes. The degree of mismatch can, in fact,

be arbitrarily bad. In most cases, the mesh topology for the closed surface at the

coarsest scale produces surface normals acceptably near to the values implied by the

medial atoms. Fully interpolating surface subdivision, as typified by Halstead, require

extra conditions to prevent rippling effects on interpolating surfaces. Because the

interpolation mesh for an m-rep is computed only for the coarsely sampled, medially
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Figure 4.9: Iterative subdivision applied to a coarse torus-mesh. The images on the
left show the limit points of the initial mesh after zero, one, and three iterations of
the interpolation. The images on the right show corresponding subdivision surfaces
for the respective iterations. The outlining shows the initial mesh positions.
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Figure 4.10: Iterative subdivision applied to a pyramid-mesh. The images on the
left show the limit points of the initial mesh after zero and three iterations of the
interpolation. The images on the right show corresponding subdivision surfaces for
the respective iterations. The outlining shows the initial mesh positions.
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implied boundary, and because the normals are not specified explicitly, the smoothing

inherent in stationary subdivision is sufficient to avoid such rippling in typical cases.

A method of as-needed normal interpolation has been developed; this method is fast

and simple, but it lacks the fine control of more sophisticated methods that include

bending-energy minimization, and it tends to exacerbate the problem of ripples, which

must then be eliminated using small-scale boundary-texturing displacements.

To produce an as-needed normal-adjusting method, a metric is first required to

quantify the deviation of surface normals from medially implied normals; a non-

stationary modification to the subdivision algorithm can then be applied when devi-

ation exceeds some threshold. To compare initial interpolating mesh locations and

normals with their corresponding locations and normals given by the medial mesh

atoms, there are several relevant metrics:

1. measurement of the distance from an original involute endpoint to its corre-

sponding position in the interpolating mesh, scaled by r;

2. measurement of the rotation θ from an original involute normal to its corre-

sponding subdivision boundary normal;

3. measurement of the (r-proportional) shift from a known medial location p to a

new p′ based on creating a new medial atom from associated boundary locations

and normals.

Metric (1) has been used to determine how many iterations are needed to approx-

imate the medially implied boundary, by providing an r-proportional tolerance on

the accuracy of the iterative interpolation. Metric (2) has been used to determine

if and where a non-stationary normal-interpolation method should be applied to the

subdivision mesh. The Lie group transformations of Fletcher [56] show that changes

to θ at the boundary should also be measured in units of rθ; thus, boundary rota-

tions of equal θ are more significant in wider regions. Metric (3) has been used when

interpolating medial atoms and is based on the involute-to-average-medial-atom tech-

nique presented in the last chapter (recall Fig. 3.17). The r-proportional distance of

displacement of the old medial location p from the new p′ gives a measure of how

poorly the coarse medial sampling fits the interpolating surface in a Blum-sense.
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4.1.5 Accurate normal interpolation by modified IIS-surfaces

In many cases, the basic topology and structure of the coarse involute mesh guides the

subdivision to approximately correct normal values. Nonetheless, without a boundary

fit that incorporates the surface normals implied by the medial atoms, the m-rep

medial atom to boundary-implied medial atom error can be made arbitrarily bad.

Using Metric (2) above, it is simple to identify if and where normal deviation falls

outside of acceptable bounds. For such situation, I have created a simple method

to interpolate the normal at a given location, using a non-stationary, non-uniform

modification to the interpolating subdivision algorithm. Given: an initial mesh of

medially implied boundary involutes vn with implied normals �nn,

1. Construct a level-0 IIS-surface mesh of vertices v0
n that give vlimit

n ≈ vn

under Catmull-Clark subdivision.

2. Subdivide twice to get vertices v2
n and their level-2 1-neighborhoods.

3. Compute vlimit
n and �nlimit

n .

4. For i = 1 to n do

5. If �nlimit
i is acceptably close to �ni, Done.

6. Else, compute the rotation Ri ∈ SO(3) taking the vector �nlimit
i to �ni.

7. Rotate v2
i and its entire 1-neighborhood by Ri about vlimit

i .

8. Substitute these rotated vertices into the v2
n mesh.

The resulting modified v2
n mesh will interpolate the normals for the limit positions of

the modified vertices. The proof of this is trivial, resting on three facts:

• local 1-neighborhoods of initial vertices are disjoint after 2 subdivisions;

• a vertex’s limit-surface position and normal depend only on the 1-neighborhood

of that vertex;

• subdivision is rotationally invariant, allowing the rotation of the limit normal

to be achieved by rotating the subdivision neighborhood by the same amount

about the limit point while keeping that limit point unchanged.

It is a strength of this method that it is applied on an as needed basis and that it

requires only an O(1) operation for those of the n initial vertices requiring modi-

fication, adding at worst O(n) operations overall (for n typically small). Further,

the interpolation can be applied in-place on a subdivision mesh, modifying only the

independent 1-neighborhoods about the selected mesh positions.
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Fig. 4.11 shows an m-rep boundary generated by this algorithm; the polygonal out-

lines show where the underlying subdivision mesh was perturbed to match normals in

the neighborhoods of the sampled medial involutes. An advantage of the normal inter-

polating method is that the sampled medial atoms now form an accurate Blum-medial

location for the generated boundary and thus provide the correct ∇r information for

a sampled medial representation. Using a non-normal-interpolating IIS-surface es-

sentially treats the medial skeleton as a sampled chordal axis, since the 1st-order

information provided by the medial atoms is ignored. For an m-rep with sparse sur-

face sampling, the normal interpolation method generally gives good results. More

problematic are m-rep models based on previous non-normal-interpolating bound-

aries, especially cases in which medial atoms were positioned by hand or by optimiza-

tion methods. Normal-interpolation in such cases can lead to severe rippling effects;

Fig. 4.12 illustrates this, comparing a bone (in a pelvic-region model) with boundary

generated by both normal-interpolating and non-normal-interpolating IIS-surfaces.

This method is thus subject to the same potential difficulties with surface ripples

that afflict other subdivision techniques that interpolate normals. To reduce rippling,

it might be useful to space the rotation out over several subdivision steps to give

a smoother interpolation—this is similar to a technique developed by Biermann[9].

It is also possible that ripples can be reduced by doing a minimal perturbation so

that the boundary normal is just within a specified tolerance without being exactly

interpolating. In addition, one might do a smoothing on the mesh after perturbing

v2 and its neighborhood. There remains a ring of unperturbed vertices around each

perturbed neighborhood; these can be moved to reduce rippling effects. A simple way

to accomplish this is to perform a standard Catmull-Clark subdivision of the bound-

ary after the perturbation step; although this will be non-interpolating, the shrinkage

of the model from the limit positions after two initial subdivisions is typically minor

and not r-proportionately significant. For m-rep work, the boundary perturbation

technique has been fairly effective and computationally cheap. As alternatives, how-

ever, there remain the general interpolating subdivision schemes such as Halstead’s

or Biermann’s that give more precise control over boundary normals and curvature.

4.1.6 Interpolation of other boundary attributes

The usefulness of a medially defined coordinate system was discussed in the previous

chapter in Sec. 3.1.5. It is necessary, therefore, to interpolate medial coordinates

from known involute positions on the boundaries and to interpolate approximate
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Figure 4.11: An m-rep boundary generated by normal-interpolating IIS-surfaces. The
polygonal regions show the perturbation of 1-neighborhoods in the underlying subdi-
vision mesh to match boundary normals at the sampled medial involutes.
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(a) (b)

Figure 4.12: A bone modeled by (a) ordinary, and (b) normal-interpolating IIS-
surfaces. Medial atoms in this model were placed without regard for the boundary
normals; thus, the rippling produced by normal interpolation is severe.

values of r as well. The standard practice for texture coordinate interpolation on

subdivision surfaces is to split the texture coordinates at the same time the mesh itself

is split. Typically, texture coordinates will be subdivided using the same splitting and

perturbation scheme as for the vertices (DeRose[43]); this gives 2nd order continuity

to the surface coordinates. However, for an interpolating surface such as an m-rep,

this results in “coordinate-creep”, with values shifting from their known values at

interpolated positions.

Instead, a simple midpoint subdivision rule has been used for r and the (u, v, t)

coordinates, leaving values unchanged at even vertices. The values at odd edge-

vertices are the average of the even endpoints, and the values at odd face-vertices are

the average of the even face vertices. This does have the drawback of giving only 0th

order continuity of the coordinate fields on the surface; this has not proven to be a

sticking point for any of the current research. If parametric continuity is needed, the

IIS-surface interpolating scheme used on the surface might be used to interpolate the

other surface attributes.

The use of a subdivision scheme to create an r-field on the surface provides an

approximation to the true medial radius function on the surface; this field can be

used to determine width-proportional tolerances at boundary locations. This matter

will be discussed in the next chapter in Sec. 5.1. While subdivision-based coordinate
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interpolation allows coordinates to be assigned to all mesh vertices at any level, it

does not solve the problem of finding an (x, y, z) location in space corresponding to

an arbitrary (u, v, t) surface position. Methods for this will be discussed in detail in

Sec. 6.2; they basically involve linearly interpolating vertex parameter values across

tiled boundaries at a subdivision level deemed suitably fine.

4.1.7 Drawbacks and limitations of IIS-surfaces

There are a number of drawbacks in terms of using subdivision surfaces for m-rep

boundaries. They lack explicit parameterizations and thus closed-form surface curva-

tures, principal directions, and fundamental forms, which would be useful for doing

differential geometry on them. One can fit splines to regular regions or do Stam-style

parameterization [137]; one might use methods of Jörg Peters and Georg Umlauf for

finding Gaussian and mean curvature of subdivision surfaces [117, 118], or surface-

mesh-based approaches as per Desbrun et al. at the Caltech Multi-Res Modeling

Group [44]. It remains a fact that analysis on subdivision boundaries is non-trivial.

These are drawbacks for all subdivision surfaces. There is a drawback particular

to iteratively interpolating subdivision surfaces. A standard technique for putting

edges and creases in Catmull-Clark or other subdivision surfaces is to “freeze” certain

vertices and edges in the mesh, allowing averaging only along a restricted set of mesh

edged or not at all. This method cannot be applied directly to the modified meshes

produced by IIS-surfaces; it might be possible to freeze vertices and edges in the

initial mesh and not do inverse interation there, but I suspect that this will produce

undesirable artifacts. Boundary displacement, as discussed in the next chapter, makes

vertex/edge freezing less necessary; whether it eliminates the need entirely remains

to be seen.

Another drawback common to all surface-fitting by stationary subdivision is that

the surface-fit is essentially a bicubic-spline interpolation, restricting the boundary

curvature behavior accordingly. Thus, as Fig. 4.13 illustrates, a surface fit to an

endcap (the mostly highly curved region, typically) may have undesirable wiggles.

The use of the edge-atom η-elongation can resolve this, or a boundary perturbation

might do likewise; the last recourse is a subdivision-surface-fitting algorithm with

boundary curvature constraints, such as Halstead’s.
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Figure 4.13: An endcap interpolated using interpolating IIS-surfaces. On the left,
with η = 1, the surface has typical cubic-spline wiggling. On the right, η has been
adjusted and the medial atom moved to eliminate the effect.

4.2 Proximity tests on m-rep boundaries

Given the medial-to-boundary correspondence of m-rep models, one would like the

ability to compute the (u, v, t) boundary position of the nearest point on the surface to

a test point in space. Such a method was needed to address several driving problems:

1. the definition of an implicit surface function for figure-subfigure blending, as

previously implemented in Pablo for subfigure attachment (see Sec. 6.2);

2. the discovery of corresponding medial positions and opposing medial involutes

for a given boundary position and its normal (see Sec. 4.3);

3. finding figure-subfigure intersection points for remeshing in blend regions (see

Sec. 5.2).

The task of finding nearpoints on a subdivision surface to an arbitrary point in space

is an open problem in multiresolution surface research. For m-rep research a method

was developed that, while lacking the robustness of a general solution to the subdi-

vision surface nearpoint problem, gave an acceptable approximation to the (u, v, t)

coordinate of a nearpoint on an m-rep boundary. The intention was to limit the

subdivision-level of the surface and still compute an approximate (u, v, t) correspon-

dence for the limit-surface. One of the goals was to achieve a high enough query
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Figure 4.14: Euclidean minimum distance vs. Phong-normal projection nearpoint.
The red arrows indicate Phong-normal nearpoints; the black arrows indicate Eu-
clidean nearpoints.

rate to make the test suitable for interactive, real-time simulations. In this way, for

instance, deformable m-rep models might be manipulated and modified using haptic

interfaces without the need to subdivide at a deep level.

The method developed for IIS-surfaces is based on using a Phong-interpolated

normal to approximate surface normals across subdivision mesh faces. These approx-

imate normals are used in a minimization algorithm to find surface positions with

interpolated normals that intersect the target point in space. The method can be

applied to any subdivision surface which is either interpolating or for which limit

points and limit normals can be computed for mesh vertices at each subdivision level.

4.2.1 The Phong-normal nearpoint estimate

For a coarsely subdivided subdivision mesh, a Euclidean nearest-vertex/edge/face

approach fails to take into account implied curvature information regarding the un-

derlying surface. The approach explored here is to use the known surface normals at

mesh vertices to approximate surface normal directions using bilinear interpolation—

Phong-interpolation—of the surface normals. Fig. 4.14 illustrates in 2D the difference

between Phong-normal nearpoints and ordinary Euclidean ones. In the limit for a

subdivision surface, as the boundary is subdivided to a finer and finer mesh, this will

give a closer and closer approximation to a true local nearpoint, as the normals at

the grid vertices converge on the surface normal for the infinitesimal surface region

bounded by the vertices. The point found is a local nearpoint approximation: this
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P CBA
X

Q

Figure 4.15: A nearpoint defined by normal projection may actually be a farpoint.
In this illustration, A, B, and C all lie along the surface normal at point P. Point C,
however, lies beyond the radius of curvature of the curve (marked by X) at P, and
P is consequently a farpoint of C. Thus, Q is closer to C, though it is further from
either A or B.

point could also be a farpoint if the test point is outside of the positive radius of

curvature of the surface in a concave region (see Fig. 4.15).

The algorithm has three stages:

1. A rejection test is applied to determine which mesh quads have possible Phong-

nearpoints.

2. A quad tile is split diagonally into two triangles; this uses the same split as the

code which converts (u, v, t) coordinates to points on the tessellated surface at a

given subdivision depth (see Sec. 6.2). Under subdivision, as tiles shrink in size

and become nearly planar, this algorithm will converge on a normal-nearpoint

for the limit-surface. Generally, ambiguities which may arise due to splitting of

the non-planar quads will disappear at the next level of subdivision.

3. The nearpoint on the surface is approximated by finding a (u, v, t) parameter-

ized surface location which has a Phong-interpolated normal intersecting the

test-point. That is, given a triangular patch with known positions, normals,

and (u, v, t)-coordinates at the corners, positions and normals are linearly inter-

polated across the face of the triangle and are used to solve for a location with

a normal that passes through the test-point (see Fig 4.16).
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Figure 4.16: Finding a Phong-normal intepolant intersecting a position x.

The rejection test uses a planar-sidedness test based on vertex positions and nor-

mals for quad or triangular faces. After its initial use to narrow the search space, the

rejection test is used as the basis for a recursive, bilinear bisection search to locate

the Phong-normal nearpoint. The nearpoint can be described based on the follow-

ing mathematical derivation. Given the geometry as in Fig. 4.16, a simple bilinear

interpolation produces the following parametric functions:

p(u, v) = (A(1 − u) + Bu)(1 − v) + (C(1 − u) + Bu)v,

= A + (B − A)u + (C − A)(v − uv)

�n(u, v) = (�nA(1 − u) + �nBu)(1 − v) + (�nC(1 − u) + �nBu)v

= �nA + (�nB − �nA)u + (�nC − �nA)(v − uv)

�m(u, v) = x − p(u, v).

From these, the test condition follows: the point p(u, v) is the local boundary point

“nearest” (in the Phong-normal sense) the test-point if �m is collinear with �n, or

trivially, if |�m| = 0. The problem can be reduced to one of finding a zero of a squared

sine function, avoiding any divisions for computational efficiency, and it can be further
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reduced by trigonometric identities to solving for the zeroes of

T = ((x − p) · (x − p))(�n · �n) − [(x − p) · �n]2

= (�m · �m)(�n · �n) − (�m · �n)2. (4.15)

A bisection search was decided on after implementations that used a conjugate-

gradient method proved too time-consuming for use in implicit surface routines. The

bisection method has the additional advantage of interpolating the (u, v, t) coordinates

across the tiles at the same time as it solves for the zero of the point-to-normal-vector

distance function.

4.2.2 Drawbacks, extensions and improvements

Phong-normal nearpoints have several drawbacks. One is that test points must lie

within a not-especially-well-defined “Phong-normal radius of curvature;” problems

thus arise when surfaces are too highly curved for a coarse tessellation, due to the

nature of Phong interpolation; wildly divergent normals can also lead to numerical

errors on sidedness tests. Another problem is that the Phong-normal test is a strictly

local measure; there can be numerous locations on a surface with a normal vector

intersecting a given point in space, and the methods developed do not attempt to find

these multiple points/regions and impose a Euclidean distance ordering on them. A

nearpoint according to this definition may be a farpoint as well, again depending on

implied boundary curvature. The Phong-normal technique, with various heuristics for

resolution of ambiguities, has been suitable for implicit surface blending algorithms

and for interactive techniques for selecting surface regions. It is, however, neither

robust nor accurate enough for general use as a true subdivision-surface nearpoint

estimator.

There are at least two ways its accuracy might be improved.

1. Use a higher order approximation to the correct normal, rather than the linear

Phong approximation. This could be done as per van Overveld and Wyvill [151];

the authors also give a good discussion of the philosophy behind and drawbacks

of Phong normal interpolation both in theory and in common implementations.

Applying their ideas to the normal interpolations used in my nearpoint tests

might be a fruitful avenue for future research.

2. Use a subdivision surface interpolation method, as developed by Stam [137],
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to interpolate patch locations and normals directly. This is the ideal solution;

from a coarse mesh, one can compute a correct solution for a nearpoint on the

limit surface.

Of these two, the second is more exciting; since Stam’s interpolation techniques apply

to other stationary subdivision methods as well, this would give a generic, accurate

nearpoint test for all such surfaces. For a Catmull-Clark surface, computational

costs would be the one-time set-up of the b-spline patches for quads with normal

16-neighborhoods, plus additional one-time costs for quads with an isolated extraor-

dinary vertex. The evaluation cost is thereafter the cost of a b-spline evaluation; it

has been observed shown that such matrix-operations can be performed more than

106 times per second using Intel Pentium III hardware, ca. 2000 A.D.4 In either

case, using a non-linear interpolation will invalidate the recursive, bilinear subdivi-

sion search, with its simple accept/reject-test, but the conjugate gradient approach

might still be workable.

