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Abstract

Bayesian methods are valuable in image analysis because there is often a priori

information that can contribute to the analysis of an image. This prior knowl-

edge may be general (e.g., intensities vary smoothly across the image), or may

be more speci�c (e.g., this is an image of a brain that may have a tumor). This

dissertation develops exiblemethods to incorporate prior knowledge from tem-

plates into algorithms for image analysis within a Bayesian framework. Classes

of priors on landmark locations are developed that assign high probability to

images \like" the template and low probability to images \unlike" the template.

The priors build on previous work in Bayesian image analysis by incorpo-

rating ideas from Markov random �eld priors and deformable template models.

The prior models di�er from standard applications of MRF models in that the

sites in the �elds represent image objects, and the random variables associated

with the sites represent their locations. Another crucial idea grows from meth-

ods in computer vision research. Features in an image occur at a variety of

scales, and to e�ectively model spatial and scale relationships, this variety of

scales must be modeled. Scale space is an image representation that handles

image structure at all resolutions simultaneously and allows e�cient calcula-

tion using features at multiple scales. It also allows models to be speci�ed that
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are rotation, translation, and zoom invariant.

Other important aspects of the prior include quantifying feature similarity

between images, locating landmarks within images, and measuring distances

and spatial relationships between landmarks. The priors address these issues

and incorporate the feature and location information into a hierarchical model.

The hierarchical framework is natural for handling deformations and obstruc-

tions. Further, it allows the modeling of such properties as \the location of

large-scale features is less variable than the location of small-scale features."

The priors on landmarks are used to perform automatic landmark identi�-

cation. They also hold promise for tasks like automatic object recognition.
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Chapter 1

Overview

Image analysis is concerned with the modeling, investigation, and display of

\pictorial" data. The prototypical image is a photograph, which can be thought

of as a continuous two-dimensional light intensity function g(x), where x de-

notes a spatial coordinate and g(x) is proportional to the brightness of the pho-

tograph at that point. The intensity function g can, however, describe energy

from many sources, including electromagnetic radiation like infrared and X-

rays, ionized high-energy particles, ultrasound, or pressure. Similarly, the spa-

tial coordinate is not restricted to two dimensions, but can be n-dimensional.

A digital image is an image that has been discretized both in spatial coordi-

nates and in brightness. The intensities associated with each spatial coordinate

can be scalars, for example, gray levels, or vectors, as in the case of multi-

spectra satellite images. Most image data is collected in the form of digital

images; consequently, most image data can be thought of as a quantization of

an underlying continuous process (Geman and Gidas 1991). The elements of

the digital image array are called image elements, picture elements, or pixels.

A variety of techniques have been developed to investigate and analyze
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images, including restoration, reconstruction, segmentation, and registration.

Restoration enhances images that have been degraded by a known process.

Reconstruction rebuilds images from projections, and is the process used to

transform the raw data collected in computerized tomography (CT) to a digi-

tal image. Segmentation identi�es and labels structures within images. Regis-

tration, or matching, establishes a point-by-point correspondence between two

images.

Statistical techniques have been successfully applied in many areas of image

analysis, especially those that are inherently \model-based." In restoration,

for example, explicit models are derived that relate the \true" image to the

observed image. Bayesian methods are especially useful, as one often has prior

knowledge about the true image. This prior knowledge may be very general

(e.g., intensities vary smoothly across the image), or may be more speci�c (e.g.,

this is an image of a brain that may have a tumor).

There is often an opportunity to incorporate speci�c prior knowledge into

the analysis of medical images. When a diagnostic image is created, there is

knowledge about what part of the body has been imaged and about why the

image has been made. A template may be available in the form of a medical

atlas, or as a cross-correlated high-resolution magnetic resonance (MR) or CT

image of the same patient. The question addressed in this dissertation is how

to use this type of prior information to enhance an image's analysis.

There are a variety of applications that can bene�t from the e�ective use

of template information. Multi-modal image analysis is an active research area

in medical imaging. In clinical practice, a single photon emission computed

tomography (SPECT) image might be made to explore tissue function and a



3

MR image to examine anatomy. In radiotherapy, for example, a CT scan is

needed for dose distribution calculations, while an MR image is used to outline

the target lesion (van den Elsen et al. 1993). By combining information from

the two images, a correspondence can be established between structure and

function. Appropriate use of a prior containing template information facili-

tates the registration of the images, the segmentation of the MR image, and

the reconstruction of the CT scan. Consequently, the appropriate therapeutic

dosage can be directed more precisely to the target lesion.

Segmentation is another active area of research. In MR images, the small-

scale structure often has poor resolution. To divide the image into regions,

expert human information must be incorporated; in essence, the technician

segments the images based on \what ought to be there." This process can

be automated by using prior information from an atlas to capture beliefs and

con�dence about small-scale structure. More generally, prior templates can be

used for object identi�cation.

Applications outside the medical �eld are also common. Short (1993) dis-

cusses the automated detection of rail surface defects. Phillips and Smith

(1994) model human faces, with an eye toward developing aids to witness

identi�cation of criminal suspects. Grenander and Manbeck (1993) propose an

automatic defect detection system for potatoes.

The most general goal of this dissertation is to develop exible methods to

incorporate prior knowledge from templates into algorithms for image analysis

within a Bayesian framework. This is addressed by developing prior distribu-

tions on landmark locations and shapes. The priors assign high probability to

images \like" the template and low probability to images \unlike" the tem-
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plate. The priors are useful for a variety of tasks, but especially for automatic

landmark identi�cation, object recognition, and image registration.

As with any choice of prior, there must be a tradeo� between how well the

class of priors can capture a priori beliefs, how easily the posterior distribution

can be computed, and how appropriate the results are to the task at hand.

Within these constraints, there are a number of speci�c objectives.

The priors should incorporate ideas about scale and space. Regions and

features within images occur at a variety of scales. Some features, like bound-

aries, are local, while others, like middles, are more global. Images can be

examined for small details or for large shapes. The prior must account for fea-

ture arrangement both in space and in scale. It should also be able to model

properties like \the location of large-scale features is less variable than the

location of small-scale features."

Additionally, the priors should be hierarchical. Phillips and Smith (1994)

model human faces by looking �rst for the head, then the face, then the eyes,

and so on. The location of the eyes is conditional on the location of the

face, which in turn is conditional on the location of the head. A hierarchical

structure provides a natural framework for the description of a template and

of features at di�erent scales. By using a branching structure, deformations

and obstructions can be handled in a straightforward manner. The structure

of the hierarchy may not be strictly decreasing in scale; if one is looking for a

square, it may make sense to look for corners, which are small-scale features,

�rst.

Finally, the priors should generalize easily. To be broadly applicable, the ba-

sic structures of the priors must work in n-dimensions, and they must be able to
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model binary, gray-scale, continuous, or digital images. In addition, the models

developed using the priors must be computable. Likelihood-based methods for

image analysis, including maximum likelihood estimation and Bayesian mod-

els, are of great research interest, but have achieved little clinical use due to

their long computation times.

These objectives are achieved by using a Markov random �eld (MRF) model

to specify a prior on landmark locations. The model di�ers from the standard

application of MRFs to imaging because the sites in the model represent objects

within the template, and the associated random variables are the locations of

the objects. Typically, the sites within MRF models are �xed at the pixels,

and the random variables are pixel intensities. Hierarchical relationships be-

tween objects are speci�ed using the neighborhood relationships between sites.

Computations using the MRF model are straightforward because MRF models

can be simulated using Markov chain Monte Carlo techniques.

Ideas about scale are incorporated using methods adapted from computer

vision research. Scale space is an image representation that handles image

structure at all resolutions simultaneously and allows e�cient calculation using

features at multiple scales. Using properties of scale space, the priors can be

chosen to be rotation, translation, and zoom invariant. These invariances allow

the prior to favor con�gurations of landmarks like those in the template without

regard for orientation, location, or size. Scale space also provides a natural

framework for the speci�cation of likelihood functions that capture ideas like

\medialness" and \cornerness."

The remainder of the dissertation proceeds as follows. Chapter 2 discusses

both the \statistical theory of shape" and the basic paradigm of Bayesian
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image analysis. Special attention is given to the types of priors commonly

used in modeling shape and deformation. Markov random �eld models are

presented, as well as priors that have been proposed to explicitly model tem-

plates. Chapter 3 develops tools that are useful in specifying a exible class

of priors, including ideas about scale, resolution, and multi-scale image analy-

sis. Chapter 4 examines multi-scale methods useful for describing features and

templates. The statistical development of the priors is presented in Chapter

5, where a multi-scale prior on landmarks within images is speci�ed. Chapter

6 applies this prior to the automatic identi�cation of structures in MR brain

images. Chapter 7 summarizes the work and proposes extensions.



Chapter 2

Statistical Methods for Modeling

Shapes and Images

This chapter examines both the \statistical theory of shape" and Bayesian im-

age analysis. Both of these methodologies are useful for the stochastic modeling

of shapes, images, and deformations. The statistical theory of shape focuses

on the statistical analysis of point patterns in Rn. Bayesian image analysis

examines how prior information on the space of \true" images and likelihood

information for the observed images can be combined into posterior inferences.

The ability to assess posterior variability makes Bayesian image analysis a nat-

ural framework for addressing many problems of medical interest, such as the

determination of the volume of regions within an image and the uncertainty

associated with those volumes. These two statistical approaches to the mod-

eling of landmarks, images, and deformations, are combined in Chapter 5 to

create a new class of priors on landmarks.

7
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2.1 Statistical Theory of Shape

Landmarks are a traditional method for describing shape and shape change.

Landmarks, in their most general form, are a set of k labeled points in Rn used

to describe a �gure and its shape. Shape is taken to be those characteristics of

a �gure that are unchanged when the �gure is translated, rotated, or scaled.

Landmark data arise in many �elds, including biological and medical settings

(Bookstein 1991), archaeology, astronomy, cartography, manufacturing, geol-

ogy, and geophysics. Goodall (1991) states:

In some instances landmarks may refer to the same physical markers
identi�able in more than one map, satellite image, X-ray, etc. In
instances of biological homology, landmarks are uniquely de�ned

locations, most often in the skeleton, that are identi�able across
individuals, and in interspecies comparisons, linked by a presumed

evolutionary pathway. At its most general, a set of landmarks is a

set of labeled points, found in at least two �gures, whose relative
positions in the two or more �gures has some scienti�c, educational,
or artistic interest to us (pp. 285{286).

One of the simplest ways to compare two �gures is to �nd a transforma-

tion that takes one to the other. To simplify matters, one often looks for an

a�ne transformation. Because it is typically not possible to �nd an exact

a�ne transformation, it is necessary to approximate the \best" transforma-

tion. Lele (1989) describes the typical procedure. Let A and B be two sets of

k landmarks. Fix A as the reference �gure. Select positive real-valued func-

tions �i, the loss functions, for i = 1; : : : ; k. Translate, rotate, and scale B

so that
Pk

i=1 �i(d(iA; iB)) is minimized, where d(iA; iB) is the distance between

landmark i in A and B.

The choice of the loss functions leads to di�erent superimpositions of the

�gures on one another: for example, Bookstein's (1991) method, ordinary Pro-
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crustes analysis, or weighted ordinary Procrustes analysis (Goodall 1991). It

can be shown (Lele 1989) that by choosing the appropriate loss function, one

can support almost any hypothesis about whether shapes di�er. However, typ-

ically the question of interest is not whether the shapes di�er, but where the

shapes di�er. The answer to this question also depends on the choice of loss

function. Lele (1989) provides an example analyzing the shape di�erence be-

tween two triangles, where three \reasonable" choices of loss function lead to

radically di�erent conclusions.

A more robust method for comparing two �gures requires the development

of a shape space, or a representation of the shapes of sequences of labeled

points. Following Kendall (1984), let the shape space of k labeled points in

n-dimensional space be denoted by �k
n. The development of the shape space

�3
2, the space for triangles in R

2, illustrates the main ideas of the theory.

Consider the triple of points (x1; x2; x3) in R
2. The shape of the triangle

de�ned by these three points is invariant to translation, rotation, and scale,

but may change if the points are relabeled. If these points are considered to be

in the complex plane, C, then the set of points de�ned by the complex a�ne

transformations f(wx1+ z;wx2+ z;wx3+ z) : z 2 C and w 2 Cnf0gg all have
the same shape. Adding the same complex number z to each xi corresponds

to translation; multiplying each xi by the same non-zero complex number w

corresponds to scaling and rotation.

If (x1; x2; x3) is centered by subtracting the centroid from each coordinate,

then the set of triangles with the same shape is the set of vectors of the form

f(w(x1 � �x); w(x2 � �x); w(x3 � �x)) : w 2 Cnf0gg. (Each possible triangle

(x1; x2; x3) is associated with a unique centered triad, and the centering removes
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the e�ect of translation.) This set is a complex line through the origin of

complex two-dimensional space; the collection of such lines is called CP(1),

or the complex projective one-space. In general, the shape space of k-ads of

planar points is given by �k
2 = CP(k � 2), where CP(k � 2) is the complex

projective k � 2 space and can be thought of as the space of complex planes

passing through the origin in Ck�1 (Small 1988; Stoyan et al. 1987).

It is di�cult to visualize complex projective spaces. However, CP(1) is

topologically and smoothly equivalent to a sphere (Stoyan et al. 1987), and

the shape of the original triangle (x1; x2; x3) can be represented as a point

on the sphere. Let (r; �) be the polar coordinates of the complex number

2x3�(x1+x2)
x2�x1

(the projective coordinate map in Stoyan et al. (1987)). Then

( 1�r2=2
2(1+r2=3)

;

r cos(�)=
p
3

1+r2=3
;

r sin(�)=
p
3

1+r2=3
) are the Euclidean coordinates of a point on a

sphere of radius 0.5 about the origin in R3; each triangle shape corresponds to

exactly one point on the sphere. Stoyan et al. (1987) discuss where particular

classes of triangles (equilateral, isosceles, right) fall on the sphere.

\One interpretation of the choice of radius 1
2 for the sphere of triangle

shapes is that it ensures that geodesic distance on the sphere corresponds to

the Procrustes metric" on C3, the space of triad points (Stoyan et al. 1987).

