
Functional Data Analysis of Populations of Tree-structured

Objects

by

Haonan Wang



CHAPTER 1

Introduction

1.1. General Introduction

A tree (see Section 2.1 for formal definition) is a simple graph such that there is a

unique path (a set of edges) between every pair of nodes (vertices). In many applica-

tions, tree-valued complex objects are given, such as phylogenetic studies, clustering

analysis, classification analysis and medical image analysis. For a population of tree-

structured objects, many statistical notions, such as “center point” and “variation”

are not clear. In this dissertation, a new method for understanding populations of

tree-structured objects has been developed. This development includes, a new metric,

a new “center point”, and an analog of Principal Component Analysis (PCA) in tree

space.

In phylogenetic studies (see for example, Li, et al, 2000 and Holmes, 1999), biol-

ogists build phylogenetic trees to illustrate the evolutionary relations among a group

of organisms. Each node represents a taxonomic unit, such as a gene, or such as an

individual represented by part of its genome, etc. The branching pattern (topology)

represents the relationships between the taxonomic units. The lengths of the branches

have meanings, such as the evolutionary time.

In cluster analysis (see Everitt, et al, 2001), a common practice is to obtain dif-

ferent cluster trees by using different algorithms, or by “bagging” or related methods

(see Breiman, 1996), and then seek to do inference on the “central” tree. For cluster

trees, the terminal nodes (external nodes, i.e., nodes at the tip of the tree) indicate



the objects to be grouped; while the interior nodes and the length of the paths bear

no physical meaning.

In the classification and regression tree (CART) analysis (see Breiman, et al,

1984), researchers make a decision tree to categorize all of the data objects. First,

all of the objects are in one big group, called the “root node”. Then, according to

a decision rule, each group of objects will be partitioned into two subgroups, called

“nodes”. For this type of classification tree, the branches indicate the responses to

some decision rule. Each node represents a group of objects after applying a sequence

of decision rules.

In medical image analysis, many organisms also have branching properties, such as

blood vessel systems (see Bullitt and Aylward, 2002) and pulmonary airway systems

(see Tschirren, et al, 2002). Each vessel (airway) system can be represented as a tree.

For this vessel (airway) tree, each node represents a blood vessel (airway), and the

branches only illustrate the connectedness property between two blood vessels (air-

ways). For blood vessel trees (airway trees), both topological structure and geometric

properties, such as the locations and orientations of the blood vessels (airways), are

very important. Important geometric properties are numerically summarized using

“attributes”.

In statistical pattern recognition, a data vector is called a feature vector. Every

data object is represented by a feature vector. Each entry in the feature vector is

called a “feature”. The term “attribute” has the same meaning as “feature” in this

dissertation; while “attribute” is more specific in the field of graph and tree theory.

For general tree-structured objects, topological structures and nodal attributes

are two important aspects of trees, with different importance for different examples.

The attributes contain the full numerical summarization of the data objects. For the

special case of cluster trees, numerical values (i.e., attributes) are not used; while, for

the classification and regression trees, the attributes are the total numbers of objects
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in each group, which is the numerical feature of each node. Those attributes will

play a role in the analysis. For the blood vessel trees (airway trees), both topological

structures and attributes (geometric properties) are very important.

In this dissertation, methods are developed for the study of populations of trees,

not for individual trees. The “population” refers to the empirical population (or

sample), not any notion of a theoretical population. Each tree has both topological

structures and geometric properties.

A context where statistical analysis of populations of tree-structured objects is of

interest is shape analysis in medical imaging.

Shape is an interesting and useful characteristic of objects. The problem of how

to represent and classify shapes is very complicated. In medical research, various

diseases, such as schizophrenia, have been associated with the shape of various brain

parts (see Yushkevich, et al, 2001 for discussion and further references).

Figure 1.1. Example of a shape of interest.

For example, consider the shape in Figure 1.1 (from the work of Yushkevich, et

al). It shows an example of one member of a population of shapes of corpora callosa.

There are bendings at the two ends and one bump in the middle of the object.

A class of convenient and powerful shape representations is m-reps (see Pizer, et al,

1999). These are being developed by S. M. Pizer, and the Medical Image Display and

Analysis Group (MIDAG) at UNC-Chapel Hill.1 M-reps capture shape by dividing

1visit the MIDAG website at http://midag.cs.unc.edu
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Figure 1.2. Coarse and fine scale m-reps.

it into parts coarsely or finely based on “medial” ideas. Figure 1.2 shows both coarse

scale m-reps and fine scale m-reps of the shape shown in Figure 1.1. The m-rep

parameters (location, radius and angles) are called “features” and are concatenated

into a feature vector to provide a numerical summary of the shape.

The statistical analysis of populations of shapes represented by m-reps is straight-

forward when the general structures of the shapes are all the same because each

member of the population is represented by a vector of the same length. But this

is a rather restrictive assumption, and many medical imaging data sets need a more

general representation. This can be done in the m-rep framework, but a more com-

plicated tree-structured representation is needed.

M-reps provide a good shape representation for shapes that are not far from

convex. If the shape is far from convex, a multi-figural representation is needed. A

good example is the human hand. For a population of hands, the palm and each finger

can be represented by a “figure”, each of which is a collection of m-rep parameters.

Therefore, each hand is a multi-figural object (see Figure 1.3).

Palm Finger 3

Finger 2

Finger 1

Finger 4

Thumb

Figure 1.3. An example of multi-figural object — hand.

4



If every member of the population has five fingers, a simple approach is to put all

of the features of one hand into a single long feature vector. Thus, the shape space

is equivalent to Euclidean space, which is a linear vector space, and the addition and

scalar multiplication operations are defined. So, statistical analysis is straightforward.

For example, a useful notion of the population center point is the mean vector and the

population variation is usually effectively analyzed by Principal Component Analysis,

on the Euclidean space spanned by those feature vectors.

It is not straightforward to analyze population structure when some hands do not

have five fingers or blood vessels do not have the same branching structures. In this

case, the lengths of the feature vectors are not the same. Tree-structured objects are

used to represent members of such a population. For example, to represent a hand

(shown in Figure 1.3) using tree structure, the figures for the palm and fingers are

the nodes of the tree. The palm is the root node, and each finger is a child node of

the palm. Furthermore, the m-rep parameters of each figure, including figures for the

palm and the fingers, are the attributes for that node.