Another area for improvement is the selection of a near-tile to begin the search,

which currently uses the rejection test over all tiles at the particular subdivision level.

There is a huge body of literature on proximity testing in computational geometry

and simulation, including very rapid techniques involving spatial partitioning. Such

global methods will be needed to solve the problem of choosing between multiple

nearpoints, in any case, as necessary for an accurate, robust subdivision nearpoint

algorithm.

4.3 Interpolating the medial structure of subdivi-

sion solids

The result shown in Sec. 4.2—that for a selected point in space (within curvature-

defined limits), a near-point on an m-rep subdivision boundary can be computed—

means that there are now tools for exploring the medial structure for IIS-surfaces. For

a point on the boundary, a simple root-finding method can be used to find correspond-

ing medial and involute positions to give a correct medial atom for that boundary

point, based on the approximating Phong-normals to the surface. The algorithm is

described below; Fig. 4.17 gives a graphical depiction. This method is similar to one

4Timings were by Paul Yushkevich at UNC-Chapel Hill, and used the Intel SML Small Matrix
Library.
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Figure 4.17: Finding an interpolating medial atom using bisection search along a
Phong-normal. Using the normal from point p, the nearpoint-function is used to find
points on the opposing side nearest the bracketing points a and b along the normal.
A bisection search is then performed on the segment between a and b to locate the
point m an equal distance from p and a nearpoint q for m on the opposite side.

used by Yushkevich to compute medial atoms for involute positions on spline-based

boundaries [164]. Thus, Phong-normals can be used to define a medial correspon-

dence between boundary points; in the limit as the subdivision level increases, this

approaches the correct Blum medial correspondence. Since this correspondence can

be established at any level of subdivision, it creates a Phong-medial shape description

for a tessellated surface.

4.3.1 Algorithm and implementation

The implementation is straightforward, and reduces to a 1D rootfinding algorithm.

1. Select a point y1 = B(u1, v1, 1) on the boundary of an IIS-surface of an m-rep.

2. Compute the Phong-normal �n at this point, and bracket a search interval

I = [ y1 − (r − ε)�n, y1 − (r + ε)�n ],

where r is the approximate medial radius.

3. Perform a 1D bisection search within this interval to find a point

x ∈ I : ∃y2 = B(u2, v2,−1) 
: |y1 − x| = |y2 − x|.
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Figure 4.18: An m-rep resampled by Phong-normal medial interpolation. Note the
similarity with the (u, v, t)-correspondence-based medial axis as shown in Fig. 3.18.

At known involute positions, given normal-interpolating IIS-surfaces, the computed

medial locations should match the known values, subject to multiplicity problems.

While this method runs into trouble along the crests and in other regions of high

curvature, it is adequate to allow resampling of the medial mesh based on non-integer

(u, v) values for the surface. Fig. 4.18 shows an example of this.

4.3.2 Discussion of Phong-normal medial axis

Given the (u, v, t)-correspondence-based medial interpolation as defined in the pre-

vious chapter in Sec. 3.3, the Phong-medial method is perhaps superfluous. The

Phong-medial method has several drawbacks:

• computational intensity—while the bisection search is fast, the nearpoint code

is still a bottleneck;

• philosophical dogma—it is too close in essence to trying to find a Blum medial

point, an ill-conditioned task (and anathema to all right-thinkers);

• computational ambiguity—as a consequence of the last, it suffers from the same

sorts of problems which plague other intolerant medial axis methods, including

problems with branch-points and non-Blum regions.

The (u, v, t)-based method suffers from none of these drawbacks; it should therefore

be preferred for modeling and m-rep-based analysis. The Phong-normal axis is still
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of interest as a theoretical construct and perhaps offers another way to explore the

geometry of objects defined by subdivision surface boundaries.

4.4 Concluding remarks on medially implied sub-

division boundaries

This chapter described the creation and use of interpolating subdivision boundaries for

m-reps, and it showed a vertex-regularization allowing IIS-surfaces to be constructed

for all Catmull-Clark subdivision meshes. It also described an as needed normal

interpolation for involute positions. Both the positional and normal interpolation add

only O(n) operations to the Catmull-Clark routines, where n is the initial number

of mesh vertices and typically small. These methods can be applied as well to other

stationary subdivision methods with known limit behavior, such as Loop subdivision

surfaces.

A Phong-normal-based nearpoint proximity test was also described and discussed,

as well as a Phong-normal-based medial axis, though this latter seems mainly of con-

ceptual interest. The next chapter will present the final methods needed for multiscale

m-rep modeling using subdivision boundaries—how boundary displacements may be

mapped the subdivision surfaces, and how figures and subfigures may be attached ei-

ther by implicit surface techniques or by a remeshing of their subdivision boundaries

in the join regions.
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Chapter 5

Object Modeling using M-rep

Subdivision Solids

The previous chapter explained how interpolating subdivision surfaces are used to

create boundaries for discrete m-reps. For m-reps to be broadly useful in shape

modeling and shape analysis, two tasks remain to be explained:

1. the creation of fine-scale, tolerance-based surface deformation on subdivision

surface boundaries;

2. the creation of multifigural models by smoothly joining additive and subtractive

subfigures to a simple m-rep figure.

Section 5.1 discusses boundary deformation by two methods: displacement texture-

mapping based on interpolated, medially based coordinates; and r-bounded displace-

ment meshing for subdivision surfaces. It describes the prototype techniques de-

veloped for past and present m-rep modeling systems, places them in context with

current work on subdivision surfaces and multiresolution meshes, and considers issues

of hierarchical object simplification. Section 5.2 discusses how multifigure models can

be created with m-reps. It describes the use of medial coordinates for the place-

ment and joining of subfigures at figural boundaries, and it discusses the remeshing

of interpolating subdivision boundaries to produce smooth joins between figures and

subfigures, replacing the implicit surface techniques used for blending in previous

applications.



5.1 Subdivision Boundary Displacement: Texture-

based and Mesh-based Approaches

The medial-atom mesh of a discrete m-rep describes boundary positions to within

an r-proportional tolerance; the information concerning fine-scale boundary details

must be carried by the boundary itself. Thus, global shape characteristics are pa-

rameterized over variation in the medial skeleton, and local shape is parameterized

over variation in the subdivision-meshed boundary. This is distinct from Fourier-

based shape modeling methods provided by spherical harmonics, which lack locality

in shape description, and distinct from wavelet and multiresolution mesh methods,

which lack the global shape description and width-based tolerance given by multiscale

medial methods.

For creating displacements on subdivision boundaries, computer graphics and

CAGD offer two basic methods: displacement maps based on parameterized dis-

placement images, and displacement meshes based on perturbations of subdivision

mesh vertices. Displacement maps (as well as image maps) based on (u, v, t) medial

parameterization will be discussed in the next section, and displacement meshes in

the section thereafter.

5.1.1 Image and displacement textures for m-rep boundaries

The use of image textures to provide detail on parameterized surfaces dates back

to Blinn and Newell [12], who based their work on the parametric rendering and

texturing techniques developed by Catmull [27]. Texture-based surface displacements

were first described by Cook in his work on shade trees [32], and displacement textures

have been part of the Renderman API since the mid-eighties. The computer gaming

industry has driven recent interest in them, seeking ways to increase scene detail

without increasing polygon counts. A summary of this work is given by Doggett [46],

who discusses both the history of displacement mapping and the state-of-the-art

provided by current APIs and graphics hardware. Using current systems, it is now

possible to do hardware-accelerated rendering of displacement-textured subdivision

meshes.

The (u, v, t) coordinates of an m-rep boundary provide a straightforward param-

eterization for texture mapping applications. Prototype application of image and

displacement maps to m-reps was implemented in Rakshasa, an early discrete m-rep
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modeler that will be discussed in detail in Sec. 6.1. Rakshasa used the (u, v, t) co-

ordinates of an m-rep figure as parameters for both image-texture mapping, via the

OpenGL texture-mapping mechanism, and displacement mapping, via a simple vertex

displacement scheme. The mapping to the image space is provided by simply scaling

the (u, v) coordinates to (u/umax, v/vmax) and using these as texture coordinates for

a [0, 1] × [0, 1] image texture.

For displacement texturing, which was not supported by the OpenGL API or the

graphics hardware of the day, subdivision mesh vertices at a given level are displaced

in the vertex-normal direction according to a table lookup into a manually created

displacement map where the displacement

D(u, v) = F(T (
u

umax

,
v

vmax

))

is indexed by a surface position’s medially based (u, v, t) coordinates into a 2D scalar

displacement image T with coordinates in the range [0, 1] × [0, 1]. The displacement

image is stored as scalar intensities in the range [0, 255], which the function F then

maps to the range [−α, α] for α < 1. The new boundary position is then

x′ = x + rD(u, v)�n

where x is the initial boundary location corresponding to (u, v, t), r is the inter-

polated medial radius, and �n is the surface normal. This implementation was a

proof-of-concept only and ignored the value of t, thus holding the image values and

displacements constant for −1 < t < 1 along the crests. The value of α gives a

“collar” region within which displacements are kept. In Rakshasa, α = 0.25 was a

constant, but a better scheme would be to vary it across the surface, so that

α = A(C(u, v, t), sign(D(u, v, t))

would vary as a function of surface curvature measures (such as Gaussian or principal

curvatures) and the direction of the displacement. Such a system would be useful to

limit displacements into non-convex regions to avoid self-intersection of the surface.

Fig. 5.1 shows an image texture map and an associated, manually created dis-

placement texture for a carved redwood plank, and Figs. 5.2 and 5.3 show the image

and displacement maps as applied to a simple m-rep slab. Rakshasa did not compute

perturbation of surface normals; these could be computed either from the perturbed
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(a) (b)

Figure 5.1: A redwood image-texture (a) and associated displacement map (b). The
displacement map is a manually created scalar image where intensity corresponds to
r-proportional displacement. The neutral grey value in this rendering represents zero
displacement, the brighter, positive, and the darker, negative.

boundary mesh or by pullback functions from the boundary into the image ∇T of

gradients of the displacement map itself. The implementation also ignored concerns

regarding artifacts from point-sampling of the displacement maps. These would have

been even more visible if normal-perturbations had been implemented. The expected

problems are similar to aliasing-artifacts encountered when point-sampling height

fields or disparity maps in image-based rendering.

Displacement maps can be used as look-up tables for vertex perturbations of

a subdivision mesh, as in these examples, but their advantages over displacement

meshes (described in the next section) are only seen when using them in a procedural

shading environment that allows displacement maps. In such an environment, the

displacement textures can be applied to coarse-level subdivision surface polygons,

avoiding the need to subdivide finely to get fine detail. They have a drawback of

requiring separate maps for different levels of subdivision, at least between the coarsest

levels and their successively refined meshes. At finer subdivision levels, the distances

between corresponding positions on successive levels is small; thus, using the same

displacement map might go unnoticed. Displacement maps might be derived for

coarser levels by point-sampling based on coarse-level Phong normal intersections with

the finer meshed surfaces. This could create a medially based LOD decomposition and
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(a) undisplaced surface with image texture

(b) displaced surface with image texture

(c) displaced surface seen with the original, undisplaced boundary mesh

Figure 5.2: Image-based displacement mapping of an m-rep slab figure. All images
use the same redwood image-texture. Image (b) and (c) apply displacements to the
boundary according to the displacement map seen in Fig. 5.1(b). The m-rep (u, v, t)
coordinates are used both for image-texture coordinates and as lookup values for
vertex-displacements in the displacement texture.
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Figure 5.3: Edge view of the displaced m-rep boundary from Fig 5.2.

allow displacement textures to be substituted for highly subdivided surface geometry.

This will be discussed later in the next section.

5.1.2 Displacement meshes for m-rep subdivision boundaries

Given a mesh-based boundary for an object, a displacement mesh stores a scalar or

vector displacement at each mesh vertex. Displacement meshes have become increas-

ingly popular in recent years, as seen in the previously discussed work of Lee [96]

and Guskov [76]. Such techniques are well-suited to subdivision surfaces, forming

the basis for much multiresolution mesh research, as discussed in Biermann [8], and

they are especially applicable to m-reps, which are based on interpolating subdivision

surfaces. Since there is no need to compute equivalent mesh perturbations between

corresponding vertices at different subdivision levels, it is unnecessary to resort to

multiresolution mesh editing techniques used with traditional Loop or Catmull-Clark

surfaces. Perturbations at a vertex can be kept constant when finer-scale mesh ver-

tices are interpolated by the subdivision process.

Perturbations defined at a coarse level can be interpolated using a number of

different techniques: (1) the same splitting formulae as for the vertices themselves,

(2) the simple bisection scheme used for the (u, v, t) coordinate interpolation, or

(3) the same inversion method used to produce the interpolating subdivision mesh

vertices. Method (1) will produce a Gaussian smoothing of the displacements, in the

limit giving an almost-everywhere C2 displacement field over the surface. Method (2),

keeping coarse-level displacements constant, is more useful when precise perturbations
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are defined at the coarse level and approximate perturbations are desired at a finer

one. If the task is fitting an m-rep to image data, these approximate positions might

be used as initial locations for a boundary search at the new vertices. Method (3)

can be used to produce a continuous displacement field over the limit surface that

interpolates the displacements at the coarse-level vertices; however, this field may

have undesirable ripples—see comments below in Sec. 5.1.3 on r-field interpolation.

Fig. 5.4 shows an example of an m-rep model with displacement-mesh perturba-

tions. This texture perturbs mesh vertices in their normal direction using Perlin noise

(see Perlin [112]) modulated by the local r-value at each vertex. In other experiments,

such r-based noise functions allow a scale-invariant perturbation of objects based on

their local width function.

A perturbed subdivision mesh also needs new normals, both for rendering pur-

poses and for nearpoint and other computations. Normals can be derived from the

perturbed local grid structure by vertex averaging techniques or by more elaborate

schemes, such as those of Desbrun et al. [44], computing differential geometric at-

tributes such as normal vectors and curvatures on discrete grids representing a smooth

underlying geometry. Perturbed normals computed on the finest-level mesh can then

be substituted for those at corresponding coarse-level vertices, allowing Phong shad-

ing to approximate the finer-scale surface.

Normals can be computed on the fly when a model is deformed and then stored

for rendering and computational purposes. They might instead be computed once

and stored as rotations of the vertex normal; when the model is deformed medially,

the same rotation would be used relative to the vertex’s local coordinate system.

This would require a local frame at each vertex; this could simply be an interpolated

q ∈ Q frame from the medial frames associated with the initializing (u, v, t) involute

positions. The quaternion frames could be interpolated by the subdivision just as the

r values. This would be trivial to implement, but might not be worth the additional

computational cost.

Displaced subdivision meshes are amenable to various LOD techniques for reduc-

ing polygon counts in rendering applications. The simplest is to use the coarser-

level subdivision meshes with their displacements in place of the finer level meshes.

While this will not prevent “popping” artifacts during substitution of coarser for finer

meshes, it will be adequate for many purposes. More elaborate mesh simplification

techniques, such as the simplification envelopes of Cohen et al. [31], are as applicable

to the fine-scale displacement-meshes as they would be to any other polyhedral mesh.
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Figure 5.4: M-rep textured with displacement meshes. On the left is the unperturbed
model; on the right is the perturbed model.

112



Other LOD methods involve the substitution of displacement textures on coarse-level

meshes for the geometry at the fine-level meshes. These techniques can utilize the

(u, v, t) parametric correspondence between subdivision levels in various ways. There

are a number of interesting approaches:

1. creation of a bump map to perturb surface normals on polygonal faces to ap-

proximate the fine-scale curvature, matching normals at (u, v, t) locations in

the fine-level meshes with their interpolated (u, v, t) positions on the coarser

polygonal faces;

2. creation of a vector displacement map, according to the same (u, v, t) correspon-

dence, giving the actual boundary displacement between coarse mesh-polygons

and associated positions on the limit surface;

3. creation of a scalar displacement map, which would displace positions on coarse

polygons along their Phong normals to positions on the limit surface; this would

require computationally expensive ray-to-subdivision-surface intersection com-

putations but could be done as a preprocess on a static model.

The latter two methods would need a bump map, as well, to specify normals at

the displaced points. Methods (2) and (3) would only be useful in a procedural

shading environment that allows displacement textures, whereas Method (1) would

be applicable in standard rendering APIs such as OpenGL or DirectX. Ideas for more

complex, scale-based LOD methods will be discussed in Sec. 7.1.

5.1.3 Modeling using tolerance-based boundary displacement

This section discusses conceptual notions necessary for using displaced m-reps effec-

tively and efficiently for CAD and other modeling applications. The discussion, in

general, will apply equally to texture-based and mesh-based boundary displacements

and when this is not the case, it will state which method is applicable. Modeling using

displacements has received attention in recent years, as in the work of Kobbelt [92]

and Lee [96]. While the latter gives a good discussion of displacement-meshed sub-

division surfaces, use of such surfaces for m-rep boundaries raises issues unique to

medial, tolerance-based modeling systems.
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Significance of the interpolated r-field on the boundary

Section 4.1.6 discussed interpolation of r and other geometric and medially implied

values on subdivision boundaries. This is particularly necessary in tolerance-based

boundary deformation, where the displacements are given as fractions of the r values

at the positions on the boundary. Thus, for a point x, each displacement value δ(x)

in the direction �nx is scaled by rx to give the actual boundary displacement.

It remains to be seen how accurate the interpolating r values need to be. As pre-

viously stated, running Catmull-Clark splitting on the r-values of the base boundary

mesh does not suffice since this produces drift of correct values away from their known

values at interpolated atom positions. One can perform a bilinear interpolation of r

values, as is done for (u, v, t) values—this is currently done in Pablo—but this method

fails to give proper r interpolation near bulges and other regions where ∇r is signifi-

cant. As possible improvements there are two methods: (1) creation of a continuous

interpolating r-field on the subdivision limit surface using the same inverse method

as that for the interpolating subdivision surface; (2) creation of an r interpolation

across the medial surface, using a spline-based medial interpolation method or one of

the better medial interpolation methods under development (see Sec. 7.1) and then

using (u, v, t) correspondence to transfer these r values to the boundary. Both of

these methods may have problems with unconstrained interpolated r-fields showing

too much wiggling; an accurate medial interpolation would avoid this problem but

would be ill-defined in non-Blum medial regions—any medially based r interpolation

will fail for surface points in non-Blum regions, and the medial behavior in blend

regions is problematic.

The dependence of the boundary displacement on r implies that standard dis-

placement textures cannot be used interactively in procedural displacement shading

unless the displacements can be made a function of both the interpolated r values

and displacement δ(x) fields. Thus, if an object is scaled along a length axis to taper

off, the displacements must automatically taper off as well.