Bookstein (1986, 1991) and Small (1988) discuss further implications of this

choice of metric and propose possible alternatives. With the Procrustes metric

on C3, it can be shown that if x1, x2, and x3 are independent and identically

distributed bivariate normal points (with mean 0) with a variance-covariance

matrix that is a scalar multiple of the identity matrix, then the shape of the

triangle de�ned by (x1; x2; x3) will be uniformly distributed on the sphere of

shape coordinates (Small 1988).
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A useful approximation for the shape space �n
2 is given in Goodall (1991).

Let x1; x2; : : : ; xn 2 C be the complex coordinates of the landmarks of a planar

�gure. Let u = (u1; : : : ; un�2) be de�ned as ui =
xi+2�x1
x2�x1

. The ui are called

Bookstein coordinates. The Euclidean geometry of u 2 R2(n�2) is a useful

approximation to the metric geometry of �n
2 ; for n = 3, Bookstein coordinates

are a stereographic projection of the spherical coordinates.

Applications of the statistical theory of shape typically investigate depar-

tures from randomness in a point pattern; there is usually less concern with

explaining structure than with determining whether structure is present at all

(Stoyan et al. 1987). Reviews of the statistical theory of shape from a mor-

phometric perspective can be found in Bookstein (1986) and from a stochastic

geometry perspective in Kendall (1989).

2.2 Bayesian Image Analysis

The Bayesian analysis of an image can be considered in the traditional frame-

work of specifying a likelihood function and a prior distribution. The form

of the likelihood is, of course, problem and task speci�c, but it is often well-

described by the imaging modality or by a large set of training data. Many

models appropriate to various imaging modalities and tasks are described in

Geman (1988), Ripley (1991), and Karr (1991).

Consider the following general formulation of Bayesian image analysis (Rip-

ley 1991; Geman 1988; Geman and Gidas 1991). There are a variety of prob-

lems that commonly arise when analyzing digital images. Besides digitization,

three types of distortions are common: blur, noise, and sensor e�ects (Geman

and Gidas 1991). Blur is the scattering caused by the medium itself (e.g., the
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atmosphere or human body), by an unfocused camera lens, or by the motion of

the medium, objects, or sensors. Noise is randomness introduced by the sens-

ing and recording devices|for example, by �lm grain or current uctuations in

electronic scanners. Sensor e�ects, also called radiometric distortion, are non-

linear transformations of the data caused by the sensing and recording devices.

Geman (1988) contains detailed examples that illustrate these distortions.

Let g(x) denote the observed value at pixel x, and f(x) be the \true" signal

that would be measured under ideal conditions. Then

g(x) =  [�[K(f(x))]; �] (2.1)

where K accounts for blurring, � represents radiometric distortion, � is a noise

vector, and  de�nes the noise mechanism (e.g., additive or multiplicative).

The noise may be spatially correlated, and may di�er depending on what part

of the image is considered.

In this context, the problem of restoration is to infer f(x) from g(x). Often

(2.1) can be simpli�ed to

g = Kf + � (2.2)

where the blurring can be represented as a convolution and the noise is additive.

Given a model, like (2.2), for the degradation of f(x) to g(x) and a prior

distribution for f(x), by Bayes' rule

p(f jg) / p(gjf)p(f)

A point estimate for f(x) might be the mode or the mean of p(f jg).



13

2.2.1 Markov Random Field Priors

Once a likelihood has been speci�ed, a prior distribution must be chosen on

the space of true images. There have been many proposals for how to do this,

but one of the most widely used classes of priors in Bayesian image analysis is

the Markov random �eld (MRF). Typically in these models, the intensity at a

pixel is modeled as depending on the intensities at nearby pixels. Examples of

analyses using MRF priors can be found in Besag (1986), Besag et al. (1991),

Ripley (1988, 1991), and Short (1993).

Besag (1974) introduces MRFs as a way to model spatial processes. MRFs

allow distributions to be speci�ed in terms of local conditional distributions

rather than in terms of joint distributions. Speci�cation of distributions in

terms of local characteristics is often intuitively easier than speci�cation of

relationships on a global scale. Further, the conditional speci�cation makes

MRF models especially amenable to Markov chain Monte Carlo techniques for

sampling from the posterior on the image scene. Specifying local conditional

distributions, however, places restrictions on the form of the joint distribution.

To de�ne a Markov random �eld model, let S = fs1; s2; : : : ; sNg be a set of
sites (e.g., a set of pixels on a digital image), and let Y = fYs; s 2 Sg be any
family of random variables indexed by S. Let �s be the state space for Ys, and

de�ne the con�guration space 
 = f! : ! = (ys1; : : : ; ysN ); yi 2 �ig. De�ne

a neighborhood system N = fNs; s 2 Sg as any collection of subsets of S for

which (1) s 62 Ns and (2) s 2 Nr i� r 2 Ns. A subset C � S is a clique if every

pair of distinct sites in C are neighbors.

Y is a MRF with respect to a neighborhood system N if

p(Ys = ysjYr = yr; r 6= s) = p(Ys = ysjYr = yr; r 2 Ns) (2.3)
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If Y satis�es (2.3) and

p(Y = !) > 0 for all ! 2 


then the joint distribution of Y is a Gibbs distribution with respect to N. A

Gibbs distribution has the form

p(!) =
1

Z

exp(�U(!))

where

U(!) =
X
C2C

VC(!)

Z is the partition function and is constant, U is the energy function, C is the

set of cliques, and VC is a potential function that depends only on those ys for

which s 2 C.
According to Geman and Geman (1984), the utility of MRF for image mod-

eling is that \priors are available with neighborhoods that are small enough

to ensure feasible computational loads, and yet still rich enough to model and

restore interesting classes of images." Small neighborhoods are not neces-

sary, however; Johnson (1994) uses the whole image as the neighborhood, and

chooses non-zero potentials on only a small number of cliques.

While MRFs have nice local properties, they often have undesirable global

characteristics. In particular, the mode of many of the MRF priors is a single-

color image. Another objection to these models is that correlations can be

introduced between neighboring pixels that have very di�erent values. Such

contrast often occurs on the boundaries of objects, and without modi�cation,

MRF models can blur these boundaries. This is a serious problem, because

segmentation is often a primary goal of image analysis.
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To correct blurring across boundaries, Geman and Geman (1984) introduce

a set of auxiliary variables called line sites between each pixel. The line sites are

either \on" or \o�." When the data indicate that a boundary is present, the line

site is turned on and local correlations are broken. Line site models are useful

in segmenting four to six level images, but are computationally intractable

for continuous-valued images (Johnson et al. 1991). Johnson et al. (1991)

extend binary-valued line sites to continuous-valued by letting the line site

value correspond to the degree of correlation between adjacent pixels. Although

this improves the sampling properties of the posteriors, it is not successful

in imposing smoothness on the shapes of the estimated boundaries. Recent

models incorporating line sites are found in Leahy and Yan (1991), Gindi et

al. (1991), and Gindi et al. (1993).

A shortcoming of models that incorporate line sites is that segmentations

do not follow readily from the estimated line sites. It is di�cult to insure that

line sites connect to form closed regions. Although it is easy to incorporate

prior boundary information (turn on the line sites corresponding to the bound-

ary), it is unrealistic to assume that the boundaries from a template correspond

precisely to the boundaries in the blurred image. If the uncertainty is ignored,

then false edges appear in the restored image. It is possible to modify the

potential functions around the boundary; however, if all line sites are encour-

aged to form independently, ringing artifacts can occur (Johnson 1994). The

modi�cations of the potentials must keep the number of activations down while

encouraging connected, closed regions (to avoid smoothing \leaks"). This can

be di�cult within the local MRF structure (Johnson 1994).
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2.2.2 Region-based Models

A variety of other prior models have been proposed for use in Bayesian image

analysis. These priors can be grouped into four classes: region-based mod-

els, deformation models, boundary models, and di�erential geometry models.

Those that are the most successful in modeling templates and deformations

use information from a variety of scales in the image: deformation, as a rule,

is not a strictly local phenomenon, and changes in shape must be accounted

for both globally and locally.

Region-based models are exempli�ed by Johnson et al. (1993). Their method

uses a MRF prior on region labels rather than on pixel intensities. The model

assumes that an image is composed of an unknown number of intensity-varying

objects or regions. A MRFmodel is used to specify the probabilities of all possi-

ble con�gurations of region identi�ers, or equivalently, on all possible partitions

of the image into regions. Prior structural information is incorporated into the

speci�cation of probabilities on con�gurations.

A Gibbs distribution is speci�ed for the con�guration of region identi�ers,

R. The neighborhood system for the distribution is taken to be the entire im-

age. This neighborhood system could make computations intractable, as the

conditional distribution of each pixel could depend on the values at all other

sites; however, the potential functions are chosen so that the large neighbor-

hood poses little computational problem.

Three general prior beliefs about region con�gurations are modeled. Large

numbers of regions are discouraged; irregular object shapes are discouraged;

disconnected objects are prohibited. To accomplish these goals, three types of

potential functions are required.
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The �rst potential function discourages large numbers of regions. The form

of the function depends on the image itself, and on the anticipated number

of regions, K, in the image. If there is little knowledge about the number of

regions, a function of the form V (R) = �K might be appropriate. If there

is knowledge that the number of regions is small, a quadratic potential of the

form V (R) = �K
2 might be appropriate. If the quadratic potential is used,

then the probability that a new region is created during a pixel update is

exp(2�K +�) times smaller than the probability that the pixel is added to an

existing adjacent region. Although this potential depends on the entire image,

it is easy to compute and requires only that the number of regions be tracked.

The second potential function encourages regular object shapes. A class of

\regularity" cliques are de�ned so that each member of the class consists of a

central pixel and a \ring" of surrounding pixels. The diameter of the ring is

chosen to reect the diameters of objects in the image.

Denote the class of cliques with diameter a as Ca cliques. The potential

for each of the cliques is determined by the number of pixels in the outside

ring that have the same region identi�er as the center pixel. Recall that in a

Gibbs distribution, positive potentials correspond to high-energy, low proba-

bility states. If at least � pixels have the same identi�er, then the clique is

assigned potential zero; otherwise, it is assigned a potential of �(� - number

of pixels with matching labels). The clique is penalized if it does not have at

least � matching pixels in the outer ring. Each pixel in the image is contained

in 5 C1 cliques, 9 C2 cliques, and so on. \Because the number of like neigh-

bors can be stored and updated when the region identi�ers change, this type

of regularity clique is not only geometrically reasonable, but computationally

manageable" (Johnson et al. 1993).
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The �nal potential type prevents regions from splitting into two discon-

nected parts. Suppose that there is a region with a dumbbell shape, and that

the connecting bar is one pixel wide. If a pixel in the bar should change regions,

then the dumbbell would be split into two distinct regions, and all the region

identi�ers in one half of the dumbbell would have to change. This violates

the Markovian property of the Gibbs distribution, so pixels in \bars" are not

permitted to change. In practice, this is accomplished \by assigning in�nite

potentials to changes in region identi�ers that result in disconnected regions"

(Johnson et al. 1993). The in�nite potential functions violate the positivity

condition of the Hammersley-Cli�ord theorem (Besag 1974); however, \in this

case an aperiodic irreducible Markov chain with equilibrium distribution and

transition probabilities given by the implied Gibbs conditional distributions

can be constructed using the Metropolis algorithm."

These three potentials capture general beliefs about the shapes of regions

in the image. However, speci�c beliefs about the location, size, and shape of

regions can also be modeled. Assume that a source of structural prior infor-

mation is available (e.g., a standard anatomical atlas) and that the template

has been segmented. Negative \pseudo-potentials" are assigned to pixels in

the template where regions are encouraged, and positive pseudo-potentials are

assigned where they are discouraged. The potential of a region in the recon-

structed image is calculated by summing over the pseudo-potentials of its pix-

els. While this does incorporate structural prior information, it is not a exible

way of modeling template information, and it requires substantial computation

when implemented in three dimensions.
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2.2.3 Deformation Models

In situations where landmark data is available, a natural approach to the mod-

eling of deformation is to model how the landmarks move from one image to

the next. The methods described by Lele (1989) and summarized in Section 2.1

try to choose a single \best" transformation. Elastic deformation or deformable

template models provide a broad class of alternatives.

One deformable template approach is to parameterize a warping to be ap-

plied to n-dimensional space and assign prior distributions to the parameters

controlling the warp. Hanson (1993), for example, parameterizes the coordi-

nate warping as a polynomial and assigns probability to the warp using a Gibbs

distribution with p(warp) = exp(�(total strain energy)). This encourages

con�gurations that minimize the amount of twisting and stretching required

by the warp.

Suppose that one takes the limiting case, where every pixel in a continu-

ous image is taken to be a landmark. This approach to deformation models

is examined by Amit et al. (1991) and Grenander and Miller (1994). Prior

knowledge about the true image is contained in a template and in a distribu-

tion about how that template is warped. A two-dimensional Gaussian process

is speci�ed on the distance that each point in the template moves. The covari-

ance function of the Gaussian process is chosen to provide continuous sample

paths and computational convenience.

Deformation models are conceptually elegant, as they provide a direct in-

terpretation of the observed image. One knows what part of the template was

mapped to what part of the observed image. Amit et al. (1991) model human

hands, and one knows that �ngertips are mapped to �ngertips. These models
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can also provide a way to study variability in a family of images, perhaps

classifying subgroups or identifying abnormalities (Amit and Kong 1994).

However, there are a variety of problems with deformation models. The

models typically encourage smooth deformations, which can blur anomalies

or extra regions. It is very di�cult to take into account di�erent prior beliefs

about small-scale and large-scale features. Indeed, the deformations being used

are generic and do not depend on the template being used (Amit and Kong

1994). In the Amit et al. (1991) model, the posterior samples are expensive to

compute and cannot easily be generalized to more than two dimensions. The

Grenander and Miller (1994) model requires calculation on a 4000 processor

parallel computer. Further, the criterion that is used to match the template to

an image is minimizing the mean square di�erence in intensity over all pixels.

There is no guarantee that landmarks or speci�c points of interest are matched

with any precision (Amit and Kong 1994).