The statistical analysis of tree-structured objects, such as population center point

and population variation, is very complicated. Unlike Euclidean space where classical

statistical methods are straightforward to implement, the space of tree-structured ob-

jects is non-Euclidean, in the sense that natural definitions of the fundamental linear

operators of addition and scalar multiplication operations are unknown. Therefore,

the population center point cannot be simply calculated as a mean vector and the

variation cannot be analyzed by the regular PCA. Here, a careful axiomatic structure

for understanding “center” and “variation” is developed, which avoids the need to

define the linear operations.

A new method is required for the statistical analysis of a population of tree-

structured objects. The approach is based on a new metric δ on tree space (see

Section 3.1 and see Margush, 1982 for more discussion of metrics on trees). This
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metric δ consists of two parts: the integer part dI , which captures the topological

aspects of the structure of the tree population (see Section 2.2 for more detail), and

the fractional part fδ, which captures features of the nodal attributes (see Section

3.1).

The metric δ provides a foundation for defining the notion of population center

point. A new center point, the median-mean tree (see Section 3.3), is introduced as

a combination of median and mean. It has properties similar to the median with

respect to the integer part metric (see Section 2.3) and similar to the mean with

respect to the fractional part metric (see Section 3.3).

Furthermore, it is of interest to quantify the variability of the population about

the center point. Here, an analog of PCA, based on “treeline” which plays the role of

“one-dimensional” subspace, is developed for tree space (see Sections 2.5 and 3.6). A

key theoretical contribution was a fundamental theory of the variation decomposition

in tree space, a tree version of the Pythagorean Theorem (see Sections 2.5 and 3.5),

which allows ANOVA style decomposition of sums of squares.

This dissertation develops the statistical analysis of populations of tree-structured

objects with (Chapter 3) or without (Chapter 2) attributes respectively.

1.2. Application to a Blood Vessel Data Set

In this section, the ideas of statistical analysis, such as “center point” and an

analog of PCA, for a data set of tree-structured objects, are motivated by a data set

of brain blood vessel trees. This illustrates the statistical analysis methods, which

will be developed in this dissertation.

A good description of major blood vessels of the brain can be found at the website

of The Doctor’s Lounge:2

2From http://www.thedoctorslounge.net/education/tutorials/cerebcirc/cerebcirc1.htm
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The brain receives one fifth of the resting cardiac output. This

blood supply is carried by the two internal carotid arteries (ICA)

and the two vertebral arteries that anastomose at the base of the

brain to form the circle of Willis. Carotid arteries and their branches

(referred to as the anterior circulation) supply the anterior portion of

the brain while the vertebrobasilar system (referred to as posterior

circulation) supplies the posterior portion of the brain.

An example of brain blood vessels is shown in Figure 1.4, provided by Dr. E. Bul-

litt. This system has three important components: left carotid, right carotid and

vertebrobasilar system.

Figure 1.4. An example of brain blood vessels.

Because of the branching nature of blood vessel systems, a tree-structured data

representation is very natural. This data set has 11 trees from 3 people. These are

the left carotid, right carotid and vertebrobasilar system from each person, plus two

smaller components from one person.

Each blood vessel branch is denoted as a node in the tree structure. For simplicity,

here only a simple linear approximation of each branch is used. The attributes of the

root node have the following form

[0, three coordinates of the starting point, three coordinates of the ending point];
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while, the attributes of the non-root nodes are denoted as following

[p, 0, 0, 0, three coordinates of the ending point],

where p is the proportion parameter,

p =
Distance of starting point to point of attachment on its parent

Distance of starting point to ending point on its parent
.

The above data representation closely follows the form of the given data. However

the segmentation algorithm makes some fairly arbitrary choices between “main vessel”

and “branch”. In later work, this issue will be explored by other representations of

the data.

One approach is to embed the blood vessel data into a population of hierarchical

tree structures by focussing on the blood vessel segments between the successive

intersections. Take the blood vessel segment between the starting point (denoted by

α1) of the root blood vessel and the first point of intersection (denoted by β1) as

the first node, v1. The attributes of the node v1 are the coordinates of the starting

point (i.e., α1) and the ending point (i.e., β1) of this first segment. The two vessel

segments starting at the first intersection (i.e., the point β1) will be nodes v2 and

v3. The segment with larger radius at the starting point will be taken as the node

v2. The attributes of the nodes v2 and v3 are the coordinates of the ending points,

denoted by β2 and β3 respectively. Note that the coordinates of the point β1 is the

“implicit attributes” of the nodes v2 and v3, and when the trees are reconstructed for

visualization, the coordinates of β1 are used. This assures that after operations, such

as projection, the result is still a well defined tree. Iteratively, other vessel segments

between successive intersections are assigned to nodes. This tree representation is

much different from that above, and will be investigate in later work. In all examples

studied here, the previous representation was used.

For computational speed (see the algorithm in Section 3.7 for more discussion),

only a subtree (up to level 2 and three nodes) of each element among those 11 trees
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is considered (see Figure 1.6). There are only two tree structures of these 11 trees,

which are called Type I and Type II, shown in Figure 1.5. Among these 11 blood

vessel trees, seven trees have Type I structure and four trees have Type II structure.

Type I Type II

Figure 1.5. Two types of tree structures of the reduced blood vessel trees.

Figure 1.6 shows the reduced blood vessel trees for three people. The trees with

thicker line are the median-mean trees (central tree with nodal attributes, see Section

3.3 for more discussion) in each figure. Note that the median-mean trees are “central”

in terms of structure, size, and location, for each of the three people.

Figure 1.6. Reduced blood vessel trees (thin colored lines) and the

median-mean trees (thicker black line) for each person. Root nodes are

solid and children are dashed.

These trees are combined into a larger population in Figure 1.7. Again, the

median-mean tree of the larger population is shown as a thicker black line. This time

the median-mean tree is surprisingly small. This will be understood through careful

analysis of the variation about the median-mean tree.
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Figure 1.7. Combined population of reduced blood vessel trees and

the median-mean tree.

Next, the tree version Principal Component Analysis (see Section 3.6) will be

applied to the full blood vessel tree sample (denoted by T , shown in Figure 1.7).

An analog of one-dimensional representation, “treeline”, is defined, which plays

the role of “line” (a one-dimensional subspace in Euclidean space), in tree space (see

Sections 2.4 and 3.5). Two useful treelines, the structure treeline (see Definition 3.5.1)

and the attribute treeline (see Definition 3.5.3), are used in this dissertation.