Dynamically editing boundary displacements

Specifics of current m-rep modeling systems will be discussed in Ch. 6. For general m-

rep modeling systems, however, there are considerations needed for object modeling

with boundary tolerance that will be discussed here.

It is fundamental to m-rep modeling that boundary displacements be limited to be
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within width-proportional tolerances, to maintain the separation between large-scale

medial structure—modeled by the figure-subfigure hierarchies—and fine-scale bound-

ary detail—modeled by displacement meshing or texturing. Thus, any system for

editing boundary displacements must inform the user when a displacement exceeds a

parameter giving the maximum fraction of r allowed for a boundary displacement. It

is not necessary to restrict changes to the medial r; since the boundary displacements

are given in units of r, changes to medial r will affect displacements in correspond-

ing boundary regions in direct proportion. A modeling system should be able to

substitute a joined subfigure for a displacement that exceeds its limits.

It is also necessary to limit displacements based inversely on boundary curvature to

prevent boundary self-intersections. In order to do this dynamically during interactive

editing, both boundary-displacement and medial-shape changes are relevant, and both

need to be restricted in accordance with approximate mesh-curvature metrics. This

and other operations will be discussed in Section 7.3.2.

Various tools are desirable for displacement editing. Polyhedral sculpting tem-

plates can be applied to an m-rep, with its boundary mesh perturbed in normal

directions to intersect the templates, as was done in Fig. 5.4. Displacements could

also be specified interactively using a Gaussian weighting over a region selected on the

boundary. For a displacement mesh, this would be applied to mesh vertices in R3; for

a displacement texture, the Gaussian weighted displacement would be achieved by a

pullback from the boundary point into the texture-space. Again, if such a displace-

ment exceeds r-proportional limits, the modeling system would substitute a joined

subfigure in place of the the displacement.

5.2 Multifigure Modeling using M-rep Subdivision

Solids (co-authored with Qiong Han)

Multifigure modeling is inherent in the nature of m-reps, which deliberately reject the

instability of the branching medial structures of tradition skeletal methods. Complex

m-reps, therefore, are created by directed acyclic graphs (DAGs) of figures and sub-

figures. These DAGs are often further restricted to hierarchical trees with parent

and child figures; this discussion will use parent and child interchangeably with figure

and subfigure, though the discussion refers equally to trees and more general DAGs.

Research on multifigure m-reps has developed two key techniques:
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1. the use of medially implied coordinates for positioning subfigures at figural

boundaries;

2. the use of subdivision surface remeshing to achieve smoothly blended joins be-

tween figure and subfigure, allowing modeling to be approached using a CSG

paradigm with additive and subtractive subfigures.

Initial m-rep experiments by Thall (for the Rakshasa application) linked subfigures to

figures by tying them to medial locations—first to discrete atoms in the medial mesh

and later to (u, v) positions on an interpolated medial sheet. With the abandonment

of an explicit medial interpolation, it was necessary to find other ways to specify

figure-subfigure relationships. The plan finally implemented was based on the (u, v, t)

boundary coordinates described in Ch. 3, and early implementation experiments and

development in Pablo were done by P. Thomas Fletcher. Meanwhile, work on joining

figures and subfigures proceeded in several different directions but culminated in

the work of Thall and Qiong Han, who demonstrated the first working scheme for

subfigure attachment by remeshing of subdivision boundaries (see Han et al. [78]).

These techniques will be discussed in turn below.

5.2.1 Medial coordinates for subfigure positioning

The Pablo development team chose to link subfigures at positions where they have

discrete medial atoms near (u, v, t) specified locations on the parent boundary. These

hinge atoms align a row or column of the subfigure medial sheet with the parent

figure boundary and allow the subfigure to be rotated transverse to the hinge direction

(hence the name). Fig. 5.5, a closeup of an indentation figure’s medial mesh, shows

the hinge atoms at their anchoring positions on the parent figure. This method

for attaching figures and subfigures can be separated into two somewhat orthogonal

decisions:

1. binding subfigures to the medial geometry of the parent;

2. placing subfigures at boundary (u, v, t) rather than medial (u, v) locations on

the parent figure.

Binding subfigures to the medial geometry of the parent

A subfigure is a part of an m-rep figure. As such, a child figure needs to be integrated

into the medial geometry of its parent for two reasons. First, transformations of the
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Figure 5.5: An indentation figure with visible hinge atoms on the (invisible) parent
figure boundary. The inner green polygon shows the intersection of the original
subfigure with the parent figure boundary prior to the blend.

whole subfigure can be specified relative to the parent. Second, changes to medial

structure of the parent can be reflected in the child as well. By positioning a subfig-

ure’s medial hinge-atoms using the medially implied coordinates of the main figure,

both of these interactions are facilitated; subfigures may be modified by specifying

changes relative to the parent geometry, and deformations on the subfigure can be

computed in correspondence to deformations of the parent.

Modifying a subfigure relative to the parent medial geometry allows changes to

the subfigure to be parameterized in parent-figure-based terms. This is important

in segmentation based on deformable models, where a fixed figure may have vari-

ability in the characteristics of a subfigure—the figure can be kept in place and the

subfigure transformed in parent-figure-local coordinates to effect an automatic fitting

to the data. In modeling applications, parent-figure-coordinates provide a stable pa-

rameterization for positioning and manipulating subfigures while maintaining desired

structural connectivity and overall object shape. In particular, the figural coordinates

establish a correspondence that is invariant under similarity transformation as well

as under medial and boundary deformation of the parent, as will be described below.

When a parent figure is deformed medially, the child figure must not simply main-

tain positional correspondence with the figural boundary but also bend and deform

in ways corresponding to the desired behavior of a protrusion (or indention) of the

parent. For example, if a figure is bent or stretched about its medial axis, the hinge

atoms of a subfigure will be translated and rotated to maintain their position and
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orientation relative to the changed (x, y, z) positions and orientations of their (u, v, t)

anchor points on the parent. Similarly, boundary displacements on a parent figure

can be propagated to the child as well.

The changes to a figure in the neighborhood of a subfigure hinge can be propa-

gated to the subfigure using the coordinate systems provided by the hinge atoms, and

changes at these positions can be propagated along the subfigure’s medial mesh using

various modeling-heuristics, such as a damping effect proportional to mesh-distance

from the hinge. In this way, distortions of the parent figure will produce varying

degrees of distortion of connected subfigures, according to individually tunable pa-

rameters. This approximates the behavior of an elastic solid under deformation and is

especially necessary for on-going research on multifigure m-rep segmentation, where

an m-rep must be automatically deformed to produce an optimal fit to 3D image

data. Another approach to m-rep deformation uses finite-element methods (FEM ) to

model the m-rep and its subfigures and compute deformations using physically based

models. See discussion of the work of J. Crouch [33, 35] in Sec. 6.3.3 on using m-reps

and FEM to model tissue deformation.

Placing subfigures at figural boundaries

Connection of subfigures at the boundary contrasts with the earlier attempts to link

subfigures directly to medial locations on the parent figure. There are several rea-

sons for making this choice. On theoretical grounds, linking boundary protrusions

or indentations to the medial surface leads back to the small-scale intolerance and

brittleness of Blum axis methods, where boundary perturbations produce discontin-

uous changes on the medial structure. Pragmatically, medial subfigure linkage was

made difficult for m-reps by the lack of a good continuous continuous interpolation

of the medial surface—this was prior to the work of Yushkevich on cm-reps [163]

and the most recent work of Kerckhove on interpolating medial surfaces for discrete

m-reps [91]. The latter will be discussed in Sec. 7.1. Placing subfigures at par-

ent figure boundaries also avoids the medial-to-boundary correspondence problems

that arise with continuous medial representations and allows straightforward attach-

ment of subfigures along the crest of the parent, where the 1-to-many nature of the

medial-(u, v)-to-boundary mapping makes subfigure attachment to the medial surface

problematic. Fig. 5.6 illustrates the hinge atoms and boundary location intersections

of an m-rep subfigure with a parent figure in the (u, v, t) space of the parent.
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(a) A parametric map showing the connectivity of (u, v), (u, t)

and (v, t) coordinate patches.
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(b) A parametric map showing undistorted iso-u, iso-v and iso-t lines
on coordinate patches.

Figure 5.6: Placement of a subfigure in (u, v, t) parameter space of parent figure. In
(a), the left and right edges are connected, and the top and bottom left-hand edges
connect to the top and bottom right-hand edges respectively. In (b), the parametric
map can be folded without warping, like a paper box, creating the 1-1 cover of the
genus-0 (spherical) topology of an m-rep slab figure.
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5.2.2 Smoothly joining figure and subfigure by remeshing

M-reps require subfigures to join figures in a smooth blend having the same curvature

continuity as the rest of the m-rep boundary. This is in contrast with the sharp,

tangent discontinuities of traditional CSG modeling and its extension to subdivision

surfaces in work such as Biermann’s; such fine surface detail is carried by the m-rep

boundary displacements and is not part of the medial figural structure.

Early work on figure-subfigure attachment was based on implicit surface blend-

ing techniques; indeed, this was an early aspect of m-reps as new geometric primi-

tives, ideas developed by Thall (in discussions with Turner Whitted) to create medial

primitives as extensions of blobby modeling and convolution surface primitives and

eschewing any explicit surface representation. Early experimentation with implicit

surface methods was discussed in Sec. 2.4.3 and culminated in the experiments of

Fletcher [53]. This work was abandoned when subdivision surfaces were chosen as a

more tractable boundary representation for fleshing a skeleton of medial atoms.

Early figure-subfigure attachment in Pablo was also based on implicit surface

methods; in this case, with subdivision surfaces already in use as figural boundaries,

a distance function over each boundary (computed using methods from Sec. 4.2) was

used as the basis for a implicit surface blend between figure and subfigure. An isosur-

face marching algorithm was then used to construct the blended surface, with each

point maintaining its (u, v, t) association with the initial figure and with a reparame-

terization in the blend region. This technique, implemented by Gash and Thall, with

input from Pizer and Fletcher, served for early multifigure experimentation in Pablo

but suffered from several drawbacks. Quirks in the nearpoint code led to problems in

areas of high curvature—which, unfortunately, were exactly the blend regions. Also,

the blending was typically too slow for interactive modeling, due to the cost of the

distance function being evaluated on the subdivision boundaries, which involved a

bracketed search at fine levels of subdivision.

A scheme to blend m-rep subdivision boundaries must overcome several difficulties.

Problems particular to m-rep interpolating subdivision boundaries are in the figure-

subfigure intersection computation and in the remeshing of interpolating subdivision

meshes to produce a smooth blend region. In the case of m-reps, a sharp Boolean

cut at a join is exactly what is not desired; fine-scale structure in the blend will be

created by the same boundary displacement methods as in non-blend regions. As will

be seen below, the techniques developed for m-reps allow the degree of curvature in

a blend region to be adjusted by setting blending-parameters.
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For figure-subfigure joining, m-reps do not require the full power of general inter-

section methods—discussed in Grinspun et al.[73]—as would be needed for collision

detection and other physically based applications. In the figure-subfigure case, a sub-

figure to be joined is placed deliberately at the boundary of the parent figure with a

selected row of hinge-atoms placed in proximity to the parent figure boundary.

The remeshing of subdivision surfaces in join regions has unique aspects due to the

interpolating nature of m-rep subdivision boundaries. While it is the interpolating

limit surface that must be joined, the actual remeshing uses the inverse mesh positions

computed during the surface fitting stage described in Sec. 4.1. Once the join region

has been determined, the parent and child meshes must then be stitched to form a

closed surface mesh.

5.2.3 Joining figure and subfigure by remeshing: implemen-

tation

A prototype application for figure-subfigure joining of m-reps by remeshing of subdi-

vision boundaries has been implemented by Qiong Han at UNC-Chapel Hill, based on

ideas jointly developed with Thall and with input from Stephen Pizer, Sarang Joshi,

and other members of the Pablo development team at MIDAG. The techniques are

general enough for both protrusion and indentation figures, and they allow parametric

control of the “sharpness” of the join in the blend regions. Fig. 5.7 shows examples

of protrusion and indention subfigures produced by the current application.

The algorithm works by intersecting the figure and subfigure at the coarsest sub-

division level to get an approximate curve of intersection, producing a cut-curve on

figure and subfigure, using the (u, v, t) coordinates of the intersection curve on the

two figures. It then creates a new initial mesh by knitting the original initializer

meshes by triangulating the region between the cut-curves. The algorithm proceeds

in the following steps:

1. Calculate the intersection curve between the figure and subfigure meshes on

the base-level interpolating surfaces. The intersection calculation uses the

subdivision-surface proximity code described in Sec. 4.2. This generates an ap-

proximate intersection curve as a closed polygon in the parent figure’s (u, v, t)

parameter space.

2. The intersection curve is subsampled in the (u, v, t) domain and then dilated

in the parameter space of the parent figure. The new curve vertices are then
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(a) (b)

(c) (d)

Figure 5.7: Examples of protrusion and indentation subfigures. Images (a) and (b)
show a protrusion subfigure and Images (c) and (d), an indention subfigure.
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Figure 5.8: Figure-subfigure intersection curves. The images shows the blended sub-
division surface (not at level 1) with the intersection curve and the dilated intersection
curve from the level 1 mesh intersections.

mapped back to Euclidean space locations on the parent figure. This ensures

that the dilated curve remains on the parent boundary. An example of an

intersection curve before and after dilation can be seen in Fig. 5.8, and a view

of several intersection curves and their dilations in the parameter space can be

seen in Fig. 5.9.

3. Cut the subfigure by a pre-defined u (or v) value, offset from the intersection

curve, according to an offset parameter. The subfigure is sliced cleanly at a

fixed u or v value—this is a current restriction of the software.

4. Cut the main-figure by the dilated intersection curve, eliminating vertices within

the curve and triangulating the neighborhood of the cut as necessary.

5. Knit the figure and subfigure together by triangulating along the cut to produce

a new initial (i.e., not limit surface) mesh for subdivision. This is now a hybrid

mesh of both quads and triangles, which can be subdivided using the revised

Catmull-Clark rules for meshes with non-quadrangular faces. The triangulation
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Figure 5.9: Dilation of intersection curves on parent figures. Sampled points on the
intersection curve are displaced in (u, v, t) parameter space. The dilation is done in
multiple small steps, varying in distance and direction according to the local approxi-
mated tangent and curvature of the surface-curve. This prevents self-intersection and
produces a smoothing of the initial curve.

of the blend region uses simple heuristics to achieve an adequate but in no way

optimal remeshing.

6. Subdivide once in parameter space to produce a level-2 mesh, and construct a

new initializing mesh by placing each vertex at its (u, v, t)-corresponding (x, y, z)

location on the original (unblended) figure or subfigure grid. Using the remeshed

initial grid directly produces too many artifacts, due to the coarseness of the

tessellated boundary. By tying the connectivity of the remeshed surface to the

level-2 boundaries, deviation from the original interpolating surface is mini-

mized and the changes in the blend region are more localized. In the blend

region, there are no corresponding vertices on the unblended meshes; this is

dealt with by simply removing the new vertices and using leaving the blend

region triangulated (rather than quads, as is the rest of a level-2 mesh).

7. This new level-2 mesh is now the control mesh for the new interpolating sub-

division surface, and smoothing Catmull-Clark subdivision will generate higher

level meshes or points on the limit surface.

Fig. 5.10 shows the remeshing in the blend region for a protrusion or indentation fig-
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ure. Our use of curve-dilation in (u, v, t) in the m-rep boundary remeshing scheme was

developed independently but directly parallels the use of cutting curves in parametric

domains as developed by Biermann et al. [8], as discussed in Sec. 2.5.4.

The behavior of the blend region can be controlled by two parameters, one which

determines the amount of dilation of the cut on the parent figure, and the other

which determines the offset for the cut, in u or v, from the intersection curve on the

subfigure. Figs. 5.11 and 5.12 illustrate this for protrusion and indentation figures.

5.2.4 Fitting a polygonal model with a blended, multifigure

m-rep

As a demonstration of the techniques developed for multifigure m-rep modeling, a

polygonal model was fitted with a multifigure m-rep using the figure-subfigure blend-

ing described in this section. The polygonal model, bigspider.ply, has multiple

overlapping polygonal meshes forming the body, legs and other features of a spider;

it was obtained from the Computer Graphics Group at the University of Virginia.1.

The spider model has 9286 triangular faces meshing 4670 vertices (see Fig. 5.13).

Since code to fit m-reps directly to polygonal models has not yet been imple-

mented, an m-rep model was created for big spider in the following stages:

1. a 3D scan-conversion was done to create a voxelized, binary volume-image of

big spider;

2. the Pablo modeling system (described in Sec. 6.2.1) was used to manually create

and position multiple figures for the spider body, legs and mandibles;

3. Pablo’s automatic registration capabilities were used to refine the model, seg-

menting the binary image, using the hand-built multifigure m-rep as a initial

template, and using subdivision-surface blending to join the multifigure object.

Displacement textures were not fit to the model, leaving an undetailed spider but

one that illustrates well the subdivision surface blending. The final spider m-rep had

208 medial atoms—the cephalothorax and abdomen each had a 4 × 4 medial mesh,

the legs each had 20 medial atoms and each mandible had 8. The counts for the legs

and mandibles are misleading—the actual medial sampling was 10 atoms per leg and

4 per mandible, but the lack of single-chain m-reps in Pablo required using paired,

1http://www.cs.virginia.edu/∼gfx/Classes/2001/Advanced.Spring.01/plymodels
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(a) (b)

(c) (d)

Figure 5.10: Detail of figure-subfigure remeshing in region of join. Images (a) and (b)
show a protrusion subfigure and Images (c) and (d), an indention subfigure. The cyan
region is the remeshing of the parent figure. The yellow region shows the knitting of
the remeshed parent and child figures at the join.
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(a) (b)

(c) (d)

Figure 5.11: Adjustment of blending parameters for protrusion subfigure. Images (a)
and (b) show a wide blend region based a large dilation on the parent figure and
a large offset of the cut on the subfigure. Images (c) and (d) show a narrow blend
regions, produced by a small dilation and small offset.

(a) (b)

(c) (d)

Figure 5.12: Adjustment of blending parameters for indentation subfigure. Images
(a) and (b) show a wide blend region based a large dilation on the parent figure and
a large offset of the cut on the subfigure. Images (c) and (d) show a narrow blend
region, produced by a small dilation and small offset.
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Figure 5.13: The big spider.ply model from the Computer Graphics Group at the
University of Virginia. This model has 9286 triangular faces meshing 4670 vertices.

doubled medial atoms in 10 × 2 or 4 × 2 grids for each leg or mandible respectively.