Amit and Kong (1994) address some of these problems by proposing a

computationally e�cient template matching method \consisting of a graphical

model of landmark points which describes their planar arrangement, together

with local operators which identify candidates for the various landmarks in the

data image." Their method is potentially useful for the automatic identi�ca-

tion of landmarks, and has many features in common with the model proposed

in Chapter 5. Both models employ a MRF with translation, rotation, and scale

invariant potential functions to model di�erences in shape between con�gura-

tions of points and a template. Amit and Kong (1994) use cliques with three

points and potential functions of the form:

V (x1; x2; x3) = (log(kx2 � x3k=kx1 � x3k)� log(kt2 � t3k=kt1 � t3k))2 +



21

(log(kx1 � x3k=kx1 � x2k)� log(kt1 � t3k=kt1 � t2k))2 +

(log(kx2 � x3k=kx1 � x2k)� log(kt2 � t3k=kt1 � t2k))2

where t1; t2, and t3 are the points corresponding to x1; x2, and x3 in the tem-

plate. They use features to identify candidate landmarks and then to calculate

an optimal template warping, while the model in Chapter 5 uses features in the

image to develop a likelihood function and to calculate posterior probabilities.

2.2.4 Boundary Models

Boundaries provide a natural way to describe the shape of an object. Many

methods for boundary description have been proposed; details can be found in

Ballard and Brown (1982) and Gonzales and Woods (1992). Boundary models

can be seen as another approach to deformable templates. These models use

a template to parameterize object boundaries and then assign probabilities

that describe appropriate deformations of the boundaries. Examples can be

found in Ripley and Sutherland (1990), Staib and Duncan (1992), Cootes et

al. (1993), Grenander and Manbeck (1993), and Phillips and Smith (1994).

There are two basic frameworks that are used to model boundaries and

boundary deformation. The �rst approach uses multi-purpose boundary de-

scriptors, such as b-splines, polylines, or Fourier descriptors, and assigns prior

distributions to these coe�cients that model \allowable" deformations. For

example, Staib and Duncan (1992) use an elliptical Fourier decomposition of

the boundary and put a multivariate normal distribution on a truncated set

of the Fourier coe�cients. In general, multi-purpose descriptors make prior

speci�cation di�cult, as the coe�cients do not necessarily correspond to iden-

ti�able features of the shape. It is especially di�cult to incorporate multi-scale
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information within this framework.

The second approach to modeling boundaries is to create a specialized tem-

plate for the object that needs to be deformed. Again, the template must be

parameterized so that distributions can be assigned that allow appropriate de-

formations. Grenander and Manbeck (1993), for example, develop a model to

automatically detect defects in potatoes. They begin by modeling the outer

contour of a prototype potato as a cyclic graph de�ned by an ordered collection

of n vectors. The entire contour may be rotated or scaled, and each vector may

be individually rotated. Probabilities are assigned to the allowed deformations

by letting (1) the overall rotation be uniform on [0; 2�), (2) the overall scaling

have a lognormal density, and (3) the individual rotation angles have a multi-

variate von Mises density. The parameters of these distributions are estimated

from training data.

Phillips and Smith (1994) consider models for the human face. Separate

templates are developed for the eyes, nose, mouth, and eyebrows. By using only

50{100 parameters, they achieve a substantial reduction in the complexity of

the data represented. They propose a hierarchical framework with the following

levels to relate the templates.

1. Find the boundary for the head.

2. Find the boundary for the face, inside the head boundary.

3. Determine the spatial arrangement of features within the face boundary.

4. Determine the scaling of the features, given their relative positions.

5. Determine the shapes of individual features, given their scale and loca-

tion.



23

This sort of hierarchical framework is central to the approach for modeling

general shape and scene deformation that is developed in subsequent chapters.

2.2.5 Di�erential Geometry Models

Another class of priors is based on di�erential geometry and multi-scale de-

scriptions of object shape. It has been recognized for about 25 years that

multi-scale approaches can improve image analysis. Various representations

that incorporate scale and resolution have been proposed, including pyramids,

wavelets, and multi-grid methods. One of the most promising representations,

scale space, has been developed recently in the computer vision literature. Jack-

way (1993) and Lindeberg (1994) contain a summary of the recent research in

this area.

Scale space was developed to model the processing at the front end of the

visual system. Its basic premise is that the visual system must initially be able

to handle image structure at all scales and resolutions (Lindeberg 1994). To

accomplish this, the image to be analyzed is embedded in a one-parameter fam-

ily of derived images, a scale space, with resolution as the parameter. Speci�c

details about the construction of scale spaces are given in Chapter 3.

Llacer et al. (1992) create a scale space by applying a \Laplacian of Gaus-

sian" �lter, also called the Marr-Hildreth �lter, to a signal. The Laplacian is

de�ned as the trace of the matrix of second derivatives. The standard devia-

tion of the Gaussian indexes scale. The zero-crossings images �ltered in this

way are often used to locate edges. The prior proposed in Llacer et al. (1992)

gives low probability to images with zero-crossings that are a large distance

away from those in a template; in other words, lower probability is given to
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images with edges that are far from those in the template. This prior is not

very successful even in one-dimensional images.

2.3 Summary

This chapter has discussed two types of statistical models for images and land-

marks: those modeling landmarks and their con�gurations, and those model-

ing image intensities. The image intensity models fall into �ve classes, which

include Markov random �elds, region-based models, deformable templates,

boundary models, and di�erential geometry models. Each have been used,

with varying degrees of success, to model template information. The model

that is developed in Chapter 5 incorporates the hierarchical speci�cation used

in Phillips and Smith's (1994) boundary model and the multi-scale ideas from

the di�erential geometry models to build a exible class of priors on landmarks

and shapes. These models draw heavily on MRF models and deformable tem-

plate models like that of Amit and Kong (1994).



Chapter 3

Multi-Scale Image Analysis

As introduced in Chapter 2, scale space was developed to model the processing

at the front end of the visual system. The central idea is to create an image

representation that can handle image structure at all scales and resolutions si-

multaneously. This is accomplished by embedding an image in a one-parameter

family of derived images, with resolution or \scale" as the parameter. This rep-

resentation is not \data-reducing" like a wavelet decomposition, but creates a

highly redundant representation of the image that can be used to e�ciently

make calculations about features at multiple scales. The scale-space framework

facilitates the incorporation of multi-scale information into a prior distribution.

The literature distinguishes multi-resolution image processing from multi-

scale image processing. Multi-resolution image processing implies a reduction

in sampling rate as the scale becomes coarser, and is strongly associated with

the \pyramid" data structure. More information about multi-resolution pro-

cessing can be found in Rosenfeld (1984).

At �rst, the task of creating a \multi-scale" representation of image data

seems somewhat arbitrary. Considered more carefully, however, it is clear

25
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that when constructing a scale-space representation it is critically important

that the transformation from �ne scale to coarse scale actually represent a

simpli�cation of the data, so that �ne-scale features vanish monotonically with

increasing scale. If new arti�cial structures could appear at coarse scales, it

would be impossible to determine whether these structures arose from �ner

scale features or by accident|for example, by the ampli�cation of noise.

Two broad classes of multi-scale image processing have been developed:

the �rst uses Gaussian scale spaces, and the second morphological scale spaces.

In a Gaussian scale space, no new level curves are created as scale increases;

equivalently

If for some scale level �0 a point x0 is a local maximum for the

scale-space representation at that level (regarded as a function of
the space coordinates only) then its value must not increase when
the scale parameter increases (Lindeberg 1994, p. 103).

In morphological scale space, no new local extrema appear in the smoothed

signal as scale increases (Jackway 1992).

3.1 Gaussian Scale Spaces

Witkin (1983) introduced the idea of scale space for continuous one-dimensional

signals. Given a signal f : R ! R, the Gaussian scale-space image L :

R�R+ ! R is de�ned so that the representation at \zero-scale" is the original

signal,

L(x; 0) = f(x)

and the representation at coarser scales is given by the convolution of the signal

with the Gaussian probability density function, G, with mean 0 and standard
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deviation �

L(x; �) = f(x) �G(x; 0; �) =
Z 1

�1
f(�)G(x;�; �)d�

Witkin observed that the number of zero-crossings of the second derivative

of a one-dimensional signal decreases monotonically with scale. Yuille and Pog-

gio (1986) extend this result to any di�erential operator that commutes with

the di�usion equation; speci�cally, in one dimension, this property holds for

derivatives of arbitrary order. Since the local extrema of a signal correspond to

the zero-crossings of its �rst derivative, the number of local extrema decreases

monotonically with scale.

In more than one dimension, however, there is no non-trivial linear shift-

invariant (convolution) kernel that never introduces new local extrema (Lifshitz

and Pizer 1990). To generalize Gaussian scale space to more than one dimen-

sion, a di�erent \monotonically decreasing feature" must be found. Koenderink

(1984) derives a multi-dimensional Gaussian scale space using the property of

causality, which is meant to capture the idea that \any feature at a coarse

level of resolution is required to possess a (not necessarily unique) `cause' at

a �ne level of resolution, although the reverse need not be true" (Koenderink

1984). As developed by Koenderink, the causality property implies that new

level surfaces are not created as the scale parameter is increased, i.e., that lo-

cal extrema are not enhanced and do not \pop up out of nowhere" (Lindeberg

1994).

If causality is combined with a prohibition of space-variant blurring, it can

be shown that the derived family of images must satisfy the di�usion equation,

with the initial condition that the derived image at scale zero is the initial
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image. This is equivalent to

�

��

L(x; �) = �(
�
2

�x1
+ : : :+

�
2

�xn

)L(x; �); � > 0

L(x; 0) = f(x)

These equations are satis�ed when the initial image is convolved with the

(multivariate) Gaussian density function with mean 0 and variance-covariance

matrix �2I or one of its derivatives. Scale is taken to be �, the standard devia-

tion of the Gaussian. If the image is thought of as an initial heat distribution,

the scale space shows the heat distribution over time as di�usion occurs in a

homogeneous medium.

Figure 3.1 shows a one-dimensional signal and slices from its Gaussian scale

space at increasing scales. Notice that small-scale features are suppressed as

the scale (�) increases.

Other derivations of Gaussian blurring for the creation of a scale space are

given in Lindeberg (1994). Whitaker and Pizer (1993) explore the consequences

of allowing space-variant blurring. Lindeberg (1994) shows that to maintain the

desirable properties of Gaussian scale spaces in discrete images, Gaussian blur-

ring should be replaced with discrete convolution with T (n;�) = exp(��)In(�),
where In are the modi�ed Bessel functions of integer order.

3.2 Morphological Scale Spaces

One of the axioms used to derive Gaussian scale spaces is that all representa-

tions should be generated by convolutions of the original image with a kernel

(linear shift-invariant smoothing) (Lindeberg 1990). If the assumption of lin-

earity is relaxed, then it can be shown that another class of �lters, morpholog-
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Figure 3.1: Gaussian Scale Space
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ical �lters, creates scale spaces with many of the same properties as Gaussian

�lters.

Morphological �lters can be understood intuitively as follows. Think about

a two-dimensional image, f(x; y), as a surface in three-space S = f(x; y; z) :
z = f(x; y)g. Take a ball of radius r, roll it over the surface S, and keep

track of the surface traced out by the center of the ball. Intuitively, this new

surface is smoother than the original, and the larger the radius of the ball, the

smoother the \�ltered" surface. De�ne smoothing by a ball of negative radius

as rolling the corresponding positive radius ball under the surface.

Consider what happens at a hill (local maxima) in S when smoothing with

a positive radius ball. If the ball touches the top of the hill, the hill appears

at the same location in the output. If the ball is prevented from touching the

top of the hill by surrounding hills, then the hill vanishes and cannot reappear

when smoothing occurs with a larger radius ball. Formally, the number of local

maxima is a monotonically decreasing function of r. By symmetry, the same

property holds for local minima when smoothing with a ball of negative radius.

Smoothing by \rolling balls" can be formalized using ideas from gray-scale

morphology. Smoothing by a positive radius ball corresponds to dilation; math-

ematically, the dilation of a signal f by a structuring element h is given as

f � h = maxs;tff(s; t)� h(s� x; t� y)g

where the functions f and h are taken to be negative in�nity outside their

domains. Smoothing by a negative radius ball corresponds to erosion; mathe-

matically, the erosion of a signal f by a structuring element h is given as

f 	 h = mins;tff(s; t) + h(�(s� x);�(t� y))g
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where the functions f and h are taken to be negative in�nity outside their

domains. Notice that dilation and erosion are dual operators, i.e., f � h =

�(f 	�h).
The multi-scale dilation-erosion of a signal f by a structuring element h is

de�ned by Jackway (1993) as

(f � h�)(x) =
8><
>:

(f � h�)(x) if � > 0

f(x) if � = 0

(f 	 h�)(x) if � < 0

where h� denotes a multi-scale structuring element, which in the case of the

spherical structuring element is a ball of radius �.

While the intuitive development has been given in terms of spherical struc-

turing elements, the de�nition of multi-scale dilation-erosion holds for any

structuring function h�(x). A particularly useful class of structuring elements

are given by the parabolic functions, h�(x) =
1
�2
x0x, also called rotationally

symmetric quadratic structuring functions (QSFs). The rotationally symmet-

ric QSFs have many of the desirable properties of the Gaussian kernel, in-

cluding shift invariance, separability (�ltering can be decomposed into one-

dimensional dilations), and closure with respect to dilation (if qA = x
0
Ax, then

qA � qB = q(A�1+B�1)�1). In addition, the scale space created using multi-scale

dilation-erosion with rotationally symmetricQSFs displays \causality," as local

extrema are monotonically decreasing in � (Jackway 1992; van den Boomgaard

1992).

Figure 3.2 shows a one-dimensional signal (bold) and slices from its mor-

phological scale space at several scales. Morphological scale space distinguishes

between objects (\bright" or \white blobs") and background (\dark" or \black

blobs"). \In e�ect the morphological scale space consists of two (tightly linked)
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scale spaces: one for the object structure and one for the background struc-

ture" (van den Boomgaard 1992). As with the Gaussian scale space, small-scale

features are suppressed as the magnitude of the scale (�) increases.