The principal structure representation l = {u0, u1, u2} (i.e., structure treeline, see

Definition 3.6.1) is shown in Figure 1.8 (structure only, without attributes) and Figure

1.9 (with attributes). On this treeline, the tree u0 only has the root node and the

right child. The trees u1 and u2 add one left child on u0 and u1 respectively. This

shows that the dominant component of topological variation is towards branching in

this direction.

u
0

u
1

u
2

Figure 1.8. Principal structure treeline l = {u0, u1, u2} without nodal attributes.
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Figure 1.9. Principal structure treeline l = {u0, u1, u2} with nodal attributes.

Next, consider the principal attribute direction (see Definition 3.6.3). The induced

attribute treelines passing through the median-mean tree and through the average

support tree (see Definition 3.5.5) are shown in Figure 1.10 and Figure 1.12. There

are six subplots in each figure. Each subplot depicts one location on the attribute

treeline.

Figure 1.10. Induced attribute treeline passing through the median-

mean tree.

In Figure 1.10, from the upper left subplot to the upper right one, it shows that

the orientation of the main root (solid black line) is coming towards a horizontal line,

and at the same time the length of the main root becomes shorter; while, from the
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lower left to the lower right one, the main root (solid black line) flips in the opposite

direction from the horizontal line and the length of the main root becomes longer. It

shows that the main root flips over. This was a surprising feature of the population.

Careful investigation showed that the given data set does not unanimously record the

data according to the direction of blood flow. Some of them have the same direction;

while, some of them have the inverse direction. Also, this can be verified from the

projection coefficients of all 11 trees on the attribute treeline passing through the

median-mean tree (shown in Figure 1.11). This shows that, there are two groups

with a gap in the middle, six trees with negative projection coefficients and five with

positive ones. This also shows that, no trees correspond to the fourth frame in Figure

1.10, with a very short root, as can be seen in the raw data in Figure 1.7.

0

Figure 1.11. Projection coefficients of 11 trees on the attribute tree-

line passing through the median-mean tree.

Figure 1.12 shows the attribute treeline passing through the average support tree

(see Section 3.5). Similar to Figure 1.10, the six frames show that the main root

flips over and the length of the main root becomes shorter (three subplots on the

top row) then becomes longer (three subplots on the bottom row). Similar to Figure

1.11, Figure 1.13 shows that these 11 trees are divided into two groups by projection

on the attribute treeline passing through the average support tree with a gap in the

middle.

In this example, the tree version PCA found a surprising characteristic of the

population that there are two different orientations about the blood flow in the data
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Figure 1.12. Induced attribute treeline passing through the average

support tree.

0

Figure 1.13. Projection coefficients of 11 trees on the attribute tree-

line passing through the average support tree.

set. This dominates the total variation, perhaps obscuring population features of

more biological interest.

Also, the tree version PCA found interesting clusters in the data. The projections

onto the dominant treeline provided a clear view of clustering. According to the

projections on the two different types of treelines, the groupings may vary.
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CHAPTER 2

Statistical Analysis on the Binary Tree Space without Nodal

Attributes

2.1. Basic Definitions

In this research, a population of abstract complex multi-figural objects is consid-

ered. The single observation in this population is called a “tree”. What is a “tree”?

Definition 2.1.1. A tree is a simple graph such that there is a unique path (a

set of edges) between every pair of nodes (vertices). The set of nodes and edges are

denoted by V and E, respectively. Each edge can be denoted by an ordered pair of

nodes.
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Figure 2.1. An example of tree.

Definition 2.1.2. The root is one designated node. The level of a node is the

length (number of edges) of the path to the root.



The only node with level 0 is the root. The maximum level of the nodes is called

level of the tree. A tree with one node is called a trivial tree; otherwise, it is called

the non-trivial tree.

Example 2.1.1. The tree t in Figure 2.1 has 9 nodes and 8 edges.

V = {ν0, ν1, ν2, . . . , ν8} and E = {e1, e2, . . . , e8}.

Let ν0 be the root of tree t. Note that {ν1, ν2, ν7, ν8} have level 1, and {ν3, ν4, ν5, ν6}
have level 2. Thus, the level of the tree t is 2.

Definition 2.1.3. A binary tree is a tree t = (V,E), together with an edge

labelling function f : E → {0, 1} such that every node has at most one edge incident

from it labelled with 0 (called a left edge) and at most one edge incident from it

labelled with 1 (called a right edge). For each left edge (ν, ω), ν is called the parent

of ω and ω is called the left child of ν. Similarly, the right child is defined. A tree

t1 = (V1, E1) is called a subtree of t, denoted by t1 ⊆ t, if V1 ⊆ V , E1 ⊆ E and the

root of tree t is in the set V1.

For simplicity, the binary tree will be considered first.

Definition 2.1.4. Let t be a binary tree. Every node ω in t has a unique level-

order index (ind(ω)), defined as follows:

• If ω is the root, let ind(ω) = 1;

• If ω is the left child of the node ν, let ind(ω) = 2× ind(ν);

• Otherwise, if ω is the right child of the node ν, let ind(ω) = 2× ind(ν) + 1.

Definition 2.1.5. A complete binary tree is a binary tree for which the level-

order indices of the nodes form a complete interval 1, 2, . . . , n of integers. Otherwise,

it is called an incomplete tree.
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Figure 2.2. Examples of binary trees. The numbers are level-order indices.

Example 2.1.2. In Figure 2.2, the tree on the left panel shows a complete binary

tree and the tree on the right panel shows an incomplete binary tree.

Definition 2.1.6. Let t be a binary tree. The set of all possible level-order indices

of the ith level is denoted by Ii and Ii = {2i, 2i + 1, . . . , 2i+1 − 1}.

Example 2.1.3. For any binary tree t, I0 = {1} and I2 = {4, 5, 6, 7}.

Remark 2.1.1. For a binary tree t, the set of level-order indices of the nodes is

denoted by Ind(t).

Remark 2.1.2. For any binary tree t, the set of level-order indices of the nodes

on the ith level (denoted by t(i)) is a subset of Ii.

Definition 2.1.7. Let t1 and t2 be two binary trees. A binary tree t is called

the union (intersection) of binary trees t1 and t2 if the interval formed by the

level-order indices of the nodes in tree t is a union (intersection) of those of binary

trees t1 and t2. That is, Ind(t) = Ind(t1) ∪ Ind(t2) (or Ind(t) = Ind(t1) ∩ Ind(t2)).

It is denoted by t = t1 ∪ t2 (or t = t1 ∩ t2).

Remark 2.1.3. The definitions of union and intersection of binary trees can be

generalized to any tree population where a “level-order index” can be defined.