Thus, the actual medial sampling for the model was 120 medial atoms. Fig. 5.14

illustrates the medial sampling and mesh structure for the spider m-rep. Subdivision

boundaries applied to this m-rep are shown in Figs. 5.15 and 5.16. Close-up details

of the figure-subfigure subdivision blends are shown in Figs. 5.17 and 5.18.

5.2.5 Implementation issues and drawbacks

In the current implementation, a single figure-subfigure blend takes on the order of 0.5

seconds to compute on an average PC. While this is considerably faster than implicit

blending methods, it is still slow for interactive application. With straightforward

optimizations, however, the blending of subdivision surfaces should be possible at

interactive rates, allowing subfigures to be manipulated and the blended boundary

recomputed on the fly.

Early implementations of Pablo were not able to place a subfigure at a corner of the

medial medial sheet, covering crest regions with both non-constant u and non-constant

v values, as in Fig. 5.19. This created problems for the dilation of the intersection

curve, which must displace the curve based on local tangents and curvature in the
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Figure 5.14: Medial structure of the spider m-rep. This model has 208 medial atoms,
but the actual number of medial samples is only 120.

parametric domain. Problems arose from the skewing of coordinate axes in these

regions—the u and v axes are, in fact, coincident along the diagonals. This was

strictly a problem with the patch coordinates—the surface is C1 continuous at the

corners between patches. The solution of this problem involved reparameterizating

these regions into local patch coordinates and then mapping back to (u, v, t). Such a

reparameterization was also done by Crouch in her m-rep FEM research [33].

There has been no discussion of reparameterization in blend regions, where the

medially implied (u, v, t) coordinate system becomes ambiguous. For displacements

based on displacement meshes (or other multiresolution mesh methods), there is in

fact no need for reparameterization in the blend. For displacement texturing, a new

texture map will be needed for the blend region and texture coordinates created for

it. Issues of r-interpolation, necessary for displacement bounds, also remain to be

addressed. It remains to be seen whether a straightforward interpolation of r by the

current subdivision rules will produce acceptable approximations to an “accurate”

value of r for displacements in the blend regions. The general behavior of displace-

ments in the neighborhood of a blend and the interpolation of displacements across

blend regions must also be explored.

Another implementation problem is how to attach a subfigure in a blend-region

of an already multifigure m-rep. This created problems for the spider model above;
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(a)

(b)

Figure 5.15: Subdivision boundaries for the spider m-rep; shown are (a) the me-
dial mesh with atoms and involute vectors, (b) level-2 subdivision surfaces created
individually for each figural mesh.

130



(a)

(b)

Figure 5.16: Subdivision boundaries for the spider m-rep; shown are (a) the
individual-figure level-2 surfaces from Fig 5.15, solid shaded, and (b) the solid model
rendered with blended figure-subfigure subdivision.
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(a)

(b)

Figure 5.17: Close-up details of spider m-rep figure-subfigure blends; shown are (a)
the unblended boundary meshes at level-1 and (b) the blended figure-subfigure meshes
at level-2.
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(a)

(b)

Figure 5.18: Close-up details of spider m-rep figure-subfigure blends; shown are (a) the
unblended boundary surfaces at level-1 and (b) the blended figure-subfigure surfaces
at level-2.
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Figure 5.19: Positioning of subfigures across problematic crest regions.

there was no room on the cephalothorax to attach the rear legs without overlapping

blend regions, so they were placed on the abdomen.2 To address this problem, a

reparameterization will again be required; the dilation of the intersection curve on

the parent figure has to take into account local measures of tangency and curvature

in the parametric domain.

One other feature which might be useful for general modeling tasks is to allow a

subfigure to be joined obliquely to a parent figure, rather than restricting a subfigure

join to be orthogonal to the subfigure’s medial axis. This would require subfigures to

be attached without anchoring them at medial hinge atoms, simply by blending the

surfaces of figure and subfigure. This would require a new means of producing sub-

figure deformations in response to parent-figure deformation but would allow m-reps

to be treated similarly to convolution surfaces or other blobby modeling primitives.

5.3 Concluding remarks

This chapter demonstrated that the pieces are now in place for using m-reps in the

manner for which they were conceived, as multiscale, multifigure primitives for de-

formable solid modeling tasks in CAGD and for modeling and segmentation in 3D

medical imaging applications. The next chapter will discuss two prototype m-rep

2Arachnologists should note that big spider.ply also had faulty morphology—the apparent
pedipalps in Fig. 5.13 are actually antennae.
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modeling systems, Rakshasa (for CAGD) and Pablo (for medical image analysis). It

will show how claims regarding m-rep effectiveness and advantages have been demon-

strated using these systems, and it will discuss uses of m-reps by others that also

support these claims.
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Chapter 6

Discrete M-Rep Modeling Systems

Previous chapters have presented techniques for creating medially based multifigure

models. A number of prototype applications have been created to use discrete m-reps

for object synthesis and deformation. This chapter examines two of these systems:

1. Rakshasa1, designed for object synthesis via m-reps for computer graphics and

CAGD applications, providing a testbed for medial deformation, different me-

dial mesh connectivities, boundary fitting and subdivision mesh displacment

experiments;

2. Pablo2, designed by a MIDAG team for discrete m-rep modeling, segmentation

and statistical analysis of objects from 3D medical image data.

The chapter will also discuss past and current research directions involving m-reps,

including the work of Styner, of Fletcher and of Crouch, which further demonstrate

the unique capabilities of m-reps in shape analysis and in physically based modeling.

An examination of these modeling systems and research applications will support the

claims made for discrete m-reps in Ch. 1.

6.1 Rakshasa: m-reps for computer graphics and

CAGD

Rakshasa was a test-bed for early m-rep research, growing out of work on the earlier

Yaksha system that supported experiments on slice-constrained medial primitives.

1from a shape-changing demon of Indian mythology
2named by Tom Fletcher, from Pablo Picasso. See epigram on Sec. 6.2.



Rakshasa was designed to support experiments on medial mesh topology and medially

based deformation, on interpolation methods for boundary positions and for (u, v, t)

and r values, and on boundary displacement and shading. It also served for early

experiments in medial interpolation and subfigure attachment. It was the earliest of

the m-rep modeling tools to make full use of the medial frame F information in the

medial atoms Mp = {p, F, r, θ}, and it contributed large amounts of code to SCAMP

and to Pablo’s Seurat library (see Sec. 6.2).

Rakshasa provided proof-of-concept for a large number of m-rep features and

functions:

• the first medial atoms representing F explicitly, using quaternion frames;

• data structures for nets of medial atoms of different topologies, including simple

quadmeshes, trimeshes, linear chains, circularly connected chains, and toroidally

connected quadmeshes;

• subfigures linked to medial atoms of parent figures;

• deformations of objects based on modification of medial atoms in their local

coordinate system, with changes propagated to the rest of the mesh atoms;

• techniques for smooth boundary interpolation;

• experimental techniques for smooth medial interpolation;

• an interactive GUI, using OpenGL and FLTK, for creating, modifying and

displaying medial atoms, medial meshes, and boundaries;

• display functions for rendering slices from 3D data sets based on cutting planes

defined by the medial surface;

• the first (non-interpolating) subdivision boundaries for m-rep boundary defini-

tion and rendering;

• image and displacement textures on m-reps, producing boundary perturbations

within the medially defined, width-proportional tolerances.

The discussion below will explore a number of these functions and features with an

emphasis both on understanding implementation decisions and tradeoffs in Rakshasa

(and derived Pablo code) and on discussing issues relevant to designing other m-rep

systems, providing fuel for the discussion in Ch. 7.
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6.1.1 Medial atoms and medial mesh topologies

Rakshasa implemented a class Diatom that encapsulated the elements of the medial

atom Mp = {p, F, r, θ}, using a 3-vector for p, a quaternion for F , and scalars for

r and θ. Diatoms also included change-of-basis code to switch between coordinate

systems, from an atom’s {�b,�b⊥, �n}-at-p frame to the world frame or that of another

medial atom. These atom-based coordinates proved useful for defining atom-based

medial modifications for m-reps, as described in the next section.

Rakshasa implemented a class Mfig as a parent class for different single-figure

mesh topologies, including quad-figures, linear chain-figures and loop-figures, tri-

figures, and tube and torus-figures based on quadmeshes. Mfig included virtual

functions for rendering medial atoms, meshes and boundaries, and it also stored an

instancing transform for positioning, orienting and scaling the object from its model-

ing coordinates. Although only the quadmesh structures were used in the subdivision

boundary experiments, the development of the other data structures showed there

would be no technical impediments to producing m-reps with other medial topologies

for use in a full m-rep modeling system.

Mfigs also provided an array of links to other Mfigs for subfigure attachment; a

link was attached to a medial atom in the parent mesh, with directions, distances, and

orientations for the subfigure given in local atom coordinates. There was at the time

no system for using (u, v, t) coordinates to position subfigures at the Mfig boundary—

Rakshasa used (u, v, t) solely for boundary texture coordinates. Rudimentary code

was in place for performing similarity transforms on linked subfigures based on parent-

figure link-atom coordinates; these methods were made obsolete by the switch to

subfigure hinge-atom linkage at parent-figure boundaries in Pablo.

6.1.2 Model construction and medially based deformation

Rakshasa allowed a user to specify a figural type—e.g., a quad-figure—and the scale

and dimensions of the medial mesh—how many rows u and columns v of medial

atoms. It then created a stock m-rep of the desired type. Modeling functions were

limited; single atoms could be selected and have their attributes—position, scale,

orientation or object angle—modified using simple GUI controls, or an entire row or

column could be selected and modified. In addition, modifications could be made in

the local coordinate system of a selected atom and propagated in selected directions

along the medial mesh, allowing medially based deformations as primitive operations,
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Figure 6.1: Curling and twisting operations on m-reps. As is the case for other skeletal
modeling systems, m-reps can be manipulated by modifications applied to the medial
skeleton. The use of medial-atom-based coordinates allows these deformations to be
relative to the medial axis and medial frames.

curling or twisting or tapering the figure by corresponding operations on the medial

mesh (see Fig. 6.1). Shape deformation by medial-axis modification is common to

most skeletal modeling systems, but the use of medial-atom-based coordinates allows

these modifications to be relative to the medial axis and its medial frames, rather

than requiring external, object-independent coordinate systems or axes of rotation.

6.1.3 Medial and boundary interpolation

Rakshasa was used for experiments on both medial and boundary interpolation.

Clearly, a medial interpolation of Mp = {p, F, r, θ} atoms over the medial surface

based on an initial m-rep grid would allow the boundary to be interpolated directly

from the medial surface in a Blum fashion. Considerable time was spent attempting

constrained spline fits to the medial surface—work paralleled by Fletcher and later

by Crouch—but the problem of correctly interpolating the medial radius r and frame

F proved difficult without the sound theoretical bases developed later by Yushkevich,

Damon, Fletcher and others. Interpolating a continuous medial surface raises its

own issues, particularly in the need to maintain Blumness conditions on the surface;

comparisons between discrete and continuous m-reps were made in Sec. 2.4.4.

My decision was instead to reject a medial-interpolation approach and directly

interpolate boundaries based on the boundary involutes implied by the atoms of the

coarse medial mesh. This approach would lead to the (u, v, t) coordinate system,

establishing correspondence between medial and boundary coordinates parametri-

cally rather than by Blum-based bitangency relationships. Early Rakshasa experi-

ments used a spline-based approach—once again, paralleling work by Fletcher—but

a subdivision-surface approach was chosen as a more general method, better suited

to non-genus-0 and multifigure m-reps.
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6.1.4 Catmull-Clark subdivision boundaries

Rakshasa produced the first application of subdivision surfaces to m-rep boundaries,

using non-interpolating Catmull-Clark subdivision and restricting surfaces to single-

figure quadmesh m-reps. The non-interpolating nature of the subdivision proved

unacceptable, particularly for end-atoms, where shrinkage of the subdivision surface

away from the boundary typically exceeded reasonable boundary tolerances. Like-

wise, the lack of normal interpolation at the involute positions meant that much of

the medial atom information was simply thrown away. This was less a problem in

Rakshasa than in the early implementation of Pablo, in which automatic perturbation

of medial atoms during optimization-driven model-to-image matching required that

changes in the ∇r structure at a medial atom be reflected correctly on the boundary.

As mentioned in Sec. 4.1.5, without interpolating involute-normals, the sampled me-

dial axis reduces to a simpler chordal axis, throwing away the first-order information

stored in each Mp.

6.1.5 Image and displacement textures

Rakshasa implemented texture-mapping according to the interpolated (u, v, t) coor-

dinates and used OpenGL’s texture mapping mechanism for display (see Fig. 6.2(a)).

It also used α-blended transparency to allow the medial mesh and its atoms to be

be visible along with the textured and Phong-illuminated boundary. It implemented

displacement-mapping according to the same interpolated coordinates and the inter-

polated r and used a table-lookup into the displacement image to calculate the vertex

displacements at any given subdivision level (see Fig. 6.2(b)).

As Rakshasa did not do interpolating subdivision, there were some inconsistencies

in vertex displacements in going from coarse to fine subdivision levels. There was

also no attempt to produce different resolution displacement textures for each level

to address the problem of point-sampled displacement fields.

6.1.6 Drawbacks of Rakshasa

Aside from the limitations already mentioned, Rakshasa had a number of other

deficiencies. It had a clumsy interface for atom selection and medial-based object

perturbation—Rakshasa failed to demonstrate intuitive aspects of solid modeling us-

ing medial methods. Drawbacks in Rakshasa’s interface provided insights into better
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(a) (b)

Figure 6.2: Image and displacement mapping in Rakshasa. Image (a) shows an
image-texture on an m-rep subdivision boundary. Image (b) shows a woodgrain and
displacement texture.

interaction mechanisms for Pablo and led to the concept of representational trans-

parency, which provides the underlying theme for the discussion of future medial

modeling systems in Ch. 7.1.1.

Rakshasa provided proof-of-concept for r-proportional displacement texturing of

m-rep boundaries but never went beyond preliminary experiments. There were no

interactive tools for editing boundary displacements, nor was there any attempt to

use an actual displacement shader—e.g., by providing output using the Renderman

RIB API. At present, the displacement mesh techniques fit better into the standard

rendering APIs and provide explicit geometry for computational tasks; however, as

procedural and displacement shading become more integrated with graphics hardware

and software, the use of displacement textures for rendering will be an obvious way

to reduce model-complexity for m-reps.

As mentioned above, Rakshasa did not fit subdivision surfaces to medial topologies

other than the quadmesh—nor does Pablo. There are no major problems to face in

doing so, although trimeshes would be better served by Loop than Catmull-Clark

subdivision. New medial topologies would, however, require new medially based

parameterizations. For many, these could be trivial modifications of the simple (u, v, t)

coordinates of the quadmesh; for other topologies, they would be more problematic.

These issues will be discussed in Sec. 7.2.5.
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(a) (b) (c)

Figure 6.3: [Tom Fletcher] Prototype multifigure m-rep produced by SCAMP. This
model shows a palm-figure with five finger-subfigures. Image (a) shows the coarse
meshs of slice-constrained medial atoms. Image (b) shows a fine meshing of the
medial surface using a spline-based positional fit. Image (c) shows the unblended
figure and subfigure boundaries as generated by early spline-based code.

6.2 Seurat and Pablo: m-reps for modeling and

segmentation in image analysis

“Computers are useless. They only give us answers.” —Pablo Picasso (from

Tom Fletcher).

Pablo was created following prototype work on SCAMP by Fletcher, Thall, Fritsch

and Fridman [58]. SCAMP used slice-constrained meshes of medial atoms for mod-

eling purposes. The slice-constrained atom requirement allowed simplified extrusion-

modeling and boundary interpolation but proved too limiting for general modeling

purposes. SCAMP did produce some of the first multifigure models, however, as in

Fig. 6.3, and created animations of them using medial deformation [148].

The Pablo application was created as a testbed and prototype application for m-

rep-based modeling, segmentation and statistical analysis of 3D medical images from

CT or MRI. It grew out of initial work on DSL3 modeling under Daniel Fritsch. Pablo

is the flagship platform for m-rep-based modeling and segmentation work at MIDAG,

and the Seurat library, my main contribution to it, encapsulates all functionality for

boundary interpolation and rendering, mappings between (u, v, t) or (u, v, t, τ) and

(x, y, z), and figure-subfigure attachment by remeshing. This section will begin with

a brief discussion of Pablo and its capabilities and then discuss the contribution of

3deformable shape loci, an old name for an early version of m-reps
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Figure 6.4: Multifigure brain-ventricle m-rep modeled in Pablo. This model of the
lateral ventricle was created by Gregg Tracton, Stephen Pizer and Guido Gerig.

the Seurat library to these capabilities.

6.2.1 Pablo functionality

Pablo is a research tool and code-base for applying m-reps to medical image seg-

mentation, particularly directed at tasks in 3D computed tomography and MRI data

analysis. Pablo allows the hand-building of multifigure m-rep models, letting the user

create and manipulate m-reps and position them relative to an orthogonal-slice-based

view of a 3D dataset. It also allows an atom-based view of the dataset, rendering the

{�b,�b⊥} of the atoms in-plane with a slice through the data. User interaction for man-

ual shape-construction is via a GUI-based, click-and-drag interface, allowing atoms

to be selected and modified by translation of p, rotation of F (by virtual trackball),

rescaling of r or change in θ. If a group of atoms is selected (using mouse-driven,

rubber-banded box selection), rotations and rescalings are made about a common

averaged center. Pablo’s m-reps are bounded by IIS-surfaces, with user-assignable

tolerances on boundary normal interpolation. Fig. 6.4 shows a multifigure m-rep

built using Pablo; Fig. 6.5 shows a medial mesh with coarse involute mesh, along

with interpolating subdivision boundaries at different subdivision levels.

Along with the hand-building of m-rep models, Pablo implements a technique

for medical image segmentation using these m-reps under a multiscale optimization
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Figure 6.5: Pablo kidney m-rep with subdivision boundaries. At the top is a single-
figure kidney model with medial mesh, atoms and coarse boundary mesh; below it
are interpolating subdivision surfaces of increasing subdivision level along with a
smooth-shaded final model.
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paradigm. Based on an initial manual placement, an m-rep is deformed in multiple

optimization stages:

1. by similarity transform of the entire m-rep;

2. by similarity transform and figural elongation of the main figure;

3. by similarity transform, hinging and elongation of subfigures in main-figure

coordinates;

4. by medial atom perturbation within figures and subfigures;

5. by boundary vertex displacement along medially implied normals.