3.3 Scale-Space Metrics

Scale space can be considered to be an (n + 1)-dimensional space, where n

dimensions are \space" and one is \scale." What is the appropriate way to

measure distances within this space? Intuitively, the scale dimension is not

commensurate with the spatial dimensions. In the context of Gaussian scale

spaces, with � > 0, Eberly (1994) suggests that measurements in scale space

should be rotation, translation, and zoom invariant, where zooming is uniform

magni�cation of both the space and scale variables. To accomplish this, an

appropriate metric for scale space is

dp
2 =

dx � dx
�
2

+
d�

2

�
2

(3.1)

where p denotes arc length, x denotes spatial coordinates, and � denotes the

scale coordinate. While this choice of metric is somewhat arbitrary, its invari-

ance properties are useful in the development of the priors in Chapter 5.

With this metric, Gaussian scale space has hyperbolic geometry. The dis-

tance between any two points (x1; �1) and (x2; �2), with �1 � �2, is given

as

dss[(x1; �1); (x2; �2)] = log(
�2

�1

(1 +
q
1� (��1)2)

(1� �L +
q
1� (��1)2

) (3.2)

where

� =
2Lq

(�21 � �
2
2)

2 + L
2[L2 + 2(�21 + �

2
2)]
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Figure 3.2: Morphological Scale Space
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and L = kx1 � x2k.
Consider the scale-space hypersphere of radius r centered at (x0; �0). It

can be shown that this is equivalent to the Euclidean hypersphere centered

at (x0; �0 cosh(r)) with radius �0 sinh(r). In other words, all of the points a

distance r from (x0; �0) lie on a circle centered at (x0; �0 cosh(r)) with radius

�0 sinh(r). Notice that these circles are not concentric as r changes, but that

as r ! 0; cosh(r)! 1 and the center approaches (x0; �0).

Consider the distance between two points (x; �) = (1; 1) and (3; 1). In

Euclidean space, the distance is 2. In scale space, the distance is log(1+
p
2p

2�1
) �

1:762: With this metric, the shortest distance between the two points is not a

straight line, but is the arc of the circle centered at (2; 0) with radius
p
2 that

passes through (2;
p
2). This occurs because scale space is less dense at higher

scales. These paths are illustrated in Figure 3.3.

One other consequence of this metric is required to develop the priors in

Chapter 5. If the metric on scale-space were Euclidean, it would be a trivial

task to �nd a point that is a given distance away from a speci�ed point. Sup-

pose that x0 = (1; 1; 1) and x1 = (2; 2; 2). Suppose also that y0 = (3; 2; 4),

and it is necessary to locate y1 to maintain the original relationship. Clearly,

y1 = (4; 3; 5).

In scale-space, however, this calculation is more di�cult. Regardless of

the metric, distances are measured along curves with zero curvature. These

zero-curvature curves are called geodesics. In Euclidean space, the di�erential

equations determining the geodesic x(p), where x = (x1; x2; : : : ; xn) and p is

arc length, are given by the system of second order di�erential equations

�
2x

�p
2
= 0
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Figure 3.3: Shortest Distances

Integrating twice yields xi(p) = xi0+x
0
i0 p, where the initial position is x0 and

the initial direction is x00, where x
0 = �x

�p
and (x0

0)T (x0
0) = 1.

In scale-space, however, using the metric given in (3.1), the di�erential

equations specifying geodesics are (Eberly 1994)

d
2x

dp
2

=
2

�

d�

dp

dx

dp

d
2
�

dp
2

=
1

�

[(
d�

dp

)2 � jdx
dt

j2]

These equations can be integrated to

x(p) = c+ r tanh(p) u (3.3)

�(p) = r sech(p)

These equations specify a circle centered at (c; 0) with radius r and \north
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pole" at (c; r) that lives in the plane spanned by (0; 1) and (u; 0). All of the

constants, c, r, and u, are determined either by initial value data (The geodesic

starts at (x0; �0) and moves in the direction (x0
0
; �

0
0) satisfying [(x0

0)T (x0
0) +

(�00)
2]=�20 = 1.) or by boundary value data (The geodesic starts at (x0; �0) and

ends at (x1; �1).).

The relationships of the constants to the initial value data are as follows

(Eberly, personal communication):

u =
x0

0

jx00j

r =
�
2
0

jx00j

c = x0 + r (

r
1� (

�0

r

)2) u

The relationships of the constants to the boundary value data are as follows:

L = kx1 � x0k

u =
(x1 � x0)

L

r =

q
(�21 � �

2
0)

2 + L
2[L2 + 2(�21 + �

2
0)]

2L

c = x0 + r (

r
1� (

�0

r

)2) u

The problem that needs to be solved is as follows. Given (x0; �0) and

(x1; �1), �nd the geodesic distance d between them. Find the initial direction

of the geodesic, D0. Starting at (y0; t0), walk along a geodesic initially in the

direction D0 through a distance d to get to (y1; t1). Assume that �0 � �1.
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From (3.3),

dx

dp

= r sech(p)
2
u =

�
2

r

u

d�

dp

= �r sech(p)tanh(p) = ��(
r
1� (

�

r

)2)

The initial direction is

D0 = (x00; �
0
0) = (x0(0); �0(0)) = (

�
2
0

r

u;��0(
r
1 � (

�0

r

)2))

where r, c, and u are computed using the boundary value conditions. From

the construction, [(x0
0)T (x0

0) + (�00)
2]=�20 = 1.

The geodesic distance d can be calculated from (3.2). The initial direction

for the \y-geodesic" is

(y0
0
; t
0
0) =

t0

�0
(x0

0
; �

0
0)

This vector is in the same direction as D0, has initial point at (y0; t0), and has

unit scale-space length [(y00)
T (y00) + (t00)

2]=t20 = 1.

The equation of the circle containing the geodesic connecting (y0; t0) to

(y1; t1) is

y(p) = c+ r tanh(p) u

t(p) = r sech(p)

where

u =
y0

0

jy00j

r =
t
2
0

jy00j

c = y0 + r (

s
1� (

t0

r

)2) u



38

The initial arc length parameter for (y0; t0), p0, satis�es

y0 = c+ r tanh(p0) u

so

p0 = tanh�1(�
s
1 � (

t0

r

)2)

The arc length parameter for (y1; t1) should be d units larger than p0, so

p1 = p0 + d

The desired point is (Eberly, personal communication)

y1 = c+ r tanh(p1) u

t1 = r sech(p1)

In practice, most of these calculations do not need to be performed. As-

sume that (y0; t0) and (y1; t1) are in the same spatial and scale relationship as

(x0; �0) and (x1; �1). Then it can be shown that

(y1; t1)� (y0; t0) =
t1

�1
((x1; �1)� (x0; �0))

=
t0

�0
((x1; �1)� (x0; �0)) (3.4)

3.4 Summary

Scale space has proven to be a powerful tool in computer vision research.

It allows easy manipulation of multi-scale features and measurements of an

image. Exploiting its properties allows multi-scale descriptions of a template

and transparent handling of a�ne transformations|essential components of

the classes of priors developed in Chapter 5.



Chapter 4

Describing Templates

The crucial �rst step in specifying priors using template information is the de-

velopment of a multi-scale description of the shape and features of a template.

A template description provides a \most likely" shape against which others

can be compared and evaluated. It also identi�es landmarks, features at land-

marks, and spatial and scale relationships among landmarks. Because shape is

de�ned as those properties of the �gure that are unaltered by rotation, trans-

lation, and uniform scaling, it is important to choose feature descriptors that

have these properties. In some situations, it may also be desirable to choose

descriptors that are invariant to monotonic or a�ne intensity transformations.

4.1 Transformations and Invariances

A�ne transformations preserve parallel lines and equally spaced points. They

include translation, rotation, scaling, and shear. Let (x; y) = (X(u; v); Y (u; v))

be the output pixels and (u; v) = (U(x; y); V (x; y)) be the input pixels. X and

Y are called the forward mappings (of input to output), and U and V are the

inverse mappings (Wolberg, 1990). A�ne transformations can be formulated

39
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as follows.

X(u; v) = a11u+ a21v + a31

Y (u; v) = a12u+ a22v + a32

or equivalently

(x; y; 1) = (u; v; 1)

0
B@
a11 a12 0

a21 a22 0
a31 a32 1

1
CA = (u; v; 1)A

Notice that the inverse of an a�ne transformation is itself a�ne.

(u; v; 1) =

(x; y; 1)
1

a11a22 � a21a12

0
B@

a22 �a12 0

�a21 a11 0

a21a32 � a31a22 a31a12 � a11a32 a11a22 � a21a12

1
CA

Translation has a forward mapping speci�ed by

A =

0
B@

1 0 0
0 1 0

Tu Tv 1

1
CA

Rotation has a forward mapping speci�ed by

A =

0
B@

cos(�) sin(�) 0

� sin(�) cos(�) 0

0 0 1

1
CA

Scale has a forward mapping speci�ed by

A =

0
B@
Su 0 0
0 Sv 0

0 0 1

1
CA
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A translation followed by a rotation and a scale change is given by

0
B@

1 0 0

0 1 0

Tu Tv 1

1
CA
0
B@

cos(�) sin(�) 0

� sin(�) cos(�) 0

0 0 1

1
CA
0
B@
Su 0 0

0 Sv 0

0 0 1

1
CA =

0
B@

Su cos(�) Sv sin(�) 0

�Su sin(�) Sv cos(�) 0

Su(Tu cos(�)� Tv sin(�)) Sv(Tu sin(�) + Tv cos(�)) 1

1
CA (4.1)

When translation and rotation invariance are posited for features and dis-

tances in scale space, the transformations are assumed to happen only in the

spatial coordinates. Uniform scale changes, however, happen both in the spa-

tial and scale coordinates. This transformation is called zooming to distinguish

it from scale changes that occur in space only.

Eberly (1994) describes zoom invariance by saying, \If scale measurements

are made for an object, the scale measurements for a magni�ed version of the

object should be the magni�ed measurements for the original object." Suppose

the feature of interest is intensity, and let f(x) be the zero-scale image. The

intensity at any point in scale space is given by

Z 1

�1

1p
2��

exp(� 1

2�2
(x� u)2)f(u)du

If the image is zoomed by a factor of �, the intensity at any point in scale space

is given by

Z 1

�1

1p
2��

exp(� 1

2�2
(x� u)2)f(�u)du =

Z 1

�1

1p
2���

exp(� 1

2(��)2
(�x� v)2)f(v)dv

This is equivalent to evaluating the scale space of the initial image at (�x; ��).
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This property is useful for measuring features in images. If a candidate

image is a zoomed version of the template, and the features are zoom invari-

ant, then the features from the template are found in the candidate image at

the zoomed coordinates. The feature descriptors developed in this chapter are

invariant to rotation and translation, and often to intensity changes and zoom-

ing. The priors developed in Chapter 5 share these invariances; consequently,

the models that are developed can be applied regardless of the orientation,

location, or size of an object within an image.

4.2 Medial Descriptions

One important class of feature descriptors relies on extracting medial or \mid-

dleness" structure. Blum and Nagel (1978) developed the symmetric axis trans-

form (SAT) as a medial descriptor for binary images. The two components of

the SAT are the symmetric or medial axis and the radius function. The medial

axis consists of the centers of all circles within the object that are tangent to

the object boundary at two or more points. The radius function is de�ned at

each point along the medial axis as the radius of the tangent circle.

The SAT and the object boundary are equivalent descriptors; however, some

properties (like object width and curvature) are easier to describe using the

SAT (Blum and Nagel 1978). The medial axis itself is a connected structure

with three types of points: normal, branch, and end. A normal point is one

whose underlying circle touches the �gure in exactly two separate contiguous

sets; a branch point's circle touches in three or more separate contiguous sets;

an end point's circle touches in one contiguous set. Objects can be partitioned

using simpli�ed segments, which consist of contiguous sets of normal points
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terminated by a branch or end point. By further classifying simpli�ed segments,

it is possible to compare shapes independent of width, orientation, and object

curvature.

There are two problems with the SAT. The �rst is that it is extremely sensi-

tive to small distortions along the boundary. Small protrusions or indentations

can create new axis branches. The second problem is that an object must be

segmented before its SAT can be calculated. These problems can be addressed

by another type of shape analysis, called structural image description, where

features representative of objects in an image are extracted from the original

intensity values.

The multi-scale medial axis, or core (Fritsch 1993; Burbeck and Pizer 1994;

Pizer et al. 1994), models medial structure directly from image intensity values.

The idea is to apply a �lter to an image to create a function on scale space,

M(x; �), that describes how medial a point x is relative to object boundaries

(Eberly 1994). The core is de�ned as a ridge of the medialness function in scale

space.

A variety of medialness functions have been proposed, each tailored to

speci�c imaging situations. The medialness functions all share the properties

of translation, rotation, and zoom invariance. Fritsch (1993) uses M(x; �) =

��2r2
L(x; �), wherer2 denotes the Laplacian or trace of the matrix of second

derivatives. This function is useful \for extracting anatomic objects with non-

parallel sides, approximately uniform interiors, edges of �xed contrast polarity,

and possibly low signal to noise ratio" (Pizer et al. 1994). Another proposal

is M(x; �) = ��2�, where � is the largest magnitude eigenvalue of the ma-

trix of second derivatives of L(x; �). This medialness function is \particularly
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sensitive to objects with parallel sides and uniform interior intensity, such as a

blood vessel" (Pizer et al. 1994).

Ridges are a generalization of local maxima. For a real-valued function

f(x), a local maximum for f occurs at x if Df(x) = 0 and D2
f(x) is negative

de�nite, whereD denotes derivative. A ridge requires that these properties hold

in a smaller number of directions. Let vk denote the eigenvectors of D2
f(x)

and �k the eigenvalues, with �1 � �2 � : : : �n. The conditions for being a

d-dimensional ridge point are vk �Df(x) = 0 and �k < 0 for k = 1; : : : ; n� d.

Because cores make explicit use of scale, they are more robust than the SAT

to small indentations or protrusions along object boundaries. Further, they do

not require prior segmentation of the object. Fritsch (1993) discusses the use

of cores for image registration. The cores of an object resemble a skeleton, and

consequently may be useful in establishing hierarchical relationships among the

parts of an object.