Remark 2.1.4. All the definitions of the operations on the binary trees are based

on the level-order indices of the nodes.
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Remark 2.1.5. The union tree provides a convenient framework for the devel-

opment of the notion of “subspace” in tree space. To study a tree sample with n

elements, we can consider the “subspace”, in which every element is a subtree of the

union tree (of those n elements).

2.2. Metric on Binary Trees without Nodal Attributes

In the previous section, some basic definitions were introduced. But, statisti-

cal analysis has not been developed for the binary tree population. There are two

fundamental issues that will be addressed. The first issue for statistical analysis is,

appropriate definition of a “center point” of the binary tree population.

A notion of “center point” of a population is the binary tree which is the “closest

to all other trees”. This requires a metric on the space of binary trees. Thus, the

second fundamental issue is the definition of a distance between two trees.

The basic idea for a simple metric is illustrated by the two trees t1 and t2 shown

in Figure 2.3. The tree t2 can be obtained by adding two nodes and deleting one from

the tree t1; that is, the smallest number of addition and deletion of nodes from one

tree to the other is 3. It will be shown that a tree metric can be defined, using this

based on the total number of such deletions and additions.

t

¡
¡t

¡
¡t

t1

t

¡
¡t

@
@t

@
@t

t2

Figure 2.3. Binary trees t1 and t2.

For any two trees s and t, the difference of the ith level will be studied, which will

be a component of the binary tree metric.

Definition 2.2.1. The total number of nodes which belong to s(i)4t(i) is called

the difference of the ith level (denoted by di), where s(i)4t(i) = (s(i)∩ t(i))∪ (t(i)∩
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s(i)) and s(i) is the complement of s(i) in Ii. In other words,

di = di(s, t) =
∑

k∈Ii

1{k ∈ s(i)4t(i)}.

Let Ls and Lt be the levels of tree s and t respectively. For any integer n >

max(Ls, Lt), dn = 0.

Example 2.2.1. For the two binary trees t1 and t2 shown in Figure 2.3, d0(t1, t2) =

0, d1(t1, t2) = 1 and d2(t1, t2) = 2.

Example 2.2.2. In Section 1.2, there are two tree structures in the blood vessel

data, Type I and Type II. Between those two tree structures, the difference of level 0

is 0, level 1 is 1 and level 2 is 1.

Theorem 2.2.1. di is a pseudo-metric on the binary trees.

Proof. Suppose s, t and w are three binary trees.

(1) [Identity]

di(s, s) =
∑

k∈Ii

1{k ∈ s(i)4s(i)}

= 0

(2) [Symmetry]

di(s, t) =
∑

k∈Ii

1{k ∈ s(i)4t(i)}

=
∑

k∈Ii

1{k ∈ t(i)4s(i)}

= di(t, s)
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(3) [Triangle inequality]

Note that

di(s, w) =
∑

k∈Ii

1{k ∈ s(i)4w(i)}

=
∑

k∈Ii

1{k ∈ s(i) ∩ w(i)}+
∑

k∈Ii

1{k ∈ w(i) ∩ s(i)}

=
∑

k∈Ii

1{k ∈ s(i) ∩ w(i) ∩ t(i)}+
∑

k∈Ii

1{k ∈ s(i) ∩ w(i) ∩ t(i)}

+
∑

k∈Ii

1{k ∈ w(i) ∩ s(i) ∩ t(i)}+
∑

k∈Ii

1{k ∈ w(i) ∩ s(i) ∩ t(i)}

Similarly,

di(w, t) =
∑

k∈Ii

1{k ∈ t(i)4w(i)}

=
∑

k∈Ii

1{k ∈ t(i) ∩ w(i)}+
∑

k∈Ii

1{k ∈ w(i) ∩ t(i)}

=
∑

k∈Ii

1{k ∈ t(i) ∩ w(i) ∩ s(i)}+
∑

k∈Ii

1{k ∈ t(i) ∩ w(i) ∩ s(i)}

+
∑

k∈Ii

1{k ∈ w(i) ∩ t(i) ∩ s(i)}+
∑

k∈Ii

1{k ∈ w(i) ∩ t(i) ∩ s(i)}

di(s, t) =
∑

k∈I(i)
1{k ∈ s(i)4t(i)}

=
∑

k∈Ii

1{k ∈ s(i) ∩ t(i)}+
∑

k∈Ii

1{k ∈ t(i) ∩ s(i)}

=
∑

k∈Ii

1{k ∈ s(i) ∩ t(i) ∩ w(i)}+
∑

k∈Ii

1{k ∈ s(i) ∩ t(i) ∩ w(i)}

+
∑

k∈Ii

1{k ∈ t(i) ∩ s(i) ∩ w(i)}+
∑

k∈Ii

1{k ∈ t(i) ∩ s(i) ∩ w(i)}
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Therefore,

di(s, w) + di(w, t)− di(s, t)

= 2
∑

k∈Ii

1{k ∈ w(i) ∩ s(i) ∩ t(i)}+ 2
∑

k∈Ii

1{k ∈ s(i) ∩ t(i) ∩ w(i)}

≥ 0

¤

Remark 2.2.1. From Example 2.2.1, d0(t1, t2) = 0 where t1 6= t2. Hence, d0 is

a pseudo-metric not a metric. Similarly, for i = 1, 2, . . ., di is not a metric because

there exist two different binary trees s and t such that di(s, t) = 0.

For any two binary trees s and t without nodal attributes, define the metric

(Theorem 2.2.2 establishes that this is indeed a metric)

dI(s, t) =
∞∑

i=0

di(s, t), (2.1)

where “I” means “integer” to contrast with a “fractional part” coming later. Then

dI(s, t) is the total difference between two binary trees s and t.

The distance dI(s, t) is the sum of the differences of each level of two trees. There-

fore, dI(s, t) counts the total number of nodes which show up only in either s or t,

but not both of them. That is,

dI(s, t) =
∞∑

k=1

1{k ∈ Ind(s)4Ind(t)}. (2.2)

Remark 2.2.2. Since dI is always an integer, it is called the integer tree metric.

Example 2.2.3. Let t1 and t2 be the binary trees shown in Figure 2.3. d0 = 0,

d1 = 1 and d2 = 2. Therefore, the integer tree metric is

dI(t1, t2) =
2∑

i=0

di(t1, t2) = 3.

Also,

Ind(t1) = {1, 2, 4} and Ind(t2) = {1, 2, 3, 5}.
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Therefore,

Ind(t1)4Ind(t2) = {3, 4, 5}

and by Equation (2.2),

dI(t1, t2) = 3.