The details of this are discussed in Pizer et al. [121]. The optimization is based on both

image-intensity match and statistical priors based on geometric typicality measures

using a Bayesian deformable templates methodology. This allows prior knowledge of

geometry and expected shape variability to guide the deformations. Fig. 6.6 shows

two views of a kidney m-rep in a 3D dataset rendered with orthogonal cut planes.

The implementation of m-reps in Pablo was based primarily on the work of

Tom Fletcher and me. Fletcher wrote simplified versions of the medial atoms and

quadmeshes for use in the m-rep manipulation and analysis routines of Pablo; my own

m-reps, derived from the Rakshasa code, were used in the boundary generation and

displacement subdivision code and in the interpolation routines. Pablo demonstrated

a number of new features and mechanisms for medial modeling:

• medial end atoms with an explicit η term for representing elongation in crest

regions;

• the use of medially based coordinates for parametric correspondence between

boundary (u, v, t) and medial (u, v) locations;

• the use of subfigure hinge atoms to link subfigures to boundary (u, v, t) positions

on parent-figures, with the ability to modify subfigures based on the parent-

figure coordinates;

• the use of IIS-surfaces for boundary fitting, with mesh vertex displacements

representing boundary perturbation;

• an implicit-surface technique for smoothly joining the subdivision boundaries

of figure and subfigure;
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Figure 6.6: Two views of a Pablo kidney m-rep in image data with cut-planes.
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• a subdivision surface remeshing technique for smoothly joining subdivision

boundaries of figure and subfigure, allowing a filleted join region with speci-

fiable curvature properties;

• CSG-style addition and subtraction operations using figure-subfigure hierar-

chies;

Pablo can thus be seen as a fairly complete implementation of the m-rep capabilities

discussed in Chs. 3–5. The interface lacked the user-driven medially based defor-

mations found in Rakshasa, but the use of mouse-interaction for m-rep manipula-

tion, as implemented by Fletcher, made simple modeling tasks more straightforward.

Nonetheless, the lack of intuitive solid modeling operations is still evident; Sec. 7.1

will discuss better approaches to deformable solid modeling using m-reps.

6.2.2 Seurat functionality

In order to bring capabilities from Rakshasa into the Pablo project, a library of sup-

porting classes was derived from it, stripping out rendering-specific and experimental

deformation code to leave base classes for medial atoms, m-rep quadmeshes, and

boundary interpolation and parameterization schemes. This class library served as

the foundation for the Seurat library, which became an key component of the Pablo

project.

Seurat was devoted to medial-to-boundary representation issues; this discussion

will touch on the most important of its operations:

• IIS-surface fitting to m-reps;

• mapping between (u, v, t) and (x, y, z) on the boundary and between (x, y, z)

and (u, v, t, τ) in space;

• legality checking to prevent locally self-intersecting boundaries;

• proximity/nearpoint testing for IIS-surfaces;

• figure-subfigure joining by smoothly remeshing IIS-surfaces.

Each of these implemented techniques merits a brief discussion.
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IIS-surface library

The subdivision code inherited from Rakshasa was non-interpolating and lacked gen-

erality; it could only fit subdivision surfaces to genus-0 boundaries with all-quad

tilings. Once this was ported to Seurat, there began a long process of modifica-

tion and rewriting, culminating in a new, more general library of IIS-surface routines

allowing interpolation of m-rep boundary positions by the modified Catmull-Clark

software, with prototype code in place for interpolating boundary normals as well.

To utilize the full power of Catmull-Clark methods at irregular vertices, the tech-

niques described in Sec. 4.1.3 were implemented, allowing IIS-surfaces to be created

for irregular meshes. The current subdivision code has the following characteristics:

1. it is class-structured C++ code, integrated with Seurat and Pablo but easily

made stand-alone;

2. it accepts unordered mesh data input as vertex/polygon lists and allows poly-

gons with three or more vertices;

3. it determines connectivity information and constructs data structures for sub-

division;

4. it performs interpolating or non-interpolating subdivision with or without nor-

mal interpolation to within user-specified positional and rotational tolerances.

Seurat also allows displacements at each vertex, though the mesh code in Seurat does

not currently recalculate boundary normals based on perturbed vertex positions.

Medial coordinates and mappings between medial and Euclidean coordi-

nates

Seurat was a testbed for single-figure (u, v, t) and r interpolations, with the eventual

solution using a bisection algorithm during the Catmull-Clark splitting phase. Vari-

ous spline-based approaches were also attempted, as well as using the Catmull-Clark

splitting itself; these methods all suffered from coordinate-creep near crest regions.

Along with (u, v, t) interpolation, functions were created to compute (u, v, t) �→ R3,

identifying boundary points at a given subdivision level corresponding to a given

(u, v, t) value, as well as a generalized inverse R3 �→ (u, v, t, τ), giving the medially

based coordinates for a point in R3. The latter was well-defined only internal to and
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within a neighborhood of the m-rep boundary; the mapping was elsewhere problem-

atic. A true medial coordinate system requires a non-linear mapping to the surround-

ing space, creating a distance-at-scale function in R3 × σ; this can be conceptualized

as analogous to the geodesic distances in a curved space-time found in general rela-

tivity. The linearized (x, y, z)-to-(u, v, t, τ) functions are adequate for their intended

use as localized, r-proportional distance functions over the subdivision boundary for

image-segmentation tasks and for implicit-surface blending.

As an implementation detail, surface positions over the tiles were computed based

on bisecting each quad at the given subdivision level to form a pair of triangles with

the common diagonal between the (u, v) and (u+h, v +h) vertices in the quad. This

splitting is used for the interpolation of (x, y, z), �n, r, and (u, v, t) across tiles at a

given level. If a quad were too non-planar—generally, only at the coarsest subdivision

level—this splitting could create problems for the nearpoint code. The solution in

that case was generally to subdivide once to better define the surface. An alternate

method to this scheme is discussed below in Sec. 6.2.3.

Legality checks on meshing during modeling operations

Seurat implemented a number of legality checks on m-rep medial meshes that were

applied during automatic model-to-image matching operations in Pablo. Problems

arose when medial atoms were perturbed in ways that introduced self-intersections

or unacceptably high curvatures at the interpolating subdivision boundaries. Seurat

included four tests:

1. concavity—for each of the 4 possible quads containing the atom at (u, v), a

concavity check is done by projecting the three other atoms onto the plane of

the test atom and checking the resulting planar quad for concavity;

2. ∆r–to–∆s—for each of the 8 possible neighbors of a test atom, an error is

returned if ∆r is greater in magnitude than ∆s;

3. non-planarity—an error is returned if the test atom’s {�b,�b⊥} plane is too skewed

with respect to the neighboring atom positions;

4. crossed-involutes—an error is returned if there is overlap of the �v1, �v2 or η�b

involute vectors of an end-atom and its neighbors along the crest.

With regard to the concavity test, the concavity of a projected quad may not give

a good indication of how badly askew the actual quad is. If one assumes nearly
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planar quads, however, this test is generally good. It is acceptable that these tests

be conservative, returning rejection for marginal cases.

Other methods for legality checking used boundary curvature penalties to prevent

the morphogenesis of corners and creases during deformation. These methods used

tests for Blumness, based on the work by Fletcher, Yushkevich and Damon discussed

in Sec. 3.3.1. Legality checks are a requirement for automatic segmentation; for future

applications, in CAGD tools for m-rep design, legality checks may be used to restrict

acceptable deformations or signal the user when a model has been perturbed beyond

tolerances (see Sec. 7.1.1).

Proximity/nearpoint testing in Seurat

Seurat implemented the proximity tests discussed in Sec. 4.2, initially for use in an

implicit function for figure-subfigure blending. The tests have since proven generally

useful for finding figure-subfigure intersections (for remeshed blending) as well as for

the computation of Blum medial correspondence on the subdivision-bounded solids,

as per Sec. 4.3. These tests currently assume an unperturbed boundary; for modeling

purposes, it may be adequate to simply use the correspondence between perturbed

and unperturbed (u, v, t) positions; for physically based modeling, collision-detection

and other applications, the theory and implementation of multiscale proximity tests

remain both enticing and problematic.

Multifigure modeling by remeshing

Current development in Seurat centers on multifigure construction using the remesh-

ing technique created by Qiong Han and me, with rewritten IIS-surface libraries being

fully implemented and tested in the current Pablo code-base.

On the model-building side, remeshed subfigures allow better m-rep creation of

multifigure models, with smoothly filleted joins for additive and subtractive subfig-

ures, and allow creation of m-reps with non-genus-0 topologies. On the segmentation

side, Pablo can now employ the full power of hierarchical and graph-based modeling

for object deformation and registration, performing matching over the entire m-rep

boundary, including remeshed blend regions, and using parent-figure-based coordi-

nates to perturb subfigures in automatic segmentation. Subfigure optimization can

now proceed by running several iterations over the subfigure without the blend re-

gion, followed by further iterations including it. Perturbations of a subfigure based
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on propagation of changes to its hinge-atoms by parent-figure perturbation will best

be handled by the Lie algebra techniques currently under development.

6.2.3 Drawbacks in Pablo and Seurat

There remain a number of limitations in the m-rep implementation in the current

Pablo and Seurat libraries.

1. The interpolation of boundary normals at involute positions remains unsatis-

factory in requiring care on the part of the user to prevent rippling effects. A

relaxing of the tolerance on the acceptable θ-deviation at boundary involutes

will reduce ripples, but a better solution will likely come either from curvature-

constraints methods such as Halstead’s or from other methods for fairing mul-

tiresolution meshes. Rippling presents problems both for segmentation, where

boundary normals are crucial, and for projected CAGD applications.

2. As previously discussed, quad tiles are bisected for bilinear interpolation of �n, r,

and (u, v, t) across tiles and for nearpoint computation. For near-planar quads,

the choice of diagonal for the bisection makes little difference; still, it adds

an unnecessary element of arbitrariness to the process. Direct use of explicitly

triangulated boundaries would eliminate this problem; it could be accomplished

by a shift to Loop subdivision, augmented by the same IIS-surface interpolation

used presently for Catmull-Clark subdivision. Another alternative would be to

fit a higher-order interpolation patch to the boundary quads.

3. Vertex displacements have been implemented in Pablo and are used during

model-to-image fitting; they are not yet integrated into the modeling program,

however. Pablo needs tools to allow a user to manually create boundary per-

turbations for models; currently built models often depend on accidents of the

surface interpolation, ripples and all, to produce boundary characteristics that

should rather be fine-scale boundary detail. Vertex displacement are also not

considered by the current nearpoint/proximity tests.

4. Model-building in Pablo is still awkward—the click-and-drag method for se-

lecting and manipulating multiple atoms is better than in Rakshasa but still

not an intuitive shape design method, and multifigure modeling in Pablo lacks

dedicated design tools for positioning and manipulating additive and subtrac-

tive subfigures. Better interface paradigms are needed, perhaps drawing from
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sketch-based interfaces or force-feedback driven virtual sculpting tools. Pablo

also provides little support for m-rep polymorphism, using only quadmesh slabs

as figural primitives.

5. Pablo’s legality checking is still primitive and might benefit from the use of

Blumness measures, as described above, or from the use of Damon’s medial

shape operators (see Damon [39]) to provide a continuous measure of “near-

foldedness” better suited to optimization routines than binary or heuristic tests.

6. Pablo lacks the ability to produce a multiresolution resampling of the medial

mesh. The ability to adjust the medial sampling frequency and express a fine

mesh as residues of a coarser mesh would provide a coarse-to-fine description

of medial shape. This is is not required for shape-description purposes but

offers improved efficiency both for statistical analysis and for segmentation.

For m-rep meshes, mesh-neighbor relationships can be used to reduce O(n2)

every-atom-to-every-other-atom computations to O(n) computations over local

mesh neighborhoods. Using a coarse-to-fine mesh structure allows these local

neighborhoods to provide their information at multiple levels of detail.

None of these drawbacks have prevented m-reps from being useful multiscale

modeling primitives, and Ch. 7 will discuss methods for eliminating them. A last

drawback, which has a negative impact on m-rep statistics, is the fragility of the

quaternion-based m-rep frame when the object-angle θ approaches π
2

for near-parallel

object boundaries. Because slab-like regions are commonplace, statistics on medial

frames are often disrupted by their discontinuous change in these regions, even while

the important shape characteristics show no such discontinuities. Current research by

Fletcher at MIDAG extends earlier work (see Sec. 6.3.4) to employ statistics directly

on the sail vectors connecting the medial atom center-points p to their boundary

involutes.

6.3 M-rep research applications

M-reps have become a major part of modeling, segmentation and registration systems

for medical image analysis within MIDAG and have been widening their exposure in

the image analysis community at large. At this point, it is appropriate to discuss sev-

eral research directions that have employed m-reps to achieve results lending credence

to claims for m-rep power and utility. This section will first cite the current Pablo
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work within MIDAG and then examine three other research directions involving m-

reps: the 3D shape analysis studies of Styner and Gerig, the FEM-based deformation

techniques of Crouch, and the use of Lie groups to analyze m-rep deformation leading

to the principal geodesic analysis (PGA) of Fletcher. Each of these research directions

illustrates different aspects and strengths of m-rep-based object primitives.

6.3.1 Current Pablo research

Pablo, with the functionality as described above, has been a testbed for 3D model-

based medical-image segmentation and shape-analysis in MIDAG. The segmentation

research uses m-reps to perform automatic segmentation based on an initial manual

placement of a model in a data set; from this initial position, Pablo then performs a

series of optimizations as discussed previously in Sec. 6.2.1. The optimizations take

place from large scale to small:

• at the multi-object, object and figural scales, with similarity transforms and

variations over principal medial warp modes;

• at medial atom scale, using atom-based medial modification;

• at fine boundary scale using boundary perturbation.

All of these use both image-match terms and geometric priors. This multiscale seg-

mentation is made possibly by m-reps’ separation of objects into figural hierarchies,

by their medial nature allowing bending, bulging and elongation to be expressed glob-

ally over the implied medial sheet and locally at individual medial atoms, and by their

local, fine-scale variability afforded by the subdivision boundaries.

M-rep-based segmentation has been validated in studies of kidney CT data by

Rao [126]. Based on a training set of 60 hand-segmented CT images, mean left and

right kidney models were created and principal geodesic modes of variation were com-

puted for them. Intrinsic (u, v, t, τ) coordinates were used to parameterize intensity-

profile templates on the boundary. These templates, based on work of Joshua Stough

at UNC, became an option to a first-derivative-of-Gaussian (DOG) in τ profile with

local templates derived from three different profiles: a DOG from dark-to-light, a

DOG from light-to-dark, or a shifted dark Gaussian. The template value at a given

(u, v, t) was the profile seen as most prevalent at that location across the training

set. Using medial warps and the new boundary templates, Rao was able to quan-

tify improved segmentation over Gaussian-template-based segmentations, and the
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segmentations now required no case-by-case parameter adjustments. In most of the

cases (22 of 24), the resulting segmentations would require no further editing for use

in clinical applications. Currently, research is underway to test both the efficiency

and accuracy of m-rep-based segmentation versus segmentation by more mainstream

active shape models.

Detailed discussions of the state-of-the-art in multiscale deformable model based

segmentation using m-reps can be found in papers by Joshi et al. [87, 86] and by Pizer

et al. [123, 121].4

Much of m-rep shape-analysis work has focused on statistical discrimination stud-

ies of hippocampus and caudate nucleus structural changes in the brains of schizo-

phrenic patients. This includes the work of Styner, Gerig et al. [145], of Gerig, Muller

et al. [68] and of Vetsa et al. [153]. The work of Styner et al. distinguished healthy

from non-healthy brain-structures; the work of Gerig, Muller et al. was able to demon-

strate correlations based on types and duration of treatment in unhealthy patients.

The work of Vetsa, similar to Styner and Gerig, presented statistical analysis of cau-

date nucleus structure in schizophrenia patients, using m-reps to allow global and

local growth versus deformation to be tested separately and without the setting of

case-by-case parameters. These were exploratory statistical analyses, requiring fur-

ther, hypothesis-driven clinical studies to establish full confidence. Nonetheless, the

results are promising.

In both segmentation and shape-analysis, m-reps demonstrate their advantages

in defining shape deformations based on local shape descriptions of bending/twisting

and bulging/compressing—as opposed to non-local techniques such as spherical har-

monics or local (e.g., active-shape) techniques measuring only translational differ-

ences. M-reps also provide their medially based coordinate systems within which to

do geometry-to-intensity matching or, using variation in τ at a given (u0, v0, t0, τ), to

allow profiles to be established to create templates for expected boundary behavior.

With smoothly meshed multifigure m-reps presently being integrated into Pablo, with

displacement meshed subdivision boundaries becoming more sophisticated and with

the new statistical techniques being developed for m-rep analysis, Pablo is at the

point now of realizing the full potential of discrete m-reps as robust shape descriptors

for 3D model-based image analysis.

Lastly, another Pablo-based m-rep research project is the heart-atlas modeling

work of Pilgram and Schubert at Innsbruck [119]. This work uses m-reps for their

4These are available online at http://midag.cs.unc.edu/pubs/papers.
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multifigural nature and their intrinsic parameterization of multiscale shape variabil-

ity. This is work in progress and will in the future incorporate finite-element mesh-

ing of objects and interstitial spaces using techniques for m-reps described below in

Sec. 6.3.3.

6.3.2 Styner: m-reps for statistical shape analysis

Styner was a key player in the MIDAG research on m-rep-based statistical analysis

of brain structures and the associated statistical discrimination studies described

above. In his studies, he compared spherical harmonic (SPHARM ) analyses with

m-rep driven ones (atom-by-atom, with no global analysis) and was able to show

the same level of discrimination with each. The advantage he showed to m-reps was

their additional ability to localize deviations and to isolate bending and elongation

changes.

Styner also developed a method for statistical training of m-rep models from a

population of objects described by SPHARM surface descriptions [146, 144]. Styner

first performed principal components analysis (PCA) on his training set of SPHARM

models. Based on these statistics, the shape space was sampled to produce a repre-

sentative object set, and then Voronoi skeletonization was used to compute medial

branching topologies for each member of the representative set. From these individ-

ual topologies, after pruning, a common branching topology was derived by mapping

them into a common spatial frame. A discrete m-rep model was then created that

produces a best fit to this topology. This model could be automatically fitted to

image-data using a modified version of Pablo.

Styner’s statistical work demonstrated the benefit of m-reps’ separation of growth

and bending characteristics, and his training algorithm illustrated the simplification

affording by moving from a continuous Voronoi skeleton to a discrete m-rep, elim-

inating the instabilities in the medial branching topology by replacing the Voronoi

axis with an optimal m-rep.