4.3 Di�erential Geometry Descriptions

Structural image description has also given rise to a set of descriptors based

on di�erential geometry. These descriptors were introduced briey in Section

2.2.5. Di�erential geometry descriptors are composed of linear or non-linear

combinations of scale-space derivatives. For ease of notation, let L(x; �) =

f(x) � G(x;0; �2I) denote the Gaussian scale space of an image f(x) and let

derivatives be denoted as �2

�xixj
f(x) = fxixj (x). It should be noted that a single

partial derivative, e.g., Lxi(x; �), does not contain meaningful geometric shape

information, because its value depends critically on the coordinate system. In-

stead, interest focuses on descriptors that are invariant with respect to rotation
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and translation, and often with respect to scale and intensity transformations.

Figure 4.1 shows the white matter for the Ho�man brain phantom (HBP)

(Ho�man et al. 1990) and the slice of the phantom's Gaussian scale space at

scale 3.0. Figure 4.2 shows the �rst and second partial spatial derivatives at

scale 3.0. The largest values of the derivatives are in white, the smallest in

black.

4.3.1 Second Order Di�erential Invariants

When one uses di�erential geometry descriptors, one is interested in describing

local image properties. However, when working in scale space, the meaning

of local depends on the scale where the descriptor is calculated. A \local"

property at a large scale may depend on intensities from almost every pixel in

the image.

Florack (1993) derives a set of �ve second order irreducible polynomial dif-

ferential invariants. Second order di�erential means the expressions are com-

posed of intensity, �rst derivatives, or second derivatives; irreduciblemeans that

the �ve functions are not polynomial combinations of one another; invariant

means that the expressions do not depend on the coordinate system and are

invariant under rotations and translations. Every second order polynomial dif-

ferential invariant can be expressed through multiplication or addition of these

invariants (Florack 1993). The invariants are (in terms of scale-space deriva-

tives and assuming two spatial dimensions): L (intensity), L2
x + L

2
y (squared

gradient magnitude), Lxx +Lyy (Laplacian), L
2
xx +2Lxy + L

2
yy (deviation from

atness), and L2
xLxx+2LxLyLxy+L

2
yLyy (non-maximum suppression). Florack

(1993) also derives complete sets of non-polynomial invariants.

Invariants are useful as descriptors because their values do not depend on



46

(a)

(0,0)

Y

X

(b)

Figure 4.1: Original and Scale-Space HBP (a) White matter, scale 0; (b) White
matter, scale 3.0
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(a) (b)

(c) (d)

(e)

Figure 4.2: HBP Derivatives (a) X-derivative, scale 3.0; (b) Y-derivative, scale
3.0; (c) XX-derivative, scale 3.0; (d) XY-derivative, scale 3.0; (e) YY-derivative,
scale 3.0
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the coordinate system in which they are calculated. Most of the di�erential

geometry descriptors that are described below are functions of this set of second

order polynomial di�erential invariants.

4.3.2 Edge Detection

Finding boundaries and edges in images is a common task. If the regions in

an image are described by boundaries, then edge �nding is a natural precursor

to segmentation. A simple edge descriptor is the squared gradient magnitude

L
2
x + L

2
y. Places in the image with high gradient magnitude correspond to

places where intensities are changing sharply, which often indicates a change

from one region to another. The squared gradient magnitude of the Ho�man

phantom at scale 3.0 is given in Figure 4.3(a).

Another way to de�ne edges in a continuous gray-level image is as the set

of points where the gradient magnitude assumes a maximum in the gradient

direction. This method is called non-maximum suppression (Canny 1986).

Lindeberg (1994) formulates this method of edge-�nding in terms of di�erential

geometric descriptors and shows that \edges" should be located at the zero-

crossings of

L
2
xLxx + 2LxLyLxy + L

2
yLyy (4.2)

where

L
3
xLxxx + 3L2

xLyLxxy + 3LxL
2
yLxyy + L

3
yLyyy < 0 (4.3)

Notice that there is no need to estimate the gradient direction. Equations

(4.2) and (4.3) are invariant with respect to translation and rotation, and,

because one is looking for zero-crossings of (4.2), to uniform rescaling and

a�ne intensity transformations as well. Figure 4.3(b) shows the non-maximum
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suppression edge detector applied to the white matter of the Ho�man phantom

at scale 3.0.

Zero crossings of the Laplacian have been used as edge-detectors (Marr and

Hildreth 1980), but they do a poor job �nding the edges of small indentations

(Llacer et al. 1993). The Laplacian is invariant with respect to rotation and

translation, and its zero-crossings are additionally invariant with respect to

scale. The Laplacian of the Ho�man phantom at scale 3.0 is shown in Figure

4.3(c).

4.3.3 Level Curves

Level curves or isophotes are lines of equal intensity within an image. Ex-

amining the properties of isophotes is useful because isophotes are invariant

under rotation, translation, and monotonic intensity transformations. Using

only �rst and second derivatives, there are two isophote descriptors. The �rst

is level curve, or isophote, curvature

L
2
xLyy + L

2
yLxx � 2LxLyLxy

(L2
x + L

2
y)

3=2
(4.4)

The second is ow line curvature,

(L2
x � L

2
y)Lxy � LxLy(Lyy � Lxx)

(L2
x + L

2
y)

3=2

where ow lines (also called streamlines or gradient integral curves) are the

orthogonal trajectories of the isophotes.

Figure 4.4 shows these two invariants calculated for the white matter of the

Ho�man phantom at scale 3.0. Higher curvature corresponds to lighter gray

levels. These features are not very useful in practice because their calculation is
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(a) (b)

(c)

Figure 4.3: HBP Edges and Boundaries (a) Squared Gradient Magnitude, scale
3.0; (b) Non-Maximum Suppression, scale 3.0; (c) Laplacian, scale 3.0
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ill-conditioned. The denominator of these expressions is a power of the gradient

magnitude, which goes to zero at local maxima and minima. The numerator

should also go to zero at these points, resulting in an undetermined value.

However, due to noise and numerical errors, what often happens is that very

large positive or negative values appear at these points.

4.3.4 Corners and Junctions

A descriptor that is commonly used for junction or corner detection is isophote

curvature multiplied by gradient magnitude. Corners are typically character-

ized both by high curvature and by large gradient. To give a stronger response

near edges, the isophote curvature is often multiplied by some power k of the

gradient magnitude: often k = 3 is chosen so that the expression for the corner

detector becomes

~� = L
2
yLxx � 2LxLyLxy + L

2
xLyy (4.5)

Notice that this is the numerator of (4.4). This expression is invariant with

respect to rotation and translation. Further, if the x- and y-coordinate axes are

rescaled by di�erent factors sx and sy, ~� is multiplied by s
2
xs

2
y. This means that

any maximum of ~� remains a maximum under non-uniform scalings. \Corner

candidates" are typically de�ned as local maxima or minima of ~�. Figure

4.5 shows the corner detector calculated for the white matter of the Ho�man

phantom at scale 3.0. Larger values have lighter gray levels.

4.3.5 Measures of Flatness

Other second order descriptors that are invariant with respect to rotation and

translation include measures of \deviation from atness." The \total deviation
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(a)

(b)

Figure 4.4: HBP Curvatures (a) Isophote Curvature, scale 3.0; (b) Flow Line
Curvature, scale 3.0
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Figure 4.5: Corner Detector, scale 3.0

from atness" corresponds to areas of the image where intensities are changing

non-linearly. This descriptor is

L
2
xx + 2Lxy + L

2
yy

The \maximal and minimal deviation from atness" (ter Haar Romeny et al.

1991) are the eigenvalues of the second derivative matrix and have expressions

Lxx + Lyy �
q
(Lxx � Lyy)2 + 4L2

xy

2

The eigenvectors corresponding to these eigenvalues are

(
Lxx � Lyy �

q
(Lxx � Lyy)2 + 4L2

xy

2Lxy

; 1)
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These eigenvectors can be useful in estimating rotation. The deviations from

atness are given for the Ho�man phantom at scale 3.0 in Figure 4.6.

4.4 Choosing Features

As discussed above, there are a variety of features that can be used to describe

characteristics of a template. It is important to examine what methods can

be used to develop e�ective template descriptions by choosing both locations,

features of interest, and geometrical relationships of interest.

4.4.1 Previous Work

The previous work addressing these questions has focused primarily on pat-

tern recognition as applied to image segmentation. Coggins and Huang (1993)

develop the idea of multi-scale geometric statistical pattern recognition. Their

goal is to be able to label points in an image based on distinctive geometric

features. They apply various �lters to the Gaussian scale space of an image

to calculate di�erential geometric descriptors and create a feature space. Ev-

ery point in the image is represented by a vector in the feature space that

contains the value of multi-scale descriptors at that point. Training data is

used to determine the normal distribution that best describes each segmen-

tation class, and then the points x to be segmented are assigned to the class

that minimizes the Mahalanobis distance between x and the class mean. This

methodology is problematic because points in the same class do not tend to

cluster in well-separated \blobs" in feature space, and assuming a normal dis-

tribution is typically a poor approximation.

Haring et al. (1993) address the same problem by using di�erential geometry
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(a) (b)

(c)

Figure 4.6: HBP Flatness Measures (a) Total Deviation from Flatness, scale
3.0; (b) Maximum Deviation from Flatness, scale 3.0; (c) Minimum Deviation
from Flatness, scale 3.0
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shape descriptors to train a neural network to recognize clusters of features

at various scales and hence to segment images. Although some success was

achieved using this algorithm, it is di�cult to draw general conclusions about

either the distribution of features in feature space or appropriate combinations

of features useful for describing templates.

4.4.2 Heuristics

In addition to the multi-scale statistical pattern recognition techniques, there

are a variety of heuristic techniques for feature selection and template descrip-

tion that appear throughout the literature on multi-scale image analysis.

It is helpful if the feature of interest is invariant to translation, rotation, and

scale changes, as these components are not involved in the de�nition of shape.

In addition, features that are invariant to monotonic intensity changes are of

special interest, as intensity is usually not of primary interest in a template.

If the feature of interest is changing quickly at a particular location, the rapid

change can also be quite useful in distinguishing that location. This is exploited

in the speci�cation of likelihood functions in Chapter 6.

To identify landmarks, Amit and Kong (1994) use local operators involv-

ing only rank relations between intensities in the neighborhood of the pixel.

They found, for example, that local maxima appeared to be the most descrip-

tive of the anatomy of the X-ray images they examined. Hierarchical relation-

ships among landmarks were \introduced manually by connecting vertices that

seemed to have an important geometric relation with each other."

Bookstein (1991) proposes three types of landmarks for use in biological

morphometrics; however, with adaptation, his principles are useful for general
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landmark selection. Type 1 landmarks are located at the discrete juxtapositions

of tissues, i.e., at points in space where three structures meet. Examples include

the branching points of tree structures (for example, branching points of a

multi-scale medial axis) or the bony sutures under the bridge of the human

nose.

Type 2 landmarks are maxima of curvature or other local morphogenetic

processes. Examples include the tips of protrusions and valleys of indenta-

tions; in three dimensions, one looks for bulges, dips, or saddle points. Type

3 landmarks are extremal points. Examples include the endpoints of diame-

ters, centroids, or medial axes. Notice that Bookstein's landmarks �t naturally

with the medial description of templates, as points of interest correspond to

branching and end points of medial descriptions.

Lindeberg (1994) proposes the following heuristic for identifying scales and

locations of interest in an image.

In absence of other evidence, assume that a scale level, at which
some (possibly non-linear) combination of normalized derivatives

assumes a local maximum over scales, can be treated as reecting
a characteristic length of a corresponding structure in the data (p.

320).

If the input image is rescaled by a constant scaling factor, then the scale at

which the maximum of many di�erential geometric descriptors is achieved is

multiplied by the same factor. This selection criteria has also been used by

Fritsch (1993) for identifying multi-scale medial axes (maxima over scale of the

medialness function) and Pizer et al. (1994) for identifying cores.

Pizer et al. (1994) also propose the use of directed acyclic graphs for object

description. They envision the nodes of the graph as occurring on cores and

containing intensity statistics and boundary texture statistics; the arcs of the
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graphs contain sub�gure type (e.g., protrusion or indentation), location relative

to a core, and angle relative to a boundary.

4.4.3 Specifying a Template Description

Clearly, there is no unique way to describe a template. The following techniques

have proven useful in empirical work with the multi-scale priors for template

information and are employed in subsequent chapters.

There are three components of a template description. The �rst identi�es

landmarks; the second identi�es features of interest at the landmarks; the third

speci�es geometric relationships among the landmarks.

The steps needed to identify landmarks cannot be separated from those

needed to identify features of interest in the template. The �rst step in the

process is the identi�cation of an \origin", which typically corresponds to the

large-scale center of the template. The feature that identi�es the origin is

usually some measure of medialness. Next, n locations (xi; �i) in scale space are

chosen where there are features of interest. Locations of interest are typically at

medial, corner, boundary, or junction points in the image and its background.

It has proven useful to start the identi�cation of template landmarks by

examining the cores of the objects in the image. In the example in Chapter

6, the two objects in the image are a brain ventricle and the brain itself.

Identifying the cores provides a set of possible points of interest. Some of

these points can be uniquely identi�ed: for example, the ends of the brain core

can be identi�ed by local extrema in the corner detector (4.5). Other points

are identi�ed only in relation to the overall con�guration of landmarks. For

example, normal core points are found by identifying a ridge in medialness; the
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\coreness" of any individual point depends on what features occur around it.

Both types of points are useful in template description and prior speci�cation.

In addition to cores, the corner detector and squared gradient magnitude

are useful in suggesting points of interest. Local extrema of the corner detector

correspond to junctions and core vertices; the squared gradient magnitude iden-

ti�es likely boundary points. All of these feature descriptors must be \scaled"

by multiplying by an appropriate power of scale to insure zoom invariance.

After identifying landmarks and features of interest, the \important geo-

metric relations" among the points must be speci�ed. I use several strategies

for identifying these connections. The �rst is to establish a hierarchical branch-

ing structure that groups the locations of interest into \branches" that contain

ordered sets of related features. This is intended to establish links among

points whose relative locations are important to maintaining the shape of the

template. Often, moving from the top of the branch to the bottom corresponds

to moving from large-scale features to small-scale features. For example, one

branch for a hand template might contain the large-scale center of the hand

followed by the center of the index �nger followed by the center of the index

�ngernail. Because boundaries tend to be well-localized in scale, I have found

it useful to pair them with medial points in the branching structure, often using

the boundaries as the ends of branches.