Example 2.2.4. For the blood vessel data in Section 1.2, the integer metric be-

tween two types of trees is 2.

Theorem 2.2.2. dI(s, t) =
∑∞

0 di(s, t) is a metric on the binary tree space without

nodal attributes.

Proof. Suppose s, t and w are three binary trees without nodal attributes.

(1) [Identity]

It is easy to see that

dI(s, s) =
∞∑

i=0

di(s, s) = 0.

On the other hand, for two binary trees s and t, if dI(s, t) = 0, then s and

t must have the same tree structures because each item in the summation is

zero. Hence, s = t.

(2) [Symmetry]

From Theorem 2.2.1, di is a pseudo-metric for all i; that is, di(s, t) = di(t, s),

∀i. Therefore,

dI(s, t) =
∞∑

i=0

di(s, t)

=
∞∑

i=0

di(t, s)

= dI(t, s)
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(3) [Triangle inequality]

By Theorem 2.2.1, di(s, t) ≤ di(s, w) + di(w, t) for all i = 0, 1, . . ..

dI(s, t) =
∞∑

i=0

di(s, t)

≤
∞∑

i=0

(di(s, w) + di(w, t))

≤ dI(s, w) + dI(w, t)

¤

Remark 2.2.3. There is an intuitive representation of the integer tree metric. It

is the smallest total number of added and deleted nodes required to move from one

binary tree to the other.

2.3. Finding the Median Tree on the Binary Tree Space without Nodal

Attributes

In Section 2.2, an integer metric dI was defined on the binary tree space without

nodal attributes. Next, consider the question presented in the previous section, what

is the “center point” of a sample of binary trees?

From now on, denote the set of all binary trees by T and the finite sample by

T = {t1, t2, . . . , tn}.

Definition 2.3.1. A tree is a minimizer tree according to the metric dI if it

minimizes
∑n

i=1 dI(t, ti) over all binary trees t ∈ T .

Definition 2.3.2. A tree is called a full (binary) tree if it contains all the

nodes in the binary tree sample T .

Definition 2.3.3. The full tree with the minimum number of nodes is called

support (binary) tree.
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By the definitions of the metric dI and the minimizer tree, the following property

is given.

Proposition 2.3.1. A minimizer tree according to dI cannot have a node which

does not appear in the sample. That is, a minimizer tree is contained in the support

binary tree.

Theorem 2.3.2. If a tree s is a minimizer tree according to the metric dI , then

all the nodes of s must appear at least n
2
times in the binary tree sample T . Moreover,

the minimizer tree s (according to dI) must contain all the nodes, which appear more

than n
2
times, and may contain any subset of nodes that appear exactly n

2
times.

Proof. Let s be a minimizer tree according to the integer tree metric dI . Suppose

some of the nodes in s appear less than n
2
times and ν is the node with the largest

level among all of those nodes. If a node appears less than n
2
times, so do its children.

Thus, ν must be a terminal node of s.

For the binary tree s′ = s\{ν}, the following equation is satisfied

n∑

i=1

dI(s
′, ti) =

n∑

i=1

dI(s, ti) + nν − (n− nν), (2.3)

where nν=#{appearance of the node ν in the sample T}. Since nν <
n
2
,

n∑

i=1

dI(s
′, ti) <

n∑

i=1

dI(s, ti),

which is a contradiction with the assumption that s is the minimizer tree.

From the proof above, if nν = n
2
, then

∑n

i=1 dI(s
′, ti) =

∑n

i=1 dI(s, ti); that is, s′

is also a minimizer tree. Therefore, the minimizer tree may contain any subset of the

nodes that appear exactly n
2
times.

Finally, a proof is given of the fact that the minimizer binary tree s contains all

the nodes which appear more than n
2
times.
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Suppose the node ω appears more than n
2
times in the sample T and ω 6∈ s.

Without loss of generality, suppose that ω is a children of some node in the binary

tree s. Otherwise, choose one of its ancestor nodes.

For the binary tree s′′ = s ∪ {ω}, the following equation is satisfied

n∑

i=1

dI(s, ti) =
n∑

i=1

dI(s
′′, ti) + nω − (n− nω), (2.4)

where nω=#{appearance of the node ω in the sample T}. Since nω > n
2
,

n∑

i=1

dI(s
′′, ti) <

n∑

i=1

dI(s, ti),

which is a contradiction with the assumption that s is the minimizer tree. ¤

Corollary 2.3.3. If n is an odd number, then there is a unique minimizer tree

(according to dI), which consists of all the nodes with appearance more than n
2
times.

Remark 2.3.1. Banks and Constantine independently developed essentially the

same notion of “central tree” and the algorithm of finding such tree, which is called

themajority rule (see Banks and Constantine, 1998, page 204). In this dissertation,

the algorithm derived in Theorem 2.3.2 is called the majority rule.

Remark 2.3.2. Formulating this concept in statistical terms, the minimizer tree

is called the median tree of the binary tree sample T .

Remark 2.3.3. If n is an even number, then the median binary tree may be not

unique because some nodes may have appearance number equal to n
2
.

Example 2.3.1. Among the 11 blood vessel trees in Section 1.2, seven trees have

Type I structure and four trees have Type II structure. According to the majority

rule, the median tree, the second tree in Figure 1.8, has the Type I tree structure.

The tree structure of the median tree is the same as that of the median-mean tree

(the second tree in Figure 1.9, see Definition 3.3.1 for more discussion).
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Definition 2.3.4. The median binary tree (according to the integer tree metric

dI) with the smallest number of nodes is called minimal median binary tree.

Theorem 2.3.4. The minimal median binary tree (according to the integer tree

metric dI) is unique.

Proof. By the majority rule, the median binary tree contains all of the nodes with

appearance number greater than n
2
and may contain any subset of the nodes with

appearance number equal to n
2
. Therefore, for any median binary tree, the unique

minimal median binary tree can be obtained by deleting those nodes with n
2
appear-

ance time. ¤

Since the integer tree metric dI only counts the total number of nodes in the

symmetric set of their level-order index sets. The following theorem provides a simple

approach to easy calculations.

Theorem 2.3.5. T is a sample of binary trees with size n; that is,

T = {t1, t2, . . . , tn}.

Suppose the full tree has level-order index set I and the corresponding numbers of

appearance (of the nodes in I) are ni, i ∈ I. Then,

n∑

i=1

dI(ti,m) =
∑

i∈I
[ni · 1{ni ≤

n

2
}+ (n− ni) · 1{ni >

n

2
}]

=
∑

i∈I
[
n

2
−

∣
∣
∣
n

2
− ni

∣
∣
∣]

where m is the median tree of this sample T .