6.3.3 Crouch: finite element modeling using m-reps

Crouch [35, 33] used multifigure m-reps to model human tissue deformation. M-rep ca-

pabilities were used in three separate ways. First, FEM requires a 3D mesh structure

for objects; the medial structure of m-reps was used to develop automatic techniques

to produce hexahedral meshes for single and multifigure m-reps. For single-figure
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m-reps, the technique used (u, v, t, τ) coordinates to create a regular grid structure.

For multifigure models, the technique needed not simply a boundary remeshing to

attach a subfigure—as required in Pablo—but a spatial transition gridding between

parent and child figures to give a regular and unbroken hexahedral grid structure

for the entire m-rep. As implemented, these methods only work for protrusions and

not indentation figures. Second, (u, v, t) coordinates were used for geometric corre-

spondence between initial and deformed models, with corrections to give estimates of

physical correspondence; these correspondences were used as boundary conditions for

the FEM deformation. Third, a multiscale approach based on (u, v, t, τ) was taken

to the solution of the FEM equations. A coarse gridding of the objects produced

an initial solution, which was then used as input for an FEM solution on a finer,

m-rep subdivision-based remeshed grid. This was carried to a third subdivision level,

though the improvement from second to third was insignificant.

These methods were applied to the driving problem of modeling prostate deforma-

tion for the implantation of radioactive seeds (brachytherapy) for cancer treatment.

The use of medial skeleta for FEM methods was explored earlier by Storti et al. [142],

as mentioned in Sec. 2.1.2; the use of m-reps combines medial FEM methods with

multiscale shape methodology, bringing the advantages of the latter to tasks such as

automatic registration and segmentation in physically based deformation of tissues

during treatment planning and execution.

6.3.4 Fletcher: Lie algebras and principal geodesic analysis

on m-reps

Fletcher et al. [55, 56] sought a way to do correct statistics on m-reps, a process hin-

dered by the fact that the medial atoms Mp = {p, F, r, θ} do not form a vector space

and thus create problems for methods such as PCA. Instead, the authors realized

that medial atoms Mp = {p, F, r, θ} form Lie groups and could thus be analyzed

using Lie algebra methods to determine Gaussian probability distributions over Lie

groups. This allowed Gaussian distributions to be derived for a whole atom Mp and

for meshes of atoms by closure of Lie groups under direct products.

Based on these computable distributions, Fletcher et al. developed a method of

principal geodesic analysis (PGA). Just as PCA finds eigenvectors in a linear nD

feature space, PGA finds principal geodesic directions in the nD Lie group represent-

ing variations over populations of m-reps. Using PGA, a population of m-reps can
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analyzed and principal modes of variation identified. The beauty of PGA is that it

can be applied to myriad other objects as well as m-reps; fundamentally, it allows

statistical characteristics of orientation to be incorporated into the same analysis as

positions. The fact that medial atoms describe local position, scale and orientation

and that m-rep medial meshes contain first-order shape descriptive information means

that these shape properties can be explicitly captured by PGA methods.

The ability to do general statistics on Lie groups goes beyond simply allowing the

finding of means and principal geodesics; the Lie group nature of m-reps provides

the means for applying more general statistical techniques as well, such as allowing

statistical discrimination studies to fit sampled data distributions.

Lie group methods have been applied to m-reps generated by automatic segmenta-

tions in Pablo, using PGA to analyze modes of variation in kidney and hippocampus

populations. In turn, these PG components are used to provide modes of deforma-

tion with optimized coefficients; they can also be used to provide a log prior for the

segmentation objective function. The ability to create meaningful probability distri-

butions over populations of m-reps is essential for shape analysis tasks and desirable

for computer graphics applications, as well, where they allow automatic generation

of object instances with defined statistical variability. This is a subject of current

exploration in the heart-atlas work of the Pilgram and Schubert [119].

6.3.5 Application of Fletcher’s methods for m-rep animation

As a proof-of-concept for the usefulness of Lie algebra methods on m-reps for com-

puter graphics and animation, Qiong Han animated the spider m-rep we created and

described in Sec. 5.2.4. The m-rep was manually altered in Pablo to create three dif-

ferent poses (see Fig. 6.7), and then interpolation on the Lie group manifold was used

to automatically morph the m-rep between these three poses—in animator’s termi-

nology, to automatically in-between the keyframes of the animation. Each morphed

m-rep was modified by a random noise function (Perlin noise) added to the position

and orientation of the end-atoms at the tip of the spider’s legs. The sequence of m-

reps was then rendering with a shifting and rotating viewpoint to make the moving

spider appear to be walking. The resulting animation was surprisingly life-like con-

sidering the lack of physically-correct dynamics or kinematics. Han speculates that

applying the noise function to the atom positions, orientations and radii in the rest
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of the model might further enhance the visual realism.5 The current work demon-

strates that automatic medial deformation of m-reps allows figurally-based, skeletal

deformations to simulate physically realistic changes and movement in a solid model.

6.4 Concluding remarks on modeling systems

This chapter has discussed past and current implementations of m-reps that demon-

strate the prototype modeling and deformation tools and illustrate the utility of

m-reps as multiscale shape descriptors. It discussed several applications of m-reps

that also illustrate their usefulness and the power gained by providing a medial shape

descriptor separating coarse-scale object shape variability from fine-scale boundary

structure.

The next chapter will discuss the tools and modeling paradigms appropriate for m-

rep modeling for CAGD and shape analysis applications. It will explore improvements

improvements in m-rep technology and directions for future research and applications.

5Information on the use and usefulness of Perlin noise to enhance realism in simulations can be
found at http://mrl.nyu.edu/∼perlin.
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Figure 6.7: The three keyframe m-reps from the spider animation. The top pair show
Pose A, the middle pair, Pose B, and the bottom pair, Pose C. The interpolating
animation sequence went A → B → A → C → A → B · · · .
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Chapter 7

Discussion and Future Work

Preceding chapters described the genesis of discrete m-reps—the motivation behind

their creation and the data-structures and algorithms developed for their use in pro-

totype applications. They discussed past and current implementations of m-reps that

demonstrate m-rep modeling and deformation and illustrate the utility of m-reps as

multiscale, multifigure shape descriptors.

The premise of this research was that medial representations could be developed

into robust shape descriptors having the following characteristics:

• precision based on necessary tolerance, with a notion of intrinsic scale and

modeling aperture;

• medial attributes to give better reflection of global geometry than boundary

primitives;

• boundary attributes to give better reflection of fine-scale, local geometry than

medial primitives;

• object-based deformability;

• hierarchical organization based on object-shape;

• a framework for incorporating statistical shape variations into a model.

These goals have been achieved. Discrete m-rep models provide both local and object-

level deformability in multifigure representations and explicitly include object-scale,

tolerance and hierarchical level-of-detail. M-reps combine the solid modeling capa-

bilities of constructive solid geometry with the flexibility of traditional b-reps, to

which they add multiscale medial and boundary deformations parameterized by an



object-based coordinate system. They provide a tolerance-based skeletal technique

that avoids the instabilities of Blum/Voronoi-based skeletal methods; they have been

used in applications exploiting these properties for shape design, image segmentation

and statistical analysis, and physically based deformation.

This chapter will discuss the tools and modeling paradigms appropriate for multi-

scale, multifigure modeling using m-reps. It will then discuss potential and necessary

improvements in m-rep technology and will explore promising directions for future

research and applications in medical imaging and in computer graphics and computer-

aided design. It will conclude with some personal thoughts on the achievements of

this work.

7.1 Tools and paradigms for multiscale, multifig-

ure modeling

In the course of this work, many insights were gained into the problems of modeling

with tolerance-based medial primitives, insights that have pointed to new possibilities

for modeling methodologies for CAGD and image-analysis. Multiscale representations

have unique characteristics and require new modes of user-interaction in order to be

used effectively. Insights on m-rep modeling systems can be derived from from other

3D skeletal-based modeling systems (e.g., Igarashi’s sketch-based Teddy interface [84]

and Storti’s research [142], as were discussed in Ch. 2), from implicit surface and

convolution surface modeling, and from multiresolution mesh research.

Applications for shape-design or shape-analysis using discrete m-reps share many

of the needs of traditional modeling and analysis tools, benefiting from many of the

same modes of interaction for modeling and deformation, but modeling using discrete

m-reps has the potential for novel interaction techniques, as well. This discussion will

address four aspects of modeling with m-reps:

1. medially based object deformation and tolerance-based boundary deformation,

with legality checks on acceptable perturbations;

2. construction of multifigure DAGs and tree hierarchies for pseudo-CSG, including

considerations of representational polymorphism;

3. blobby modeling and virtual clay construction paradigms;
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4. precision modeling paradigms for CAD and other applications, including the

fitting of m-reps to b-reps or other shape templates;

This section will discuss algorithmic and user-interface issues involved in implement-

ing these methods in dedicated m-rep modeling systems. A guiding principle for this

discussion will be representational transparency—that a user of a modeling system

should gain the benefits of a particular representation without that representation be-

ing intrusive. As Ch. 6 made clear, both Rakshasa and Pablo lack this transparency

in their modeling interfaces—medial deformations require explicit manipulation of

medial atoms, requiring extensive experience by users to create desired shapes. Rak-

shasa did include rudimentary operations for propagated changes, allowing changes

at an atom to automatically modify the rest of the mesh to produce object-based

deformations; such techniques will be generalized below.

7.1.1 Medially based object deformation and tolerance-based

boundary deformation

Shape design systems using m-reps have many of the same needs as b-rep-based sys-

tems, and there can be considerable overlap in basic user-interface methodology. It

is a frequently heard complaint, however, that the most common 3D computer mod-

eling systems are unintuitive and difficult to master, and this discussion will explore

how advantages of multiscale medial primitives can be reflected in improvements to

current art in modeling and CAGD. It is my opinion that the problems inherent in

most current modeling systems result from two factors: the lack of tolerance in mod-

eling primitives, necessitating overprecision at the wrong stages of modeling; and the

lack of representational transparency—when the modeling primitives themselves get

in the user’s way, due to the necessity of paying too much attention to the accidents

of the representation rather than the essential shape properties of the object being

modeled.

M-reps as implemented in Pablo and Rakshasa have addressed the first issue but

not the second—modeling by manipulation of medial atoms in a mesh is no more

intuitive than modeling by dragging around spline control-points. Just as manip-

ulating control points for splines is an awkward way to do surface modeling, so is

medial atom manipulation an awkward way to do solid modeling. I propose that the

sampled medial representation should not be visible to the user; rather, there should

be intuitive, solid sculpting tools in place of the atom-by-atom hackwork of Pablo.
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What is needed are controls using the medial meshes as underlying structures but

not as directly manipulated primitives at the interface level.

One experimental modeling system that addresses representational transparency

is Teddy; its use of a sketch-based paradigm for creating figures with extrusions,

indentations, and cutting operations allows users to construct shapes with little or

no knowledge of the underlying data structures. Its use of a screen-space sketch-

pad paradigm and of object-based construction—for example, protrusions are created

normal to object boundaries—illustrate some useful interaction mechanisms, and the

underlying representation is nigh invisible. Teddy also allows object warping based

on correspondence between hand-drawn contours. A drawback of Teddy is the lack

of mechanisms for precise modeling—a hastily scribbled ovoid may be a blob, but

perhaps the user wanted a sphere or other precise shape.

M-reps are well-suited to addressing this last problem, with their separation of

global shape properties such as bending and elongation from fine-scale structure at

boundaries. It would be almost trivial to rewrite Teddy using m-reps, resulting in

a program with similar representational transparency but also having the abilities

afforded by the explicit medial structure, the figural-coordinate-based subfigure at-

tachment, and the fine-scale boundary perturbations allowing precise fitting of m-reps

to desired boundary positions (see Sec. 7.1.4 below). While a sketchpad paradigm is

not ideal for all applications, it illustrates nicely how the data representations can be

kept out of the user’s way.

Medially based object deformation

Skeletal methods have been used for shape deformation in computer graphics and an-

imation since the mid-1970s, and boundary deformation and object morphing guided

by skeletal deformation is well-established in current art. M-reps are heir to these

skeletal manipulation techniques and benefit from the intrinsic skeletal structure,

which makes unnecessary any processing of a b-rep to establish correspondence with

a skeleton created after the fact.

In addition to common techniques for skeletal deformation, Sec. 6.1 noted that

m-reps allow medial deformation to be made relative to the medial structure itself;

not only are medial-to-boundary correspondences intrinsic, but object deformations

may be relative to the medial surface itself, using the medial-atom-based coordinate

systems as transported across the surface. This allows deformation to be object-

based, rather than based on an external coordinate system or imposed axes. One
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way to accomplish this is to compute a parallel transport function between atoms

at all positions of an initial mesh before deformation, and then to use this function

to compute propagations of deformations. This was approximated in Rakshasa for

slice-constrained quadmeshes but not implemented for general mesh structures.

The usefulness of applying deformations at varying scales creates some special

requirements, similar to those needed for multiresolution mesh editing. The need

to produce bends and bulges at varying scales and the desire for representational

transparency in operations leads to interaction paradigms such as those for virtual

sculpting or those developed by John Rhoades in his work on bending operators

for curved-surface deformation [127]. The use of 3D Gaussian bending operators as

shaping tools is one approach.

The creation of medial operators for object-based deformations requires other

mechanisms as well. In keeping with the desire for representational transparency,

such operations should not be based on the user directly manipulating the medial

structure, but rather through the use of bending, stretching, twisting, and bulging

or narrowing operators, which are directly interpretable into medial atom and mesh

modifications. Operators might be specified by indicating surface regions, giving a

corresponding medial operating region based on (u, v, t) � (u, v), or by mechanisms

to specify solid regions of the object, e.g., ”I want to grasp the object here and here

and pull it or twist it or make it bulge or narrow.”

Tolerance-based boundary deformation

Sec. 5.1.3 discussed some basic issues of using approximated width values in boundary

displacements, based on interpolated r on the subdivision boundary. This is typical of

the way an m-rep modeling system uses the medial tolerance information provided by

the medial atom mesh to specify shape characteristics. Interactive modeling should

allow the boundary to be modified by a variety of tools; again, virtual sculpture and

virtual painting paradigms are a good approach.

For boundary displacements based on displacement mapping, interactive editing

will need to interactively modify displacement maps, mapping from surface coordi-

nates to displacement texture space in the same way that current 3D paint pack-

ages allow polygonal, spline, or subdivision models to be painted by a virtual brush.

These displacement brushes will provide protrusion or indentation operators of vary-

ing shapes and may be applied by projection of 2D Gaussian scalar fields to the

surface in medially based coordinates.
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For boundary displacements based on displacement meshing, techniques for mul-

tiresolution mesh editing are appropriate, allowing shaping tools to be applied at any

subdivision depth and changes to be propagated to other mesh levels. The interpolat-

ing nature of the m-rep IIS-surfaces makes this somewhat simpler, in fact. In keeping

with the goal of representational transparency, changes in subdivision depth should

be invisible to the user; broad changes over large areas will be applied coarsely and

interpolated to the finer levels, while detailing will be applied locally to the fine-scale

meshes.

Tools may be applied to the surface as 3D Gaussian scalar fields of varying shape

and orientation, or by 2D ones as per the displacement mapping case, with larger

ones being applied to the coarse mesh and smaller more locally to the finer. (Such

tools may be used for medial bending operators as well.) The switching between fine

and coarse level meshes can be used as an adaptive refinement mechanism, using the

coarser levels for medial modifications and broad boundary perturbations and then

subdividing more finely for finer detail.

In keeping with the idea of m-reps as solid modeling primitives (rather than as

glorified b-reps with built-in skeleta), boundary displacements may be propagated

along τ < 0 on the interior of the m-rep, thus warping the interior of the model.

This has ramifications when subfigures or other objects are anchored in the interior

by (u, v, t, τ) positions. This will be discussed below in Sec. 7.1.3 and Sec. 7.2.3.

Legality checks on m-reps during interactive modeling

The previous chapter discussed legality checking in Pablo, which was used to pre-

vent boundary self-intersections during automatic model-fitting during segmentation.

Similar legality checks can be employed in a interactive m-rep design tool, restricting

the allowed deformations or signaling the user when a model has been unacceptably

perturbed. Although the user should rarely need to manipulate medial atoms directly,

the interface should detect, for instance, when medial bends become too sharp and

the boundary would pleat or self-intersect. Another area where legality checking is

necessary to keep the displacements at the boundary within width-proportional toler-

ances and to detect whether medial operations have made previously legal boundary

perturbations no longer acceptable.

A modeling system with representational transparency will not simply detect these

occurrence but deal with them. Thus, an m-rep model should either resist such a

change or alter itself to avoid the boundary pleating. If a bulge exceeds curvature
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tolerances, for instance, an editing system might inform the user that a subfigure

should be attached. In an intuitive sense, this is akin to sculptor needing to add a

blob of clay to a figure, rather than trying to pinch out an extrusion from the main

figure. A more advanced system would automatically substitute a subfigure in the

region of the previous boundary deformation—this would be more in keeping with

the desired representational transparency.

7.1.2 Multifigure DAGs and tree hierarchies for pseudo-CSG

Pablo has had the ability to construct multifigure models since the early days of its

inception, but the use of these was limited by the difficulty of creating smoothly

surfaced boundaries for them. With the development of the boundary remeshing

scheme for attaching protrusion and indentation figures, m-reps have only now become

capable of general modeling tasks involving multifigure DAGs and tree hierarchies.

A modeling system for creating multifigure DAGS and tree hierarchies will prob-

ably use a deformable CSG paradigm, adding or subtracting subfigures from a main

figure and having tools to manipulate the subfigures and fit them into place. In-

terfaces might be as informal as a sketch-based modeling system or as precise as a

typical CAD system.

Another design paradigm takes a shape morphogenesis approach, creating bound-

ary bulges or dimples that grow and become separate subfigure protrusions or inden-

tations. A multifigure modeling system must also take into account considerations of

representational polymorphism. A good modeling system should also provide linear

and loop figures, based on sampled 1D medial loci. Such 1D medial axes are non-

generic as 3D Blum primitives, since boundary perturbations cause the formation

of sheetlike axis regions, but they are fully generic in tolerance-based m-reps, where

fine-scale perturbations are captured by the boundary displacements.

7.1.3 Blobby modeling and virtual clay modeling paradigms

With the ability to remesh subdivision surfaces to produce both indentation and pro-

trusion figures, and with the existence of finite-element methods for physically based

deformable modeling, m-reps are well-suited to virtual sculpting applications. Such

applications are another way to provide representational transparency, by treating

modeling primitives as surfaces or solids to be modified using haptic (force-feedback

based) or haptic-mimicking paradigms, treating the solids as virtual clay. Such sys-
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tems generally use subdivision surfaces as multiresolution boundaries; another ap-

proach, that of McDonnell [103], uses subdivision solids, a 3D subdivision meshing

with physically based properties. M-reps would fit well into either type of system,

and add medial deformability to the object-modeling process.