After specifying connections along a branch, links between branches must

be included. For example, in the example in Chapter 6, the core for the brain

is connected in several locations to the central core for the ventricle. Links

between the boundary points at the ends of contiguous branches are helpful

because the boundary points are not uniquely speci�ed by the features.
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A concrete example of a template built using these heuristics can be found

in Chapter 6, where a distribution on landmarks is constructed using a brain

ventricle template.

4.5 Summary

This chapter provides an overview of invariances, feature description, and meth-

ods for specifying template descriptions. Specifying a good multi-scale tem-

plate description is a crucial �rst step in the development of a prior capturing

template information. Because shape is de�ned as those properties of the �gure

that are unaltered by rotation, translation, and uniform scaling, it is important

to choose feature descriptors that have these properties. Di�erential geometry

descriptors o�er a rich variety of feature descriptors that have these invariances.

These descriptors are used in Chapter 6 to develop both prior distributions and

likelihood functions.



Chapter 5

Multi-Scale Template Priors for

Landmarks

This chapter develops a class of multi-scale prior distributions for the location

of landmarks and objects within images. The priors incorporate ideas about

landmarks from the statistical theory of shape and about neighborhoods and

local conditional probability speci�cation from MRF models for pixel intensi-

ties. The priors di�er from standard applications of MRF models in that the

sites in the �elds represent image objects, and the random variables associated

with the sites represent their locations. Another key feature of these priors is

their ability to use information from a variety of resolutions. Because these

types of priors allow the computation of posterior distributions of the locations

of landmarks, they are inherently useful in such imaging tasks as automatic

landmark identi�cation, segmentation, and object recognition.

5.1 Motivation

Amit and Kong (1994) suggest that three problems must be addressed when

developing deformable template models: the deformation model and its vari-

61
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ability, the data term that drives the matching, and the computational tools

and their limitations. These criteria have proven to be useful for the devel-

opment of multi-scale priors on landmarks as well. The deformation model

in this chapter is a MRF prior on the scale-space location of landmarks; the

data term is a likelihood function that incorporates features at the landmarks;

the computational tool is Markov chain Monte Carlo (MCMC), which has been

widely used for calculating posterior distributions for models with MRF priors.

The development of likelihood functions and MCMC methods are addressed

in the context of an example in Chapter 6; this chapter focuses on the MRF

prior.

Suppose that a template description like that proposed in Section 4.4.3 has

been created. The prior uses only part of the information from the template

description. Speci�cally, it requires the n scale-space locations and the neigh-

borhood relationships between them. Information about the features at the

landmarks is incorporated into the likelihood function.

The goal for specifying the prior is to create a probability distribution on

sets of n scale-space locations that assigns collections of points describing �g-

ures \like" the template high probability and points describing �gures \unlike"

the template low probability. If a �gure has the same shape as the template, it

should be assigned the same probability as the template. In other words, trans-

lations, rotations, and zoomings of the template receive the same probability

as the template.

A �rst attempt at developing such a prior might proceed as follows. Given

a set of points X = (x1; : : : ;xn), translate X so that the mean of its spatial

coordinates matches that of the template. Zoom X so that the sum of squares
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di�erence of its spatial coordinates from their means is the same as the tem-

plate. Rotate X so that it is in the same orientation as the template. After

rotation, translation, and scale have been accounted for, calculate a measure

of how di�erent the shape of X is from the template.

The problem with this method can be illustrated by an example. Suppose

that the template is a \normal" human hand and that the candidate image X

is from a hand where the thumb is swollen to twice the normal size. If X is

globally rescaled to the size of the template, the �ngers will be too small, the

thumb will be too large, and a large shape di�erence will be found. It would be

more desirable to assess a single \penalty" for the thumb's size, but if the thumb

is otherwise the right shape, to �nd no other shape di�erences. These types of

\penalties" can be modeled by using a MRF model with appropriately chosen

neighborhoods and cliques. Many elastic deformation models have implicit

constraints that penalize large changes in the local lattice elements (Amit and

Kong 1994); this is avoided using the MRF structure.

5.2 Sites, Random Variables, Neighborhoods,

and Potential Functions

Following Geman and Geman (1984), to specify a MRFmodel, one must choose

sites, random variables indexed by the sites, a neighborhood system over the

sites, and potential functions on cliques of sites. The prior speci�ed here uses

the template description to specify both sites and a neighborhood structure.

The sites are taken to be the nodes of the graph in the template description

(i.e., the landmarks or places where features of interest are found). The neigh-

borhood system is \nearest neighbor," meaning any node that can be reached
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by traversing exactly one arc of the template description graph. Section 4.4.3

gives more details on the speci�cation of template descriptions.

The random variables at the sites are not the features of interest, but rather

the scale-space location of the landmark. This di�ers from the typical MRF

models speci�ed in image analysis. In Besag (1974) and all subsequent work,

the locations of the sites are assumed to be known and are located at each

pixel, while the random variables at the sites are pixel intensities or region

labels.

The cliques used in the template priors depend on the precise structure of

the template graph. In the the prior developed here, the only cliques with non-

zero potential functions are those containing either one or two nodes. This, of

course, can be generalized to allow more exibility in the modeling of defor-

mation.

In order to assign the same probability to any rotation, translation, or

uniform rescaling of the template, it is necessary to have potential functions

that are invariant to these transformations. One potential function that satis-

�es these requirements is given by Amit and Kong (1994) and is discussed in

Chapter 2. I am interested in measuring distances in scale space rather than in

Euclidean space; consequently, the potential functions I use employ scale-space

distance rather than Euclidean distance.

The potential function for singleton cliques is intended primarily for cliques

containing the scale coordinate of the scale-space location. The potential func-

tion has the form of the log of an inverse gamma distribution. (Because the

potential functions are exponentiated in the Gibbs distribution, this is equiv-

alent to adding independent inverse gamma distributions to the prior.)
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The mean of the inverse gamma distribution for each scale is set as follows.

For an image closely matching the template, calculate the moment of inertia.

Normalize the moment of inertia by dividing by the total intensity, and take

the square root of the resulting quantity. Let the result be denoted by I(t). If

the template is zoomed by �, I(t) is multiplied by �; I(t) is invariant to uniform

changes in intensity. For each landmark's scale in the template, calculate the

ratio of the template scale and I(t). The mean of the inverse gamma is set to

this ratio times the I calculated for the current image. The variances are set

a priori to provide a reasonable range of values. This potential is rotation,

translation, and zoom invariant. If the image is zoomed, I increases by the

same factor, and the mean of the gamma distributions shifts appropriately.

There are three potential functions that are useful for cliques with two

elements. The �rst potential function that I use measures the distances between

pairs of points in the candidate image and compares them to distances in the

template. Because scale-space distance is invariant to rotation, translation, and

zoom, it satis�es the necessary transformational invariances. The potential is

given as

V

(1)
ij = �k(dss(xi;xj)� dss(�i; �j))

2 (5.1)

where �i and �j are the template locations of landmarks i and j, xi and xj are

\candidate" locations in scale space, and dss(x1; x2) is de�ned in (3.2).

There is an obvious problem with this potential function. Because it only

involves distances between pairs of points, there is nothing to prevent the

template from \folding" on itself. In other words, this potential does not

preserve angles at the landmarks. In Euclidean space, a solution to this problem

would be to compare distances between triples of points. This solution does
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not apply in the same way in scale space.

Scale-space distance has �ve isometries, or transformations that preserve

distance. These are translation in space by a constant vector, rotation in

space (left multiplication by an orthogonal matrix of determinant 1), reection

in space (left multiplication by an orthogonal matrix with determinant -1),

zooming (multiplication of space and scale coordinates by the same constant),

and inversion with respect to a hyperellipsoid. The �nal isometry implies that

dss((x1; �1); (x2; �2)) = dss(
(x1; �1)

kx1k2 + �
2
1

;

(x2; �2)

kx2k2 + �
2
2

)

If measurements involving angles or lengths are made at a particular point, the

measurements remain the same even if the coordinates are translated, rotated,

reected, or zoomed.

As an example, consider the triangle containing the three points (x; �) =

(1; 1); (5; 1); (1; 4). Inverting with respect to a hyperellipsoid yields (x; �) =

(1
2
;
1
2
); ( 5

26
;

1
26
), and ( 1

17
;

4
17
). Both triangles are plotted in Figure 5.1, where

the second set has been zoomed by a factor of 6 to make the �gures more

comparable. (Recall that zooming does not change distances.) In scale-space,

the distances between any pair of points are the same in each �gure. It may

be misleading to label these pictures as triangles, because the distances are

measured along geodesic curves, which are arcs of circles, between the points;

however, the \straight line" connection is the typical visualization used when

constructing a neighborhood structure for a template description.

Inversion with respect to a hyperellipsoid has consequences for the po-

tential function V
(1), because it depends only on scale-space distance. Sup-

pose that the core of a �gure can be parameterized as (x(t); y(t); �(t)) =
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Figure 5.1: Scale-Space \Triangulation"

(0; t; 1) for t 2 [0; 1]. This is plotted in Figure 5.2(a), where scale is repre-

sented by the lines on either side of the spatial core. If the core is \inverted

with respect to a hyperellipsoid," the resulting core can be parameterized as

(u(t); v(t); (t)) = (0; t

1+t2 ;
1

1+t2 ) for t 2 [0; 1]. This is plotted, zoomed by a fac-

tor of 2, in Figure 5.2(b). For any t1; t2 2 [0; 1], it is the case that the distance

from (x(t1); y(t1); �(t1)) to (x(t2); y(t2); �(t2)) is the same as the distance from

(u(t1); v(t1); (t1)) to (u(t2); v(t2); (t2)). This implies that no matter how the

k landmarks and neighborhood structure are chosen for a particular template

description, there exists another set of k points, not translations, rotations, re-

ections, or zoomings of the initial points, with the same scale-space distances

between points in the structure.

The consequences of this isometry for potential function V
(1) are, for ex-
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ample, that the triangles in Figure 5.1 receive the same probability, as do any

translations, rotations, reections, or zoomings of the triangles. In practice,

this invariance should never cause a problem. The likelihood functions used in

conjunction with these priors give higher probability to images with the cor-

rect features at the landmarks. For a particular type of image, it is extremely

unlikely that appropriate features (e.g., boundaries, middles, corners) would

exist at the appropriate locations and scales for both con�gurations of points.

As a result, using triples of points and a potential function that compares the

di�erence in their lengths to the lengths in the template may work well.

I have considered an alternative approach to modifying the potential func-

tion that still allows two-element cliques to be used. The modi�cation preserves

angles by removing rotation invariance. The motivation for the modi�ed po-

tential functions comes from the auto-normal model (Besag 1974). This model

is a MRF with potential functions for two-element cliques of the form

Vij = �k((xi � �i)� (xj � �j))
2

in the univariate case, and

Vij = �k((xi � �i)� (xj � �j))
0((xi � �i)� (xj � �j)) (5.2)

in the multivariate case, where k > 0 and � is the expected value of x.

The intuition for potentials that can be used to measure shape di�erence

comes from rewriting (5.2) as

Vij = �k((xi � xj)� (�i � �j))
0((xi � xj)� (�i � �j)) (5.3)

= �k(kxi � xjk2 + k�i � �jk2 �

2kxi � xjkk�i � �jk cos(xi � xj; �i � �j))
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where cos(xi�xj; �i��j) is the cosine of the angle between the vectors xi�xj
and �i � �j . Think of � as the template. This type of potential compares the

squared distances between two points in a candidate image X and two points

in the template � and whether xi � xj and �i � �j are in the same direction.

From (3.4), if xi and xj are in the same scale-space relationship as �i and

�j , then (xi � xj) = c(�i � �j), and the cosine between xi � xj and �i � �j

is one. This holds using both the scale and space components of xi � xj and

�i � �j or just the space components. Let sp(x) denote the space coordinates

of a scale-space point x. By substituting scale-space distance for Euclidean

distance, two other potential functions can be de�ned as

V

(2)
ij = �k[(dss(xi;xj))2 + (dss(�i; �j))

2 � (5.4)

2dss(xi;xj)dss(�i; �j) cos(xi � xj; �i � �j)]

V

(3)
ij = �k[(dss(xi;xj))2 + (dss(�i; �j))

2 �

2dss(xi;xj)dss(�i; �j) cos(sp(xi � xj); sp(�i � �j))]

The potentials V (1), V (2), and V
(3) are illustrated with the following ex-

ample. Let x1 = (x; y; �) = (0; 0; 1), �1 = (0; 0; 1), and �2 = (0; 1; 1) and

consider the probability distribution of x2 given x1 as speci�ed using each of

the potential functions.

Figure 5.3 shows the distributions generated by potential function V
(1).

This potential relies strictly on scale-space distance and has no \preferred di-

rection." Recall from Section 3.3 that the locus of points a distance dss((0; 0; 1);

(0; 1; 1)) = 0:962 away from (0; 0; 1) is a circle of radius sinh(0:962) = 1:12 and

center (0; 0; cosh(0:962)) = (0; 0; 1:5). Notice, however, that in the plots of X

versus � (scale) and Y versus � that there is more scatter above � = 1:5 than
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below. Figure 5.4 shows why this is so. The circles in Figure 5.4 contain points

that are equidistant from (0; 1), and each circle increases the distance from

(0; 1) by an equal amount. The equidistant circles extend farther \up" in scale

than down.

Figure 5.5 shows the distributions generated by potential function V
(2).

This function does have a preferred direction|in this case, toward (0; 1; 1).

There is correlation between Y and �, which is not surprising if one looks in

the area of (y; �) = (1; 1) in the Figure 5.3. Figure 5.6 shows the distributions

generated by potential function V
(3). This potential function considers only

the spatial coordinates in the calculation of the direction cosine. The plot of X

versus Y shows clearly a wedge of vectors that make an angle of approximately

ninety degrees with the x-axis. The plot of Y versus � clearly indicates that

for Y near one, the scale is not restricted to one, but can move around the

\equidistant" circles.