Proof. For any node with level-order index j in the full tree, if nj >
n
2
, then it will

be included in the median binary tree by the majority rule. There are n− nj binary

trees in T which do not have nodes with level-order index j. Hence, the contribution

of the jth node to the total sum
∑n

i=1 dI(ti,m) would be n−nj. If nj =
n
2
, no matter
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that jth node is included in the median binary tree, the contribution to the total sum

is nj =
n
2
. Otherwise, this node will not be included in the median binary tree and

its contribution to the sum would be nj.

Furthermore, if ni ≤ n
2
,

n

2
−

∣
∣
∣
n

2
− ni

∣
∣
∣ =

n

2
− (

n

2
− ni) = ni.

Otherwise,
n

2
−

∣
∣
∣
n

2
− ni

∣
∣
∣ =

n

2
+ (

n

2
− ni) = n− ni.

¤

Example 2.3.2. T is a sample of binary trees with n = 22 members, t1, t2, . . . t22.

There are four types of binary trees in T shown in Figure 2.4. Let N1 = 4, N2 =

5, N3 = 7, N4 = 6 be the numbers of trees of type I, II, III, IV respectively.
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Figure 2.4. An example of a binary tree sample.
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Figure 2.5. Support tree tsup and median tree m of binary tree sample T .

The support binary tree of the sample T is shown in the left panel in Figure 2.5.

The number of appearances of each node are n1 = 22, n2 = 9, n3 = 13, n4 = 9, n5 =

26



5, n6 = 6, n7 = 13. According to the majority rule, the median binary tree is m shown

in the right panel in Figure 2.5.

Then by Theorem 2.3.5, the total distance of binary trees in T to the median tree

m is

22∑

i=1

dI(ti,m) =
7∑

i=1

(11− |11− ni|)

= 47.

In Euclidean space, the total variation of a sample can be measured by the sum

of squared distances to its sample mean. In the tree space without nodal attributes,

the integer metric dI can be written as a sum of zeros and ones (see Equation (2.2)).

Therefore,

∞∑

k=1

(1{k ∈ Ind(s)4Ind(t)})2 =
∞∑

k=1

1{k ∈ Ind(s)4Ind(t)} = dI(s, t). (2.5)

Thus, in the tree space without nodal attributes, the sum of distances to the

median tree can be considered as the total variation of the sample. That is, the total

variation is
n∑

i=1

dI(ti,m).

2.4. Treeline and Projection in the Binary Tree Space without Nodal

Attributes

In the binary tree space, each tree can be viewed as a point. Unlike Euclidean

space, the binary tree space is a nonlinear space according to the previous metric

dI . Hence, the principal component analysis (PCA) in Euclidean space may not

be applicable in the nonlinear binary tree space. So, the question is “ how can

an analogous way be developed to construct a manifold in binary tree space which

consists of some binary trees that plays the role of a ‘line’, one-dimensional subspace

in Euclidean space? ”
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First, consider the binary tree space without nodal attributes, T . In this case,

only the integer metric dI will be used.

Definition 2.4.1. Suppose l = {u0, u1, u2, ...} is a sequence of binary trees. l is

called a treeline starting from u0 if for i = 1, 2, 3, . . .

(1) the tree ui−1 can be obtained by deleting a terminal node (denoted by νi )

from ui;

(2) the node νi−1 is the parent of νi;

(3) there does not exist a subtree of u0, denoted as u, such that u can be obtained

by deleting some ancestor nodes of ν1.

Remark 2.4.1. From another point of view, the tree ui is obtained by adding a

node νi on the tree ui−1.

Definition 2.4.2. A treeline l is called passing through the tree u if the tree

u is an element of the binary tree set l; i.e. u ∈ l.

Example 2.4.1. In Figure 2.6, the tree u1 is obtained by adding a node, ν1, with

level-order index 2 from the tree u0. Similarly, the u2 is obtained by adding a node, ν2,

with level-order index 4 from u1. Therefore, there exists a treeline l passing through

u0, u1 and u2.

t1
@

@t3

u0

t1
¡

¡t2
@

@t3

u1

t1
¡

¡t2
@

@t3
¢

¢¢t4

u2

Figure 2.6. A tree sequence l0 = {u0, u1, u2, . . .} illustrating the idea

of a treeline.

Recall that, from the blood vessel data in Section 1.2, Figure 1.8 shows the first

three elements of a treeline without nodal attributes.
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Example 2.4.2. In Figure 2.7, the binary tree u1 is obtained by adding a node

with level-order index 2 from the binary tree u0; while, the binary tree u2 is obtained

by adding a node with level-order index 3 from u1. Those two adding nodes are on

the same level of a binary tree. Therefore, there does not exist any treeline passing

through u0, u1, u2 and u3.
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Figure 2.7. A tree sequence l1 = {u0, u1, u2, u3 . . .} that is not a treeline.

Definition 2.4.3. Suppose v is a tree and l is a treeline as in Definition 2.4.1.

The tree w ∈ l is called the projection of v on the treeline l, if w is the minimizer

of dI(v, t) where t runs over all the binary trees on the treeline l.

Proposition 2.4.1. The projection of a tree on a treeline exists and is unique.

Proof. Suppose l = {u0, u1, u2, . . .} is a treeline. Let p be the index of the smallest

dI-closest, to the tree t, member of treeline l; i.e.,

p = inf{i : dI(ui, t) ≤ dI(uj, t), j = 0, 1, 2, . . .}.

First, consider the two elements up and up+1 on the treeline l. By definition of

the treeline, the tree up can be obtained by deleting a node νp+1 from the tree up+1.