Given straightforward improvements to the remeshed joining of figures described

in Sec. 5.2.3, m-reps may be combined in CSG fashion with user-tunable filleting

of join regions. This will let them be used as blobby modeling primitives, similar

to convolution surfaces, allowing medially defined surfaces to be joined simply by

sticking them together.

One volume-based aspect of m-reps relates to their parameterization of the figural

volume. As mentioned in Sec. 7.1.1, not only is the m-rep interior (and near-surface

exterior) parameterized by (u, v, t, τ), but the displacements on the boundary can be

extended parametrically to the volume of the object based on this figural correspon-

dence. Thus, an m-rep may provide a solid modeling of an object with imbedded

indentation subfigures or organelles.1 This will be discussed further in Sec. 7.2.3.

7.1.4 Precision modeling paradigms

Although m-reps as used in medical image modeling look like blobby primitives,

this appearance is deceptive; the medial meshes define the boundary to within a

tolerance, but the boundary itself can be precisely positioned by the displacements

on the subdivision surface. For m-reps to be useful in CAD systems, they will require

a broad array of shaping tools for placing boundaries, edges, corners, and other high-

frequency detail in the displacement-meshed boundary. In keeping with the desire

for representational transparency, such operations should not require knowledge of

the particular subdivision mesh structure (whether IIS-surfaces or perhaps adaptive,

multiresolution meshes, see Sec. 7.2.1) but should provide mechanisms for indicating,

with necessary precision and tolerance, the shape desired for the object.

M-reps already can automatically fit to 3D image data; needed as well are figure-

based methods to fit m-reps to b-rep models, with automatic perturbation of bound-

aries and indications where boundary tolerance is exceeded and a subfigure is nec-

essary. b-rep to m-rep approaches can be generalized to geometric-shape-templates

defined either as b-reps or by explicit or implicit functions; m-reps can be fit to implicit

functions by the same methods used for image-gradient-based segmentation; they can

1like bugs in Jello, extending the work of Heckbert [79] on dessert tracing.
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be fit to explicit function boundaries using raycasting along normals or perhaps using

approaches drawn from active-surface modeling or from Pablo-style segmentation,

generating subfigures as necessary to prevent beyond-tolerance deformations.

In this use of m-reps for shape capture, they serve as figural templates; just as

m-reps are well-suited to atlas-driven segmentation, they will be well-adapted to a

shape-catalog approach to modeling, allowing both the fitting of m-rep models to

specific b-reps (or other intolerant representations) and the figure-based perturbation

of such models.

For precision modeling, m-rep boundaries must be able to provide sharp, precise

edges, creases and corners. Edges—the C0 meeting of two locally planar surfaces—

are in a sense “natural” to m-rep crest regions, corresponding to the outer edges

of the medial mesh, and various methods can be devised to create edges of varying

sharpness in these regions. Corners—the C0 meeting of three locally planar surfaces—

are perhaps less “natural,” but might still be dealt with on the basis of placing edges

and corners along (u, v, t)-parameterized curves of constant u = umin or umax, v = vmin

or vmax and t = 1, 0 or −1 in crest regions.

The more general cases of placing edges, corners and creases on surfaces must rely

on properties of the displacement subdivision boundaries. Sec. 4.1.7 discussed the

difficulty of applying some of the standard corner- and crease-producing algorithms

used for Catmull-Clark surfaces to the interpolating IIS-surfaces implemented for

m-reps. The use of boundary displacements, as described in Sec. 5.1.2, provides a

partial solution to this problem but, in using either displacement maps or meshes,

is restricted to the precision of the map-resolution in (u, v, t) or the fineness of the

finest-scale displacement mesh to specify the precision of the edge or corner. A

mechanism is necessary for analytically specifying an edge or corner in object-based

(u, v, t) coordinates and requiring the displacement surface to conform to it at any

subdivision level. Similarly, smoothness and flatness are also fine-scale properties of

a surface and should be specifiable in the same way as other fine-scale surface details.

7.1.5 Last remarks on m-rep modeling methodology

As is clear from this discussion, m-reps bring to bear powerful new paradigms for

shape design. This discussion has been speculative in nature, and the actual develop-

ment of m-rep interfaces will be best served by close collaboration between end-users,

familiar with the needs in their particular fields and their existing design tools, and

m-rep technologists, armed with multiscale, multifigure primitives and wielding the
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concepts of representational tolerance, polymorphism, and transparency.

7.2 Improvements to current m-rep technology

M-reps are a work in progress. As applications for them expand, as considerations

for modeling interfaces such as those described above are taken into account, and as

the needs for further development in Pablo are made clear, m-reps will change and

advance. This section discusses some of the areas where attention should be directed

to improve and augment current m-rep technology with abilities needed for future

applications.

7.2.1 Better m-rep boundary surfaces

The current IIS-surfaces give a quick and simple fit to the m-rep boundaries, but, as

was discussed in Sec. 6.2.3, they suffer from rippling effects due to the cubic-spline-like

effects of the underlying Catmull-Clark algorithm applied to the coarse involute mesh;

this is especially evident when normal interpolation is active with a small tolerance

on θ-deviation. Such rippling can be eliminated on an ad hoc basis by adjusting η at

crests and boundary perturbations across the surface; still, it introduces undesirable

fine-scale boundary information, particularly as magnified in perturbed boundary

normals.

A better solution is to use a more advanced multiresolution surface fitting pro-

viding control of boundary curvature. Methods described earlier by Halstead [77]

or Litke [97] seem well-suited to m-rep boundaries; in general, multiresolution mesh

techniques seem a good fit with m-rep technology and should be explored in future

research. Of particular interest are systems allowing adaptive subdivision for regions

of higher boundary curvature.

7.2.2 Improvements in boundary-parameter interpolation

As a separate but related area to the above is the general problem of creating and

interpolating a medial-based parameterization on the boundary, as well as interpo-

lating the r̂ field approximating the associated medial r for the boundary positions.

Such interpolations are required across tiles at coarse subdivision levels as well as in

the subdivision process itself to establish values for the finer-level meshes.
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The current interpolation methods use bilinear averaging between mesh levels

and quad-splitting and bilinear interpolation for a quad at a given level. The quad-

splitting lends an arbitrariness to the interpolation across non-planar tiles; a better

approach might be to fit spline patches to non-extraordinary subdivision regions to

give a 1–1 correspondence of patch and (u, v, t) parameters and perhaps to use Stam

interpolation near extraordinary vertices. In regard to r̂, a better approach would use

a constrained spline fit, interpolating r̂ for known involute r values and producing

a C2 continuous r̂ field elsewhere. While the IIS-surface algorithm could do this

interpolation, it would not prevent ripples in the r̂ field. Better theoretical insights

for this may be found in the work of Damon, but one should be leery of taking too

Blum an approach and not making use of the tolerance allowed in approximating r̂.

Interpolation issues become especially problematic in figure-subfigure join-regions,

with a separate surface parameterization from either parent or child (u, v, t) and with r̂

and boundary normal �n varying very rapidly in shifting between figure and subfigure

width. Although �n can be computed by limit masks for the remeshed subdivision

boundary, an r̂ interpolated by bilinear interpolation over the new grid vertices (as

is standard with Pablo) loses the information from a more continuous, Blum-like

description of r and ∇r in a join region.

7.2.3 More systematic boundary and internal displacements

Boundary displacements can also benefit from multiresolution mesh based approaches.

The displaced meshes currently in place were created as a straightforward prototype

implementation. They work well within the IIS-surface framework but seem a bit

näıve when compared to state-of-the-art work. A perusal of the latest SIGGRAPH

Proceedings reveals a wealth of research in displacement texturing methods from

which multiresolution schemes might be drawn for use on m-rep subdivision bound-

aries. In any case, boundary displacements need to be more fully integrated into

the current system, with computation of correct boundary normals for the displaced

meshes. An approach such as that of Desbrun et al. [44] could provide normals and

higher order approximations to differential geometric properties for the perturbed

meshes.

As previously stated, displacement meshes can eliminate the surface-rippling asso-

ciated with interpolating subdivision surfaces; manual smoothing tools could allow se-

lection of surface regions to be smoothed as necessary, or automatic curvature/energy

minimization techniques could be used selectively or over the whole surface.
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Because medial mesh resampling has not yet been discussed, one problem not yet

addressed is that of altering displacement fields or meshes for a new boundary gen-

erated by an m-rep with a new, interpolated row or column of atoms. The problem

of distance-field resampling during interactive object modification requires careful at-

tention. One approach to remapping boundary coordinates is to use diffeomorphisms

on the medial implied boundaries to establish correspondences between old and new

(u, v, t) coordinate locations. This was used by Crouch in her FEM research [33]. In

any case, m-reps require better interfaces for creating and modifying displacements,

based on the ideas discussed in Sec. 7.1.

As noted in the previous section, it is an error to think of m-rep boundary pertur-

bations as simply changes in the location of the boundary itself; the term boundary

displacement gives a false impression and is perhaps a misnomer. Because of the

parametric correspondence between internal and boundary locations, perturbations

of a boundary position at (u, v, t) by some φ�n must be thought of as propagating to

other parametric positions (u, v, t, τ) by φ(τ)�n, where φ(τ) smoothly decreases with

distance from the boundary at τ = 0. Thus, what is produced is a warping of the

interior space of the m-rep figure. This becomes important when the solid body prop-

erties of the m-rep come into play, such as in positioning objects within a figure, as

will be discussed below in Sec. 7.3.

7.2.4 Improved interfaces for multifigure design and medial

modifications

Pablo provides the only current shape-design interface for m-rep modeling and has

drawbacks as previously discussed. New shape modeling tools are necessary, incorpo-

rating many of the techniques discussed in Sec. 7.1. In particular, better tools need

to be implemented for multifigure model-creation and for shape modifications in a

representationally transparent fashion.

Multifigure models have certainly been created, even in the early work of Chen,

which showed a kidney with an indentation figure, and by Fletcher in SCAMP with the

deformable hand models. Multifigure Pablo models include a two-figure liver model,

a three-figure prostate with seminal vesicles, the lateral brain ventricle of Fig. 6.4

and models of heart chambers and blood vessels currently being build by Pilgram et

al. (see Sec. 6.3.1). With the new implementation of remeshed figure-subfigure joins,

new design tools should be created allowing model creation to include the varying
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filleting of such join region and, as mentioned above, parameterization issues in the

join regions need to be addressed.

One area of current research is on protrusion subfigures and internal, unattached

subfigures within a parent figure. In keeping with the use of figure-based coordi-

nates, the locations and behavior of these internal subfigures are tied to the medially

defined coordinates of the parent so that object-based deformations and boundary-

perturbations on the parent are reflected in the subfigures’ shape and location. Thus,

an indentation figure is anchored not simply at boundary hinge atoms but at all in-

ternal atoms, each of which will be positioned at (u, v, t, τ) locations in parent-figure

coordinates. Based on these coordinates, bending and elongating medial deformation

of the parent can be propagated to the child figures; changes in parent figure r values

can also be propagated to the child figure’s medial atoms, along with displacements

of the boundary. Tools to support these multifigure operations in a representationally

transparent fashion would be an important addition to Pablo functionality.

7.2.5 Trimeshed boundaries and new parameterizations

M-rep boundaries are implemented as quadmeshes, based on the initial mesh of in-

volute positions and subdivided at each level by the modified Catmull-Clark algo-

rithm. There are advantages that might be gained from using a trimesh rather

than a quadmesh structure. Seurat routines currently splits quads into tris for

many purposes—e.g., Phong-normal interpolation, (u, v, t) interpolation and near-

point computation—and the code might be simplified by going to a trimesh with inter-

polating Loop scheme, using a similar IIS-surface algorithm as that implemented for

Catmull-Clark surfaces. While the Catmull-Clark surfaces handle generating meshes

containing triangles, the obvious quad-splitting to produce a consistent trimesh struc-

ture for an entire m-rep will leave most vertices of valence-6 and therefore with bad

curvature.

Trimeshes will have obvious advantages, e.g., allowing adaptive subdivision depths

dependent on curvature in a much more easily implemented fashion. There may

be difficulties with a less obvious (u, v, t) correspondence, but one can do a similar

interpolating subdivision of the tri-boundary’s parameter space as is done for current

quadmeshes, holding initial (u, v, t) coordinates constant at corresponding vertices

between levels.
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7.2.6 Trimeshed medial axes and interactive resampling

Along with a trimeshed structure for the boundary subdivision, there are perhaps even

greater advantages to a a trimesh structure for the mesh of medial atoms. A medial

trimesh would allow interactively resampling of the medial mesh during deformation,

in order to maintain an adequate medial sampling. Quadmesh-based m-reps could

only do this by adding an entire row or column of medial atoms to the mesh; a

triangulated medial mesh would allow individual medial atoms to be added to the

mesh in a small region subject to elongations or other distortions of the implicit

medial structure. Techniques could also be devised as well for reducing the sampling

frequency of the mesh.

There are a number of ways the medial mesh might be resampled. New medial

atoms might be interpolated by the boundary-based methods discussed in Sec. 4.3,

based on boundary (u, v, t) positions corresponding to the approximate medial (u, v).

Alternately, advances in the interpolation of medial atoms, described below, might

be used to interpolate new medial atoms directly. Medial-atom averaging schemes

might be used to reduce the sampling density in a trimesh.

Another approach to this might be to produce discrete m-rep figures by resampling

using Paul Yushkevich’s continuous m-reps. One might fit a cm-rep to a given m-

rep figure—since cm-reps work quite well for single-figures if they are Blum, and

then resample the entire surface at a different density, perhaps using point-repulsion

on the medial surface followed by Delaunay triangulation. Such a point-repulsion

algorithm might be modulated by the r-field on the cm-rep to vary the sampling

density inversely with object-width.

The creation of new medial atoms or the removal of old ones will alter the

(u, v) � (u, v, t) correspondence between medial and boundary parameter spaces.

This is also the case when adding new rows or columns to a quadmesh. This is

undesirable with regard to any statistics which have been gathered based on these

coordinates. As well, interpolating displacement maps or vertex-displacements based

on a resampled boundary is also problematic. One approach to this problem would in-

volve a normalized (u, v, t) with coordinates in the range 0 ≤ u, v ≤ 1, though this will

eliminate the feature of (u, v) being themselves an approximate width-proportional

distance function on the surface, based on the sampling density. A different approach

would be to parameterize by a medial-axis-of-medial-surface method, parameterizing

the medial surface along its medial axis and transversely in the involute directions. In

this way, the coordinates would be tied to the geometry of the medial surface, rather

173



than to any particular sampling of it. These approaches are all speculative but point

to fruitful areas for research.

7.2.7 Fitting m-reps to b-reps or objects in volumetric data

The fitting of m-reps to b-rep models is still in its infancy, with only a few experiments

having been done using polyhedral templates to produce boundary displacements.

Certainly if m-reps are to be used as modeling primitives for computer graphics, there

must be reliable means to transfer models from standard b-rep format to m-reps.

One need for this, discussed above in Sec. 7.1.4, is to give m-reps the ability

to model precise objects. A polyhedral-template approach will allow an m-rep to

be given precise boundary perturbations. Atlas-based matching approaches are also

conceivable; e.g., a 4-legged-mammal m-rep could be created and then fit to various b-

rep models in a semi-automatic fashion. Automatic model-fitting could use a similar

paradigm to that created for 3D image segmentation: a similarity transform for a

rough fit, then medial atom transformations, then perturbations of the boundary in

normal directions to intersect the boundary. This would use the same coarse-to-fine

figural approach developed for segmentation, fitting main figures, then indentation

and protrusion figures, as well as unattached satellite subfigures either internal or

external to the figure. Such a method will show the strength of a figural, atlas-driven

approach for extracting semantic, structural information from bare b-rep models.

This could work with current technology, performing a 3D scan-conversion of

the b-rep into a volume and then using Pablo to do the segmentation based on an

m-rep model. Or, one could analyze a whole collection of objects, as per Styner,

derive an m-rep that captures the medial structure and variability of the different

objects, then use this m-rep for “figural segmentation” of similar b-reps. (Speed issues

might present problems here; Styner’s m-rep training methods were slow.) Automatic

creation of an m-rep for an unknown b-rep could involve an initial skeletonization and

pruning followed by finding of an m-rep giving a best fit. Once the m-rep structure—

topology, number and location of subfigures— has been decided on, automatic fitting

techniques can be applied to give a precise match. The skeletonization method used by

Styner (that of Attali and Montanvert [3]) would probably be replaced by the better

Hamilton-Jacobi skeletonization technique of Siddiqi et al. [136]. This technique is

superior to Voronoi-based methods in many ways, including allowing a smoothing

parameter to eliminate fine-scale noise and producing a Blum axis with full medial

information (p, r, F, θ) (see Dimitrov et al. [45]).
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7.2.8 Improvements in medial techniques

Mathematical analysis has enhanced our understanding of Blum and related medial

axes. With this new understanding comes new abilities.

Crouch produced good medial interpolation surfaces for single-figure m-reps, and

there has been recent work by Michael Kerckhove at the University of Richmond on

a better medial interpolation. Rakshasa and Pablo abandoned medial interpolation

from a coarse mesh and moved instead to a boundary interpolation based on the

coarse medial sampling. Kerckhove has gone back to the idea of interpolating the

medial sheet directly and has developed an interpolation over a 10-manifold with 2

constraints that gives reasonable medial atoms to interpolate (p, r, F, θ). Given this

ability, one could then do on the fly resampling and medial atom interpolation to

produce new medial meshes which retain a desired sampling density. Also needed

would be the inverse operation, replacing medial atoms in a contracted region by

fewer “averaged” medial atoms.

Cm-reps are another method that provides a continuous model for the medial sur-

face, as noted above in Sec. 7.2.6, and cm-reps might be applied to many applications

in conjunction with or as alternatives to discrete m-reps. In any case, they provide

an experimental tool for studying computational aspects of Blum medial objects with

C2 medial axes; because of this, cm-reps are worthy of further research in the medial

shape analysis and modeling community.

7.2.9 Improvements in corner and edge specification

Sec. 7.1.4 discussed the need for precise corner, crease and edge creation for CAGD

application of m-reps. While Sec. 7.2.1 and Sec. 7.2.3 discussed needed improvements

to boundaries and boundary displacements, they did not discuss the corner issue

explicitly. Although the technical aspects of adding sharp corners and edges to m-rep

models is well-addressed by the multiresolution surface approaches, the theoretical

basis for incorporating edges and corners into an m-rep framework requires further

attention. As an example, the corners of a brick, though describable by boundary

displacements from an ellipsoidal blob, nonetheless contain coarse scale location and

orientation information relative to the medial structure of the blob. There is currently

no systematic approach to treating corners and edges as coarse-scale features of an

m-rep; they are at present simply artifacts of the boundary perturbations. What

are needed are explicit specifications of these special points and loci as coarse-scale
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structures with medially parameterized locations.