After specifying potential functions for a MRF model, it is important to

insure that the resulting joint distribution can be normalized. As developed in

Section 5.1.2, the prior on landmark locations is clearly improper. However,

given the likelihood used in Chapter 6, if the additional prior constraint that

scale is bounded away from zero is imposed, then the posterior distribution is

proper. In practice, it makes sense to bound scale away from zero, because in

digital images, there is really no information at the sub-pixel level.

5.3 Summary

Several properties of the prior on landmarks and shapes should be noted. The

prior incorporates ideas about scale and space in several ways: (1) through the
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Figure 5.3: Potential V (1)
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Figure 5.4: Points Equidistant from (0; 1)

speci�cation of a multi-scale template description, (2) through the neighbor-

hood structure on the template nodes, and (3) through the potential functions

in the MRF model, which are functions involving scale space. Further, the

speci�cation given here is quite general and can be applied to continuous or

discrete images of any dimensionality.

The variability at each node is inuenced by the neighborhood structure of

the template. A site with many neighbors is penalized more for moving than

a site with few neighbors. This allows for the modeling of di�ering variability

at the landmarks. The neighborhood structure in the template also allows the

prior to handle obstructed views. If one branch of the template is blocked, the

probability can still be relatively high due to contributions from other branches.

The prior developed in this chapter identi�es likely locations for landmarks.



74

-0.4 -0.2 0.0 0.2 0.4

0
50

10
0

15
0

20
0

25
0

30
0

X

0.6 0.8 1.0 1.2 1.4 1.6

0
50

10
0

15
0

20
0

25
0

Y

0.8 1.0 1.2 1.4

0
50

10
0

15
0

Scale

•

•

•

•

••
•

•

•
• •

•

•
••

•

•

•
•

•

•

•

• •

•

•

•
•

•

•

•

•

•
•

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

••

• •
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•
•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

••

•

•

•
•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

••

•

•

•

•

•

•

•
•

•

•

•

• •

•

•

•

•

• •

• •

•

•

• •

•
•

• •

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
••

• •

•

•
•

•

• •

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•
•

••

• •

•
•

•

•

••

•

••

•

•

•
•

•

•

••

•

•

•

•

•

•
••

•

•

•

•

•
•

• •

••
•

•

•

•

•
•

•

•

•••

•

• •
•

•

•
•

•

••

•• •

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•
•

•

•

•
•

•

•

•

•
•

•

• •

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•• ••

•

•

•
•

•

•
• •

•

•

•

••

•
•

•

•

•

•

• •

•

•

•

•

•

•

••

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

••
•

•

•
•

•

•

•
•

• •

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•
•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•
•

•
••

•

••

•
•

•

•

•

• •

•

•

•
•

•
•

•

• •

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•
•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

• •

•

• •

•

•
•

•

•

••

•

•

•

•

•

•

•

••

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

• • •

••

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •

••

•

•

•

••

•

•

••

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

X

Y

-0.4 -0.2 0.0 0.2 0.4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•
••

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

• •

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•
•

•

•

•••

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •• •

•

•

•

•••

••

••

•

•

•

•

•

•

•

••
•

•

••

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

• •

•

• •

•

•

•

•

•

••

•

•

•

•

•

•

•

• •

•

•

••

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•
••

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

• ••

•

•

•

•
•

•

•

•

•
•

• •
•

•
•

•

•

••

•

•

•

•

••

•• •
•

•

•

•

•

•
•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

••

•

•

•

•

•

•

••

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

•

•
••

•
•

•

•

•

•

•

•

•

•
•

•

••

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•• •

•

• •

•

•

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

••

•

•
•

•

• •

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

••

•

•
•

•

•

•

•

•

•
•

•
•

•

• •

•

•

•

•
•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

• •
•

•

•

•

•

• •

•

•
•

•

•

•

•

•

••
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

••

•

•

•

••
•

••

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

• ••

•
•

•
•

•

•

•

•

••

•

•
•

•

•

•

• •

•

•

•

•

•

•

•

••
•

•

•

• •

•

•

•

•

•

•

•

• •

• •

•

•

•

••

•

X

S
ca

le

-0.4 -0.2 0.0 0.2 0.4

0.
8

1.
0

1.
2

1.
4

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•
• •

•

•

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

• •

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

• •

•
•

•

•

•

•
•

•

•

•••

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•• ••

•

•

•

•• •

••

••

•

•

•

•

•

•

•

••
•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

• •

•

•

•

•

•

••

•

•

•

•

•

•

•

••

•

•

••

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•
••

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•• •

•

•

•

•
•

•

•

•

•
•

••
•

•
•

•

•

••

•

•

•

•

• •

•••
•

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

••

•

•

•

•

•

•

••

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•
• •

•
•

•

•

•

•

•

•

•

•
•

•

• •

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

• • •

•

••

•

•

•

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

• •

•

•
•

•

••

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

••

•

•
•

•

•

•

•

•

•
•

•
•

•

• •

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

••
•

•

•

•

•

••

•

•
•

•

•

•

•

•

• •
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

••

•

•

•

••
•

• •

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

• ••

•
•

•
•

•

•

•

•

• •

•

•
•

•

•

•

• •

•

•

•

•

•

•

•

• •
•

•

•

• •

•

•

•

•

•

•

•

••

••

•

•

•

••

•

Y

S
ca

le

0.6 0.8 1.0 1.2 1.4 1.6

0.
8

1.
0

1.
2

1.
4

Figure 5.5: Potential V (2)
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However, the prior must interact with data through a likelihood function to

determine where these locations are in a particular image. In the example in

Chapter 6, I develop a template description for a particular class of images,

specify two exible classes of priors to capture information about the location

of landmarks, and illustrate one method for developing a likelihood function

for MR image data.



Chapter 6

Locating Ventricles in MR Brain

Images

This chapter examines the problem of the automatic location of landmarks in

an MR brain image. The primary focus is on locating and identifying land-

marks within a ventricle. Figure 6.1 is an MR image of a brain, and the

ventricle is the dark \buttery" in the middle of the image. The landmarks

that are identi�ed include medial structures (cores) of both the brain and the

ventricle, corners of the ventricle, and boundaries of the ventricle. The identi-

�cation of boundaries and corners allows for the segmentation of the ventricle

from the rest of the brain.

6.1 Developing the Likelihood

The development of the likelihood function, template description, and prior

distribution proceeded iteratively in this example. Although conceptually the

speci�cation of the template description and prior precedes that of the like-

lihood, a discussion of the likelihood function will clarify some of the choices

made for the prior and the template description.

Suppose that I have no prior information about the location of a particular
77
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(0,0)

(255,255)

Figure 6.1: MR Brain Image

corner of a ventricle, and suppose that I observe a single MRI image. What

function captures my posterior beliefs about the location of the corner? A

reasonable �rst guess is the scaled corner and junction detector speci�ed in

(4.5). (The scaled detector is multiplied by �4.) Large positive or negative

values of the corner detector specify locations that are likely to be corners.

The sign varies depending on the sign of the isophote curvature at the corner.

As calculated, the corner detector is inappropriate for use as a probability

density, as it assumes both positive and negative values. However, for any

particular corner, one knows whether its \cornerness" is positive or negative.

If the particular corner that I am locating has negative cornerness, the function

that captures my posterior beliefs is zero (or extremely small) where cornerness

is positive and the absolute value of cornerness elsewhere.
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Because my prior is uniform, and because the posterior distribution is pro-

portional to the prior times the likelihood, this implies that my likelihood

function is speci�ed (up to a constant) by the same function as the posterior.

Similar arguments can be made for using the scaled Laplacian for the \medial-

ness" likelihood. (The scaled Laplacian is multiplied by �2.) A \boundariness"

likelihood can be speci�ed using the scaled, squared gradient magnitude, which

is always positive. (The scaled gradient magnitude is multiplied by �2.) These

likelihoods are translation, rotation, and zoom invariant. In this chapter, the

joint posterior on all the landmarks is modeled as the product of the \features"

observed at each landmark. The likelihoods can be generalized by introducing

a parameter that raises these functions to a power; in the examples considered

in this chapter, this parameter is speci�ed rather than estimated.

Figure 6.2 shows the medialness, cornerness, and boundariness functions

calculated on a vertical slice through the center of Figure 6.1 at scale 5.5.

The likelihoods are known only up to a constant, so the vertical scales have

been chosen for convenience. The positive areas of medialness correspond to

the edge of the skull, the edge of the brain, and the middle of the ventricle.

(Recall that the zero crossings of the Laplacian can be used for edge detection.)

The positive spikes of cornerness correspond to the skull and the ends of the

ventricle core. The boundariness spikes correspond to edges of the brain and

ventricle.

Figure 6.3 shows medialness calculated at scales 5.5 (solid line), 6.5 (dotted

line), and 7.5 (points and line). While medialness is well-localized in space, it

changes slowly through scale. This implies that much of the information about

the location of medial landmarks in scale comes from the prior. Cornerness

and boundariness also change slowly through scale.
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Figure 6.3: Medialness Likelihood

Figure 6.4(a) shows medialness calculated at the center of Figure 6.1 through

scale. Notice that medialness peaks at approximately scale 13, which indicates

that at this point, the ventricle is approximately 13 pixels wide. However,

medialness begins to increase again after scale 21. The second peak, at ap-

proximately scale 55, indicates that the brain is approximately 55 pixels wide

at this point. Notice that the second peak is higher than the �rst. This implies

that some scale information must come from the prior: otherwise, the posterior

on the medial landmarks will concentrate at higher scales with larger likelihood

values. Similar phenomena are observed for boundariness. The squared gradi-

ent magnitude at the upper end of the ventricle core is plotted through scale

in Figure 6.4(b). The small-scale peak corresponds to the edge of the ventricle;

the large-scale peak corresponds the scale where this point is the most like the
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edge of the (very) blurred brain.

6.2 Developing the Template

The template was developed from seven MR images. These images were seg-

mented to identify ventricles, and their cores were calculated using the methods

in Fritsch et al. (1995). The cores were translated and zoomed so they were po-

sitioned at the same point and had the same size (i.e., the same sum-of-squares

di�erence from the mean). Eleven landmarks were identi�ed: the ends of the

central ventricle core, the ends of the four ventricle arm cores, and the largest-

scale point on the central ventricle core. These landmarks were averaged to

produce the initial outline of a template.

Two additional MR images were used to calculate the core of the brain.

Three landmarks were identi�ed: the ends of the core, and the largest-scale

point on the core. The brain core is needed to help localize the ventricle core

in scale. Because the likelihood function for medialness is much larger at large

scales than at small, it is useful to locate the brain core and then \look down"

through scale for the ventricle core. These points were added to the initial

eleven points, and the resulting points were symmetrized slightly.

Although the landmarks that have been identi�ed were found using cores,

they are not necessarily medial points. I have observed that the endpoints

(vertices) of cores occur at local extrema of the corner detector. Of the fourteen

points already identi�ed, twelve identify \corners" or core vertices. The other

two are the largest-scale points along the brain and ventricle cores.

Four additional corner points were added outside the ventricle at the corners

where the arms of the ventricle connect to the body of the ventricle. These
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landmarks were selected by identifying the points on segmented ventricles and

then re-centering, re-sizing, and re-averaging the template landmarks.

Seven medial points were added on each side of the largest-scale core point

for the brain core; three were added on each side of the central ventricle core;

three total were included between the endpoints of the ventricle arm cores.

These points were chosen to be roughly equally spaced along their respective

cores. Two boundary points, one on each side of the ventricle, were included

for each medial point. These points were chosen by sketching a likely ventricle

using the template points that had already been selected. Their scale was cho-

sen by calculating the maximal boundariness response scale for the segmented

ventricles. As discussed above, the boundary points have a large likelihood

near the ventricle and help to locate the ventricle in scale.

The brain core is plotted in Figure 6.5(a), with the solid lines indicating

neighbor relationships. The endpoints (vertices) are \corners" and other points

are medial. The template points for the ventricle are plotted in Figure 6.5(b).

The points indicated with an \x" are corners; boundaries and middles are

clear from context. Figure 6.5(c) shows the neighbor relationships between the

ventricle template points. The neighbor relationships between the brain core

and the central ventricle core are shown in Figure 6.5(d). The cross-connections

between the two cores allow scale information to be \shared" between the two

cores.

6.3 Developing the Prior

As discussed above, the likelihood functions change slowly in scale. Conse-

quently, much of the information about scale comes from the speci�cation of
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the template and the prior. The template developed above contains boundary

landmarks, which help locate the ventricle in scale. This section proposes two

classes of priors that can capture both shape and scale information.

The �rst class of priors uses the potential functions V (2) speci�ed in (5.4).

These potential functions penalize points that are not in the same spatial and

scale relationships as points in the template. Including the brain core in the

template provides large-scale landmarks that these potential functions can use

to locate the smaller scale ventricle landmarks. While this prior is not rotation

invariant, it is translation and zoom invariant.

One problem with using the V (2) potential is that it assigns a penalty if

the arms of the ventricle do not intersect the center of the ventricle at the

same angle as they do in the template. An extension that would improve

this potential function would make the penalty depend on the angles that had

been observed at other landmarks further up the hierarchy in the template

description. This could likely be achieved by modifying the potential functions

to use information from larger cliques.

The second class of priors uses the potential functions V (1) speci�ed in (5.1)

for two-element cliques and \inverse gamma" potentials for one-element cliques

containing the scale coordinate of each landmark. The V (1) potential functions

specify only the distances between landmarks. This solves the problem of

assigning a penalty if the ventricle arms intersect the ventricle body at angles

unlike those in the template; however, it does so at the cost of a great deal of

scale information. Including the inverse gamma potentials adds back in some

of that scale information. Notice that this also removes the e�ect of inversion

with respect to the hyperellipsoid.



87

6.4 Computation

Samples from the posterior distribution of these models can be obtained using

the Metropolis-Hastings algorithm. Candidate �gures are generated by sam-

pling the spatial and scale coordinates of one landmark at a time from a normal

distribution centered at the current landmark with a standard deviation that

is a constant times the scale of the current landmark. The normal distribution

for scale is truncated at 0.5 pixels, which insures that the posterior distribution

is proper.