It will now be shown that, νp+1 6∈ Ind(t). Otherwise,

dI(up+1, t) = dI(up, t)− 1,

which is a contradiction with the definition of p. Thus, νp+1 6∈ Ind(t), and

dI(up+1, t) = dI(up, t) + 1. (2.6)
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Iteratively, for i = 1, 2, . . ., the tree up+i can be obtained by deleting a node νp+i+1

from the tree up+i+1. The node νp+i+1 is an offspring node of the node νp+1. Since

νp+1 6∈ Ind(t), for i = 1, 2, . . ., νp+i+1 6∈ Ind(t). Hence,

dI(up+i+1, t) = dI(up+i, t) + 1. (2.7)

Next, consider the two trees up−1 and up on the treeline l. The tree up−1 can

be obtained by deleting a node νp from the tree up. It will now be shown that,

νp ∈ Ind(t). Otherwise,

dI(up−1, t) = dI(up, t)− 1,

which is a contradiction with the definition of p. Hence, νp ∈ Ind(t), and

dI(up−1, t) = dI(up, t) + 1. (2.8)

Iteratively, for i = 1, 2, . . . , p − 1, the tree up−i−1 can be obtained by deleting a

node νp−i from the tree up−i. The node νp−i is an ancestor node of the node νp. Since

νp ∈ Ind(t), for i = 1, 2, . . . , p− 1, νp−i ∈ Ind(t). Hence,

dI(up−i−1, t) = dI(up−i, t) + 1. (2.9)

Hence, there is a unique tree up such that, for i 6= p

dI(ui, t) > dI(up, t). (2.10)

That is, the projection exists and is unique. ¤

From Proposition 2.4.1, it is straightforward to define the projection function

w = Pl(v),

where l, w and v are given in Definition 2.4.3.
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2.5. Principal Component Analysis on Binary Tree Space without Nodal

Attributes

In classical statistics, the principal component analysis (PCA) is a useful tool to

capture the features of a data set by decomposing the total variation to the center

point. In PCA analysis, the first principal component indicates the direction which

captures the largest variation of the data. Furthermore, several other orthogonal

directions, which often highlight additional interesting aspects of the data, can be

obtained. Now consider the similar problem in the binary tree space, how can a

method to analyze the variation of the data set be developed?

From the previous section, in binary tree space, the treeline plays the role of

“line”, i.e. one-dimensional representation in Euclidean space. Recall that, for any

tree sample T , the median binary tree m plays the role of “center point”. So, is it

possible to define a treeline l, the one-dimensional representation in binary tree space,

passing through the median tree m such that it maximizes the sum

n∑

i=1

dI(m,Pl(ti))? (2.11)

Recall from Section 2.3 that, if the population size n is odd, then the median tree

is unique which is also the minimal median tree (see Definition 2.3.4). Otherwise, if

n is an even number, those nodes with appearance n
2
can be included in, or deleted

from the median tree. So, the median tree is not unique; while the minimal median

tree is still unique.

Note that, for a sample T , the total variation does not depend on the choice of

the median trees. It is convenient to use the minimal median tree because it is unique

and it is a subtree of any other median trees.

The Pythagorean Theorem is a fundamental theorem for the decomposition of

the variation in the PCA in Euclidean space. Now, an analogous theorem, which is
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called a tree version of the Pythagorean Theorem, is developed in the binary tree

space without nodal attributes.

Theorem 2.5.1. Let T be a sample of trees of size n and T = {t1, t2, . . . , tn}. Pl

is a projection function where l is a treeline running through a tree u. Then, ∀t ∈ T ,

dI(u, Pl(t)) + dI(Pl(t), t) = dI(u, t). (2.12)

Proof. Suppose that the treeline l = {u0, u1, u2, . . .}. Without loss of generality,

assume that Pl(t) = uk.

tu
A
A
A
At
J
J
JJt
Q
Q
Qt t q q q³³

³t

Pl(t)
¡
¡
¡

t¡
¡
l

t

t

A

A

A

A

A

Figure 2.8. Projection of the tree t on the treeline l passing through u.

By the definition of treeline, there are two possible relations between u and uk,

either u ⊆ uk or uk ⊆ u.

Case 1: u ⊆ uk

Note that

Ind(uk) ∩ Ind(u) ∩ Ind(t) = ∅. (2.13)

In fact, if it is not empty, then there exists a terminal node of the tree uk, ν, which

is not included in the tree t and the tree u. Therefore, considering the binary tree

uk−1 = uk\{ν},
dI(uk−1, u) = dI(uk, u)− 1,

which is a contradiction with the assumption that the tree uk is the projection of the

tree t.
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Since the tree u is a subtree of the tree uk, i.e. Ind(u) ⊆ Ind(uk), the following

equations are established,

Ind(t) ∩ Ind(uk) ∩ Ind(u) = ∅ (2.14)

and

Ind(uk) ∩ Ind(t) ∩ Ind(u) = Ind(u) ∩ Ind(t). (2.15)

Using Equations (2.13), (2.14) and (2.15),

dI(u, Pl(t)) + dI(Pl(t), t) = dI(u, uk) + dI(uk, t)

=
∑

j

1{j ∈ Ind(u)4Ind(uk)}+
∑

j

1{j ∈ Ind(t)4Ind(uk)}

=
∑

j

1{j ∈ Ind(uk)\Ind(u)}+
∑

j

1{j ∈ Ind(t)4Ind(uk)}

=
∑

j

1{j ∈ Ind(uk) ∩ Ind(u) ∩ Ind(t)}+
∑

j

1{j ∈ Ind(uk) ∩ Ind(u) ∩ Ind(t)}

+
∑

j

1{j ∈ Ind(t) ∩ Ind(uk)}+
∑

j

1{j ∈ Ind(uk) ∩ Ind(t)}

=
∑

j

1{j ∈ Ind(uk) ∩ Ind(u) ∩ Ind(t)}+
∑

j

1{j ∈ Ind(uk) ∩ Ind(u) ∩ Ind(t)}

+
∑

j

1{j ∈ Ind(t) ∩ Ind(uk) ∩ Ind(u)}+
∑

j

1{j ∈ Ind(t) ∩ Ind(uk) ∩ Ind(u)}

+
∑

j

1{j ∈ Ind(uk) ∩ Ind(t) ∩ Ind(u)}+
∑

j

1{j ∈ Ind(uk) ∩ Ind(t) ∩ Ind(u)}

=
∑

j

1{j ∈ Ind(t) ∩ Ind(u)}+
∑

j

1{j ∈ Ind(u) ∩ Ind(t)}

=
∑

j

1{j ∈ Ind(u)4Ind(t)}

= dI(u, t).

Case 2: uk ⊆ u

Note that the tree uk is the projection of the tree t, which implies

Ind(u) ∩ Ind(uk) ∩ Ind(t) = ∅, (2.16)
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by the same argument that was used to establish Equation (2.13).