Theoretically, insights might be drawn if we see this as a shift from a scale-space

based on a Gaussian blurring function to one based on a variable conductance diffusion

approach, as was discussed in Ch. 2 in Sec. 2.3. In this way, an anisotropically blurred

brick, as per Peron and Malik, retains an inherent “brickness” even at coarse scale,

distinguishing it from blurred ovoids or footballs.

Practically, this might simply require specification of corner and edge features

in medially defined coordinates on a figure-by-figure basis for an m-rep, with the

number and orientation of these features being included in the coarse description of

the object provided by the m-rep. As an alternative to this, edges and corners might

instead be described relative to the crest regions of the medial sheet. In either case,

a corner or edge will have a coarse-scale description tied to the figure as well as a

fine-scale description as a boundary perturbation. Similarly, smooth and flat regions

of a surface may have both coarse and fine-scale descriptions.

7.3 Directions for future m-rep applications

While the above are areas where research can be directed to improve m-rep technol-

ogy, this section will discuss how m-reps can be applied to research problems and

applications.

7.3.1 M-reps in medical image analysis

With m-reps now being used for a variety of segmentation, registration, and shape-

analysis tasks, one of the main objectives in their medical application is to provide

primitive elements for atlas-based image-segmentation. These atlases will include

statistics on expected variability of an organ, variations over a single m-rep, as well

as on shape-morphologies—the presence or absence of figures or subfigures producing

different m-rep representations. M-reps have also been applied as shape-descriptors

in discrimination studies.

M-reps have strengths and weaknesses as geometric primitives for image analysis.

This section will first discuss the correspondence problem, then discuss applications

of m-reps to deformable solid modeling, to 3D data analysis and display, and to

stochastic model creation.
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Addressing the correspondence problem

Attempts to use the (u, v, t) coordinates for boundary correspondence suffer due to

the non-uniqueness of medial sampling—objects might have identical boundaries but

very different (u, v, t) parameterizations. Peculiar medial sheets can produce fine-

looking objects—in particular, (u, v, t) can be skewed badly on the boundary, though

boundary itself is well-behaved. This is true even for simple, single-figure models;

representational polymorphism makes more complex objects even more problematic.

The work of Greg Clary [30] illustrated this problem; in his work on the analysis

of gated cardiac images, he found that early m-reps could accurately segment the

heart data but not maintain correspondence across a time-series. Crouch solved this

problem for m-reps in her FEM deformation research, using diffeomorphisms over

boundary parameterizations to establish geometric correspondences, as discussed in

Sec. 7.2.3.

Another way to address the correspondence problem is seen in the work of Davies

et al. [42], who establish boundary correspondences automatically by recasting the

problem to one of find an “optimal” parameterization of the shapes in their train-

ing sets—optimal in the sense of providing the tightest statistical distribution over

the training data. New approaches in Pablo have employed the principal geodesic

analysis of Fletcher so that, rather than basing optimizations on correspondences be-

tween (u, v, t, τ) coordinates, the Mahalanobis distance based on log p of the medial

structure itself is used. Application of Davies’ automatic methods in m-rep research

will use the variance over the medial Lie groups as the statistical measure, automat-

ically establishing shape- and volume-based correspondences. A shift of emphasis

is evident in m-rep-based correspondence research; surface models by their nature

require correspondences between relative surface points, whereas m-reps, which are

volume primitives, are better suited to and better served by correspondences between

interior positions or regions, incorporating r-proportionality according to the mul-

tiscale nature of m-rep models. M-reps will also require methods for establishing

correspondences for special positions in respective model interiors for specific appli-

cations; these special places may be geometric, structural or functional landmarks.

Better deformable solid modeling of tissues and organs

As described above in Sec. 7.2, an m-rep’s (u, v, t, τ) figural coordinates parameterize

its solid volume. Thus, changes in the medial or boundary structure are reflected on
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the volume of the object, not simply the boundary. This allows m-reps to model the

behavior of deformable solids using manual, kinematic, physically based or statisti-

cally based deformations of the multifigure structures. These could be integrated into

Pablo-like systems and would expand the capabilities of m-reps as a deformable solid

representation.

With regard to physically based models, the work of Crouch on FEM using m-reps

for tissue deformation holds promise. Modeling tissue deformation is an active area

of research with applications in image-registration for surgical planning, in surgical

simulation and in forensic analysis. Crouch’s methods did not include indentation

subfigures. In some cases, m-rep polymorphism might allow this problem to be side-

stepped; in others, a different remeshing scheme might be in order; Crouch speculates

that a tetrahedral rather than hexahedral remeshing scheme would make algorithms

for indentation subfigures more approachable [34].

Also useful for physical simulation would be tests for self-intersection for models

under deformation. Non-local self-intersection, where a figure interpenetrates with

a subfigure or with itself, could be tested using modified code for computing the

(u, v, t, τ) coordinates for a point in space—a self-intersection occurs when a point on

the boundary has a negative τ value relative to another medial region of the object.

(Local self-intersection is detected already by checks on surface folding.) Coming

up with a fast and robust multiscale test for m-rep interpenetration presents an

interesting research project.

There are many possibilities presented by the (u, v, t, τ) coordinate system. Promis-

ingly, figure-based coordinates might be extended from the description of subfigure

positioning within or near a parent figure to the use of multiple coordinate systems

to describe positioning of objects within multi-object groupings. This would create

hybrid coordinate systems based on positions and orientations relative to multiple

figures; research in this area might explore the mathematics necessary for creating

accurate multiscale distance functions.

Improved interfaces for 3D data analysis and display

Other improvements to m-rep applications in medical image analysis will come by

addressing user-interface and modeling issues raised in Sec. 7.1, especially those that

will provide better mechanisms for building, deforming, and computing statistics on

complex m-rep DAGs and trees. Such improvements will enhance considerably the

usefulness of discrete m-reps as shape descriptors for image-analysis purposes.
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M-reps may also drive improvements in modes of display for volume data and

atlas-segmented scans. Such improvements might be based on the work of Chen for

m-rep-guided volume-rendering or on simply displaying m-rep segmented objects as

b-reps with varying degrees of transparency necessary to reveal internal details and

figure-based substructure. In either case, the use of atlas-based segmentation by

m-reps holds tremendous potential for automatic analysis and display of volumetric

image data.

Stochastic model creation

Because m-reps were designed to model classes of objects, based on deviation from

a stock model, they are suited by their nature to generation of multiple, varied in-

stances derived from an average object. Using statistical priors on medial meshes

and boundary displacements and on subfigure positioning (in parent coordinates)

and deformation, stochastic models can be used to generate unique instances from a

population using a base m-rep. In order to use this in a design application, the sta-

tistical modes of variation must be specified according to default parameters, which

will depend on medial width and acceptable boundary curvature.

When using m-reps for image-analytic purposes, this process is reversed. Discrete

m-reps are fit to individual members of a population of similar objects, and the

statistical characteristics of the variation between models is computed; this, then,

becomes part of the statistical characteristics of the m-rep. Thus, an m-rep is not

simply a collection of geometric primitives, more-or-less isomorphic to any particular

b-rep; rather, an m-rep is a statistical model of a class of objects. This view is born

out in the Lie group theory and the use of PGA for modeling statistical distributions

of shape from m-reps, as discussed in Sec. 6.3.4.

An atlas of m-rep models must also provide not simply varying single m-reps

but distributions for topological and geometric variations in m-rep structure—e.g.,

topologically, the probability of an organ having one or several additional subfigures;

geometrically, the permitted variations that avoid illegalities such as interpenetrations

between figures and subfigures.

7.3.2 M-reps in computer graphics and CAD

M-reps are uniquely posed to provide representational transparency in modeling sys-

tems, with interactions as discussed in Sec. 7.1. They have potential as design prim-
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itives in a wide variety of modeling interfaces: in b-rep modeling systems, because

m-reps can be converted easily to spline or polygon or subdivision-based b-reps; in

solid-modeling editors, because they can perform CSG-style additive and subtractive

modeling; in sketch-based design editors, by integrating medial and figural modeling

primitives; in haptic-based modeling systems, by combining a multiresolution sur-

face approach with a deformable skeletal structure; in virtual surgery simulation, by

their ability to model physically based deformation; in volume graphics systems, as

deformable volume primitives.

Based from their conception on the need to do constructive figural modeling with

tolerance-based, deformable primitives, m-reps can be applied to CAD and graphics

applications that can benefit from both the global deformability and the fine-scale

surface deformations. There are a number of areas of promise for m-reps in computer

graphics and computer-aided design:

• as skeletal, figural subdivision primitives for design and animation;

• as objects allowing automatic instantiation according to statistical models;

• as CSG-style solid primitives, with tolerance and variable filleting of joins;

• as primitives for medially based LOD decomposition and rendering;

• as primitives for object-based texturing and automatic texture generation;

• as model-based shape-capture primitives for converting from other models or

image-based data to a solid, multifigural representation;

• as deformable volume-primitives for volume rendering and volume graphics;

• as multiscale primitives allowing adaptive computation of physically based prop-

erties.

This section will briefly discuss each of these.

Skeletal, figural subdivision primitives for design and animation

M-reps combine already established skeletal techniques for object manipulation with

techniques for subdivision boundaries and add their inherent figural representation

with its object-centered coordinate system. As such, they seem ideal for many general
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modeling tasks involving object dynamics, multiscale deformation, key-framed, kine-

matic and physically based animation, and procedural modeling and texturing. One

potential application is as skeletal-based subdivision-bounded primitives for game en-

gines. Their subdivision boundaries provide advantages over polygonal boundaries at

negligible rendering-time cost, and the inherent, object-based deformability provided

by the medial structure and boundary displacements provides advantages over b-reps

such as splines or ordinary subdivision surfaces. In essence, they bring the power of

deformable solid modeling into an interactive design or rendering environment.

Automatic instantiation of stochastic models

Because m-reps were designed to model classes of objects, based on deviation from

a stock model, they are suited by their nature to generation of multiple, varied in-

stances derived from an average object. Using statistical priors on medial meshes

and boundary displacements and on subfigure positioning (in parent coordinates)

and deformation, stochastic models can be used to generate unique instances from

a population based on a base m-rep. In order to use this in a design application,

the statistical modes of variation must be specified according to default parameters,

which will depend on medial width and acceptable boundary curvature.

In this way, m-reps can be used in systems requiring statistical or procedurally

based appearance models, such as those generating crowd-scenes for animations, as

well as incorporating statistical deformations for these models on a figural basis.

Medial-based LOD decomposition and LOD rendering

One of the initially conceived purposes of the m-rep was as a new rendering primitive.

It was hoped that the multiscale medial paradigm could be leveraged into level-of-

detail approaches for rendering complex objects. Because they combine a stable

framework for displacement subdivision surfaces with a tolerance-based, medially

defined figural structure, m-reps do appear to be well suited to applications requiring

LOD decomposition—including topological simplification—of complex figural models.

Section 5.1.2 discussed some general ideas for LOD simplification using displaced

IIS-surfaces. In addition to such boundary-based techniques, common to subdivision

surface representations, m-reps provide figural representations with object based scale

information which might be leveraged to guide object simplification algorithms which

include topological simplification, as subfigures are pruned when they fall below a de-
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sired resolution. Similarly, boundary perturbations may be smoothed while the figural

structure remains unchanged and figure-based deformation remains unhindered.

Object-based texturing and automatic texture generation

M-reps provide solid coordinates (u, v, t, τ) with width information for each medial

figure; this information may therefore be used to provide texture coordinates for

boundary or solid texturing. Because the model also provides width information for

each of these coordinates, such information may be used to modulate the texture

functions in an object centered fashion that is invariant under similarity transfor-

mation and allows the textures to be deformed with the model as per medial and

boundary deformations. This could be used for both stock image textures as well as

in automatic texture generation schemes such as those of Turk [149, 150] and of Wei

and Levoy [154]. For instance, in reaction-diffusion texturing, information on r and

∇r could be used to modulate the reaction for interesting and scale-based effects tied

to the object geometry.

Shape-capture from other model types or image-based data

One of the chief uses thus far for m-reps has been for image-segmentation, fitting their

multifigure models to objects represented by intensities 3D datasets. M-reps bring

with them the capability of creating a medially based multifigure representation for

other models. Sec. 7.1.4 discussed ideas for capturing object shape from b-reps and

other representations; such techniques allow models to be imported into an m-rep-

based system and to inherit the tolerance-based multiscale deformability that m-reps

offer.

Another class of shape information is that derived from image-based information.

Oh et al. [110] demonstrated that an IBR representation could be generated manually

from 2D photos lacking disparity/depth information, and other methods have been

used to create 3D geometric models based on single or multiple 2D images either with

or without disparity. M-reps could bring a model-based multifigure shape paradigm

to bear on geometry extraction from image-data. An object of known topology and

figural connectivity could be extracted from a single view or from multiple views by

perturbing an m-rep according to an approximation of the orientation, scale and pro-

jective geometry of the scene. Such an application can be thought of as a 3D-from-2D

deformable model segmentation, open to various semiautomatic approaches. Thus,

m-reps would be used as 3D templates for atlas-driven (or interactive) acquisition
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of textured geometry data from image data. Local medialness statistics might be

derivable from image-based data, using techniques related to the core-atom statistics

of Stetten [138], as described in Sec. 2.4.2. Such methods would classify image regions

in terms of “tube-like,” “slab-like,” or “sphere-like” geometry with axial directions

and radii, allowing m-rep templates to be selected for specific object types.

Volume rendering and volume graphics using m-reps

Chen explored the use of m-reps for segmenting and volume-rendering objects in

medical images. These methods were discussed in Sec. 2.4.1. Current m-reps are

even more suited for use as deformable volume-primitives for volume rendering. They

can be used, as per Gagvani, for the segmentation and subsequent deformation and

animation of objects in volume data; or they can be used directly as deformable,

multiscale volume primitives for volume graphics applications.

Multiscale, physically based properties of m-reps

Because m-reps are fundamentally a deformable volume representation, they are well-

suited to computing physical properties for solid models under deformation. Phys-

ically based modeling with m-reps has been explored already in the FEM work of

Crouch, as discussed in Sec. 6.3.3. An especially exciting aspect of this work was

the use of the m-rep-based multiscale refinement scheme in the FEM equation solver.

Physically based applications can expect to draw on the multiscale nature of m-reps to

provide approximate and on-the-fly adaptive computation of physically based proper-

ties of models under deformation. Sec. 2.5.5 discussed some of the work by Peters and

Nasri [116] on defining inertial moments and other properties of subdivision surface

bounded models; the work of Stetten [139] on determining volume for objects based

on medial descriptions is also relevant.

M-reps would easily provide an LOD-adaptive refinement approach to finding

inertial moments under deformation, using both the figural structure of the model and

the varying subdivision at the boundary to compute the physical properties. They

could use approximations based on medial structure or coarse boundary involute

mesh, then compute for subdivision boundaries, then for displaced surfaces. Such

methods may assume uniform density for the object, or impose density or composition

functions on the m-rep solid based on the (u, v, t, τ) for τ < 1, though behavior at

join regions would need to be defined. Such functions would share invariance under
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similarity transformation as well as the object-based deformability of the coordinate

system, allowing them to be “carried along” as the object is deformed.

More possibilities arise from the FEM work of Crouch. In finite-element analysis,

the linear elasticity equation Ka = f is solved for a, the displacements at the mesh

nodes. Diagonalizing the stiffness matrix K (or, rather, a reduced KR, since K is

provably singular, see Crouch [33]) produces an orthogonal coordinate system whose

scaled axes describe the eigenmodes of the deformation, in terms of which solving for

a is extremely efficient. If corresponding eigenmodes of mechanical deformation in

terms of non-linear Lie group geometric deformations of m-reps can be derived, then

finite-element solutions from these m-reps could be computed with similar efficiency.

Collision detection is another area where m-reps might find use as deformable

models with both a figural, solid-object aspect and an LOD-based boundary descrip-

tion provided by their subdivision surfaces. Because stationary subdivision surfaces

have the convex-hull property, the inverted generating meshes for the interpolat-

ing boundaries can be used as coarse approximations to the object shape, and the

figure-subfigure decomposition could be used as a coarse model description. Better

(x, y, z)-to-subdivision boundary distance functions would have to be implemented;

the strictly local nature of the current (x, y, z)-to-(u, v) nearpoint code is unacceptable

when robust measures of correct geometric distance are required. This remains a open

problem in the subdivision surface community, though numerous heuristics might be

applied to produce adequate metrics for specific applications. A true distance-at-scale

function, as discussed in Sec. 6.2.2, might also be worth exploring for use in a mul-

tiscale collision detection algorithm based on iterative refinement of a fuzzy distance

function.

7.3.3 Final remarks on future m-rep applications

It is almost certain that m-reps will continue to be used extensively in medical image

research in MIDAG and increasingly by other research labs as well. In such future

research, they will benefit from many of the conceived changes and new modeling

paradigms discussed above.

Whether m-reps will be developed as tolerance-based multifigure primitives for

general CAD and modeling applications remains to be seen. Whatever methods are

eventually developed in these fields must address the same issues that m-reps do: the

separation of object-based deformability vs. fine detail, the need for figural shape

descriptions and deformability, the representational transparency and polymorphism
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issues, etc. Computer graphics and CAGD stand to benefit from new geometric

primitives that can serve as robust, statistical shape descriptors based on scale space

ideas and ideology. This, however, must await future research.

7.4 Personal words

In the course of this work, many insights were gained into the problems of modeling

with tolerance-based medial primitives, insights that have pointed to new possibilities

for modeling methodologies for CAGD and shape-analysis. While m-rep research is

still young, it has already shown the value and power of tolerance-based medial models

as geometric representations, particularly in 3D medical imaging applications.

When I first conceived, with Steve Pizer and Turner Whitted and Dave Chen,

that cores—multiscale medial axes—might be used as new graphics and modeling

primitives, I couldn’t have imagined the work that would lead to discrete m-reps:

the efforts of dozens of researchers, the conference papers and journal articles and

theses, the research grants and patents and incorporations. In my years as a graduate

student, I saw and participated in the transition of multiscale medial ideas from

elegant—albeit incomplete—theories and research prototypes to clinical applications

and profound mathematical insights. From the seed of an idea—that all measurements

are made with a finite aperture, a spiritual descendent of Heisenberg’s Principle—

grew a redefinition of the way we define shape, and this new understanding has been

applied to medical technology with the potential to save lives and improve the human

condition. I feel both proud and humble to have had a part in this work.
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