The starting value for the algorithm is chosen using I (a function of the

moment of inertia|see Section 5.2) and the centroid for the image. The tem-

plate is translated so that it is centered at the centroid minus ten units in the

y-coordinate and zoomed by I=I(t). The likelihood functions are pre-calculated

on a lattice of points in scale space and interpolated as necessary using cubic

splines. Parameter values in the priors and likelihood are chosen rather than

estimated; Chapter 7 discusses future work in parameter estimation. The po-

tential functions on two-element cliques are divided into two classes: those

involving cliques containing the brain core, and those involving only ventricle

nodes. One constant is chosen for each class of cliques so that an approximately

equal penalty is assigned to the brain core and the ventricle nodes.

6.5 Results

In this section, the results of simulating from the posterior distribution for

landmark locations in six images are displayed. Both types of priors and several

values for the likelihood parameter are considered.

The �rst results were obtained without raising any of the likelihood func-
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tions to a power. Figure 6.6(a) shows a sample from the posterior with V (2)

potential functions; Figure 6.6(b) shows a sample from the posterior with V (1)-

inverse gamma potential functions. The posterior uncertainty in these samples

does not adequately represent my posterior belief in the locations of the fea-

tures: there is far too much variability. This suggests that the medialness,

cornerness, and boundary functions require further calibration. Since their in-

formation content is apparently too weak on the scale employed, I tested higher

powers of the likelihood.

To peak the posterior more, the likelihood was raised to both the �fth power

and the tenth power. Figures 6.7 and 6.8 show four samples from the posteriors

of each of two images with the V (2) potential functions and the likelihood raised

to the �fth power. Figures 6.9 and 6.10 show four samples from the posteriors

of each of two images with the V (1)-inverse gamma potential functions and the

likelihood raised to the �fth power. Figure 6.11 shows four posterior samples

from an image with the V (2) potential function and the likelihood raised to the

tenth power. Figure 6.12 shows four posterior samples from an image with the

V
(1)-inverse gamma potential functions and the likelihood raised to the tenth

power.

These images demonstrate several things. First, raising the likelihood to

the �fth power has been successful in peaking the posterior distribution: the

sampled images are much closer to the brain ventricles. Next, there is con-

siderably less information in the data about the large-scale brain core than

about the ventricle cores: this is especially evident in Figures 6.9 and 6.10,

where the brain core does not stretch across the brain. Further, the prior has

added information to the data: for example, in Figure 6.7, the boundary is

well-located despite dark protrusions into the ventricle. Finding the ventricles
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(a)

(b)

Figure 6.6: Posterior Samples, Original Likelihood: (a) V
(2) Prior; (b)

V
(1)-Inverse Gamma Prior
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Figure 6.7: Posterior Samples, Fifth Power of Likelihood, V (2) Potential
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Figure 6.8: Posterior Samples, Fifth Power of Likelihood, V (2) Potential
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Figure 6.9: Posterior Samples, Fifth Power of Likelihood, V (1)-Inverse Gamma
Potentials
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Figure 6.10: Posterior Samples, Fifth Power of Likelihood, V (1)-Inverse Gamma
Potentials
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Figure 6.11: Posterior Samples, Tenth Power of Likelihood, V (2) Potential
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Figure 6.12: Posterior Samples, Tenth Power of Likelihood, V (1)-Inverse
Gamma Potential
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in these images is not an extremely di�cult task, and even techniques like

intensity thresholding work reasonably well. However, thresholding would not

be able to locate the boundaries of the images with dark protrusions as well

as the model does. Finally, the V (2) potentials appear to be more successful

than the V (1)-inverse gamma potentials. There is no obvious bias toward the

template in the samples and the brain core is better located.

Figure 6.13 and 6.14 show the images with the highest observed probability

for the V (2) and the V (1)-inverse gamma potentials respectively. The upper left-

hand image in each set was sampled with the tenth power of the likelihood.

6.6 Summary

This chapter uses two exible classes of template priors to automatically locate

and segment ventricles from brain MR images. The optimal model probably

lies somewhere between these two models: intuitively, the V (2) model provides

too much direction in scale, while the V (1)-Inverse Gamma model provides

too little. However, the V (2) model performed much better in the simulations

shown here. The methods proposed here are exible and computationally

tractable. The Metropolis-Hastings sampling algorithm provides not only an

estimate of the mode, and consequently a probable segmentation, but also a

posterior probability distribution for the location of cores and other landmarks

of interest.
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Figure 6.13: Maximum Observed Posterior Probability, V (2) Potential
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Figure 6.14: Maximum Observed Posterior Probability, V (1)-Inverse Gamma
Potentials



Chapter 7

Summary and Extensions

7.1 Important Results

The goal of my research is to develop exible methods to incorporate prior

knowledge from templates into algorithms for image analysis within a Bayesian

framework. This dissertation has explored the value of scale-space methods for

addressing this problem and has proposed two classes of prior models that

capture template information.

The prior distributions I have developed assign probabilities to the loca-

tions of landmarks. Information about features enters the model through the

likelihood function. The prior uses a MRF model with potential functions that

are translation and zoom invariant; some of the proposed potentials are also

rotation invariant. The sites of the MRF are anatomical structures in scale

space, not pixel locations on a lattice. This is an important generalization of

the MRF models that have been employed previously in image analysis.

One of the central ideas used in my \template priors" comes from computer

vision research. Features in an image occur at a variety of scales, and to

e�ectively model spatial and scale relationships, this variety of scales must be

99
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modeled. Scale space is an image representation that handles image structure

at all resolutions simultaneously and allows e�cient calculation using features

at multiple scales. By specifying a hyperbolic geometry on scale space, the

priors can be chosen to be rotation, translation, and zoom invariant. These

invariances allow the prior to favor con�gurations of landmarks like those in

the template without regard for orientation, location, or size. Scale space also

provides a natural framework for the speci�cation of rotation, translation, and

zoom invariant likelihood functions that capture ideas like \medialness" and

\cornerness."

The priors on landmarks are especially easy to work with computationally

due to their MRF structure. Hierarchical and geometric relationships between

objects are speci�ed using the neighborhood relationships between sites. MRF

models can be simulated in a straightforward way using Markov chain Monte

Carlo techniques. The results demonstrated in Chapter 6 are a strong �rst step

toward the development of automatic segmentation methods.

The priors proposed in this dissertation provide e�ective and exible meth-

ods for using template information to enhance image analyses. These methods

can be applied to a variety of important real-world problems. For example,

numerous PET data sets have been collected to identify areas of the brain ac-

tivated by particular tasks. While the PET images show regions of activity,

they do not identify anatomical structure well. By using high-resolution MR

images to develop templates, the anatomical information from the MR images

could be mapped to the functional areas identi�ed by the PET images. This

could allow reliable identi�cation of anatomical areas of the brain that show

high activation in response to particular stimuli without requiring extensive

user interaction.
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7.2 Extensions

7.2.1 Template Descriptions

There are several areas where this work can be extended. One area that needs

exploration is the development of template descriptions. Questions remain

about how to set up the neighborhood relationships among nodes. These con-

nections must capture the shape of the template by specifying cliques that

have interesting geometric relations. How does one choose which spatial and

scale relationships are critical to modeling shapes that are like the template?

Which cliques are most e�ective in providing the right balance of structure and

exibility?

Another issue in template description is the selection of landmarks. What

features are stable across images? What features are reliable predictors of

anatomical structure? How can landmarks be selected in three-dimensional

images? What is the impact of adding and deleting landmarks from the tem-

plate description? Can structural symmetries be exploited?

Methods for template description that generalize to multi-�gure images are

necessary to describe complete image scenes. What connections describe the

relationships between �gures in an image? What are the appropriate hierar-

chical relationships among �gures?

7.2.2 Prior Parameter Estimation

The V (1), V (2), and V
(3) potential functions have a parameter that must be

speci�ed. In the examples in Chapter 6, these parameter values were �xed, but

assume instead that one wishes to estimate them. For simplicity, suppose that

each potential function has the same constant k. Because the prior on land-
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marks is improper, the importance sampling methods of Geyer and Thompson

(1992) are not directly applicable. However, if one landmark is �xed, then the

prior is proper (see Section 7.2.3) and their methods may provide useful insight

into reasonable parameter values.

Even with a proper prior, the estimation of k is somewhat problematic,

as the normalizing constant of the prior distribution depends on k. This nor-

malizing constant is unknown. However, it is possible to estimate it using an

importance sampling method (Geyer and Thompson 1992). This method uses

the fact that \the ratio of the normalizing constants for any pair of distributions

(with common support) can be expressed as an expectation with respect to one

of the distributions" (Higdon et al. 1994). Consider two densities 1
Z0
h0(x) and

1
Z1
h1(x). Then

E0(
h1(x)

h0(x)
) =

Z
h1(x)

h0(x)

1

Z0
h0(x)dx =

Z1

Z0

Z
1

Z1
h1(x)dx =

Z1

Z0

Given N realizations from 1
Z0
h0(x), the ratio can be estimated by

1

N

NX
t=1

h1(x
t)

h0(xt)

By pre-calculating the normalizing constants for several values of k, the

prior parameter can be incorporated into the Metropolis-Hastings sampling

method used to obtain posterior samples for the landmark locations. If infor-

mation from several images is used, the prior can be calibrated to model the

variability present in the range of human brains.
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7.2.3 Priors for Shapes

The prior proposed for landmarks can be generalized into a prior for shapes.

Shape is de�ned in Goodall (1991) as those characteristics of a �gure that are

unchanged when a �gure is translated, rotated, or scaled|arguably, reection

can be included as well. The strategy is to condition the joint distribution of

the random variables representing landmark locations on functions that remove

the e�ects of translation, rotation, reection, and scale.

For example, to remove the e�ect of translation from con�gurations of land-

marks, one can require that the landmarks have the centroid of their spatial

coordinates at the origin. All �gures that di�er only by a translation are

mapped to the same point. Of course, there are any number of functions that

accomplish the same goal (and this is true for rotation, reection, and zooming

as well).

To remove the e�ect of scaling, the squared Euclidean distance of the spatial

coordinates from the spatial centroid can be set to a constant. (In the statistical

theory of shape, this constant is chosen to be 1.) To remove the e�ect of

rotation in two dimensions, it is su�cient to rotate the �gure until a speci�c

landmark, say, x1, is on the x-axis.

In two dimensions, reection has a forward mapping speci�ed as (Golub

and van Loan 1989)

A =

0
B@

cos(�) sin(�) 0
sin(�) � cos(�) 0
0 0 1

1
CA

for � 2 [0; 2�). This corresponds to reecting the vector (u; v) across the line

de�ned by the span of (cos(�=2); sin(�=2)). Notice that reection can also be
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written as

 
cos(�) sin(�)

sin(�) � cos(�)

!
=

 
1 0

0 �1
! 

cos(�) sin(�)

� sin(�) cos(�)

!

which negates the y-coordinates (reects about the x-axis) and then rotates.

This implies that to remove the e�ects of reection in two dimensions, rotate

the �gure so that a speci�c landmark, say, x1 is on the x-axis and then negate

the y-coordinates of all the landmarks. Reection can also be written as a

Householder matrix with the form H = I � 2uu0, where u is a unit vector.

These functions remove the e�ects of translation, rotation, and reection,

and uniform scaling. However, if this method is used with the potential func-

tion V (1) alone, there is an additional isometry of inversion with respect to a

hyperellipsoid. This implies that the shape distribution generated above will

be bimodal, with one mode at the template shape, and one at its hyperellipsoid

inversion.

Figure 7.1(a) shows a template and a random sample from a prior for shapes

using each of the potential functions. Figure 7.1(b) demonstrates what hap-

pens with the potential function V (1). Because there is no directionality, it is

required only that each segment be the appropriate length, but nothing pre-

vents the �gure from bending, twisting, and folding. Potential function V (3)

(Figure 7.1(d)) is less restrictive than potential function V (2) (Figure 7.1(c)),

as it requires only that spatial directions be preserved, but not that scale direc-

tion be preserved. This is di�cult to see because only the spatial dimensions

of the samples are plotted.
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Figure 7.1: (a) Template; (b) Random Sample with Potential V (1); (c) Random
Sample with Potential V (2); (d) Random Sample with Potential V (3)
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7.2.4 Likelihood Functions

Once the template description is speci�ed, the appropriate likelihood model

is problematic. The likelihood function used in Chapter 6 has intuitive ap-

peal, but how well does it model experimental results? Can the likelihood

be calibrated so that it more closely resembles the way human subjects per-

ceive medialness, boundariness, and cornerness? To address these issues, I

have obtained the experimental data discussed in Burbeck and Pizer (1994).

In the experiment that they conducted, the stimuli were rectangles of varying

widths with the horizontal edges replaced by sinusoids of varying frequency. A

dot was placed in one of eight horizontal locations within the rectangle, and

the observers were asked to judge whether the dot was to the left or right

of the \perceived local center." Each observer made at least 30 observations

for each experimental condition. Near the core of the stimulus, about half of

the responses should be \left" and about half should be \right." Plotting the

proportion of one of the responses against position gives an empirical function

whose derivative can be compared against the actual medialness function for

the stimulus. Burbeck and Pizer (1994) suggest the use of a probit model to

estimate the response function.

The model used in Chapter 6 speci�ed the likelihood function \backward."

Typically, the likelihood function is found by specifying the distribution of the

data given the parameters; in this case, the likelihood was found by specifying

the distribution of the parameters given the data. To specify the distribution

of the data given the parameters, it is necessary to specify a distribution over

the space of images given the location of landmarks. It is intuitively simpler

to specify the probable location of landmarks given an image.
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In chapter 6, the likelihood function is a product of the features observed

at each landmark. Other functions of the observed features may be more

appropriate; the function used in Chapter 6 has the avor of assuming that

the features observed at each landmark are independent. The independence

assumption may be reasonable if the landmarks are su�ciently far apart, where

distance, as usual, depends on the scale of measurement. For points close

together, however, the features are clearly not independent. In future work, it

will be important to consider how to capture the dependencies among features

in the likelihood function. The methods developed in Blom et al. (1993) provide

preliminary insight into these issues by modeling the variability introduced

into features by adding noise to an image. Further insight can be gained by

considering the variability introduced by random a�ne transformations of an

image.
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