Since the tree uk is a subtree of the tree u, i.e. Ind(uk) ⊆ Ind(u), the following

equations are established,

Ind(uk) ∩ Ind(t) ∩ Ind(u) = ∅ (2.17)

and

Ind(uk) ∩ Ind(u) ∩ Ind(t) = Ind(t) ∩ Ind(u). (2.18)

Using Equations (2.16), (2.17) and (2.18),

dI(u, Pl(t)) + dI(Pl(t), t) = dI(u, uk) + dI(uk, t)

=
∑

j

1{j ∈ Ind(u)4Ind(uk)}+
∑

j

1{j ∈ Ind(t)4Ind(uk)}

=
∑

j

1{j ∈ Ind(u)\Ind(uk)}+
∑

j

1{j ∈ Ind(t)4Ind(uk)}

=
∑

j

1{j ∈ Ind(u) ∩ Ind(uk) ∩ Ind(t)}+
∑

j

1{j ∈ Ind(u) ∩ Ind(uk) ∩ Ind(t)}

+
∑

j

1{j ∈ Ind(t) ∩ Ind(uk)}+
∑

j

1{j ∈ Ind(uk) ∩ Ind(t)}

=
∑

j

1{j ∈ Ind(u) ∩ Ind(uk) ∩ Ind(t)}+
∑

j

1{j ∈ Ind(u) ∩ Ind(uk) ∩ Ind(t)}

+
∑

j

1{j ∈ Ind(t) ∩ Ind(uk) ∩ Ind(u)}+
∑

j

1{j ∈ Ind(t) ∩ Ind(uk) ∩ Ind(u)}

+
∑

j

1{j ∈ Ind(uk) ∩ Ind(t) ∩ Ind(u)}+
∑

j

1{j ∈ Ind(uk) ∩ Ind(t) ∩ Ind(u)}

=
∑

j

1{j ∈ Ind(t) ∩ Ind(u)}+
∑

j

1{j ∈ Ind(u) ∩ Ind(t)}

=
∑

j

1{j ∈ Ind(u)4Ind(t)}

= dI(u, t).

¤
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Remark 2.5.1. The simplest form of the Pythagorean Theorem claims that in a

right triangle with legs a, b and hypotenuse c, c2 = a2 + b2.

In Euclidean space, a more general version of the Pythagorean Theorem provides

the foundation of the ANOVA type of variation decomposition about the sample

mean. For a set of numbers

{x1, x2, . . . , xn},

denote ~x = (x1, x2, · · · , xn)′. Then
n∑

i=1

x2
i =

n∑

i=1

(xi − x)2 +
n∑

i=1

x2,

where x is the average of x1, x2, . . . , xn. That is,

‖(x1, x2, . . . , xn)
′‖2 = ‖(x1 − x, · · · , xn − x)′‖2 + ‖ (x, x, . . . , x)′

︸ ︷︷ ︸

n

‖2, (2.19)

where the vector

(x, x, . . . , x)′

is the projection of the vector ~x onto the vector (~v) where all entries are equal, denoted

by P~v(~x). That is,

‖~x− ~0‖2 = ‖~x− P~v(~x)‖2 + ‖P~v(~x)− ~0‖2. (2.20)

The tree version of Equation (2.20) is given in Theorem 2.5.1. In the tree space,

the hypotenuse (dI(t, u)) is the sum of the two legs, where dI plays the role of squared

Euclidean distance (see Theorem 2.5.1).

Corollary 2.5.2. Let T be a sample of trees with median tree m. Pl is a projec-

tion function where l is a treeline running through m. Then, ∀t ∈ T ,

dI(m,Pl(t)) + dI(Pl(t), t) = dI(m, t).
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Theorem 2.5.3. Let T = {t1, t2, . . . , tn} be a sample of trees. Maximizing the

sum
∑n

i=1 dI(m,Pl(ti)) is equivalent to minimizing the sum
∑n

i=1 dI(Pl(ti), ti), where

l runs over all treelines passing through the median tree m.

Proof. From the tree version of the Pythagorean Theorem 2.5.1, for i = 1, 2, . . . , n,

dI(m,Pl(ti)) + dI(Pl(ti), ti) = dI(m, ti).

Therefore,
n∑

i=1

dI(m,Pl(ti)) +
n∑

i=1

dI(Pl(ti), ti) =
n∑

i=1

dI(m, ti).

¤

Definition 2.5.1. A treeline l1, which maximizes the sum
∑n

i=1 dI(m,Pl(ti)) (or

minimizes the sum
∑n

i=1 dI(Pl(ti), ti)) over all treelines passing through the minimal

median tree m, is called a one-dimensional principal representation, denoted

by π1.

Remark 2.5.2. The one-dimensional principal representation, i.e. π1, might not

be unique, as shown in Example 2.5.1.

The following example also shows that the assumption of Definition 2.5.1 that

only treelines passing through the median tree is very important. In particular, the

sum of the distances to the projections on the treeline may be smaller for some other

treeline.

Example 2.5.1. Let T = {t1, t2, . . . , t9} be a sample of binary trees as shown in

Figure 2.9.

According to the majority rule, the median tree (m) has the same tree structure

as that of tree t5.

It is straightforward to see that, the one-dimensional principal representation is

not unique. The one-dimensional principal representations, denoted by l1 and l2, are

shown in Figures 2.10 and 2.11.
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Figure 2.9. The tree sample T .

Figure 2.10. The one-dimensional principal representation, treeline l1.

Figure 2.11. The one-dimensional principal representation, treeline l2.

Therefore, the sums of the distances between the tree and its projection onto the

treelines l1 and l2 are
9∑

i=1

dI(ti, Pl1(ti)) = 8, (2.21)
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9∑

i=1

dI(ti, Pl2(ti)) = 8. (2.22)

Now consider another treeline l3 (see Figure 2.12). The sum of distances to this

treeline is
9∑

i=1

dI(ti, Pl3(ti)) = 7. (2.23)

Figure 2.12. The treeline l3.

Remark 2.5.3. The assumption that the one-dimensional principal representation

passes through the median tree shown in Example 2.5.1 to be a strong assumption.

This choice is deliberately made as best reflecting the insight of the “variation about

the center”.

Definition 2.5.2. For a tree sample T = {t1, t2, . . .}, two treelines l1 and l2 are

said to be equivalent if

Pl1(ti) = Pl2(ti),∀i.

Remark 2.5.4. This equivalence of two treelines is relative; that is, for different

tree samples, their equivalence may be different.

Remark 2.5.5. Let k be the maximum level of the trees of a tree sample T . If

all the components with level no more than k are the same for two treelines l1 and l2,

then l1 and l2 are equivalent for the sample T . Therefore, for simplicity, the treeline

will be represented by the components with level no more than k.

38



2.6. Example

Some basic concepts and ideas were developed on trees (without nodal attributes).

Now, these are illustrated with a toy example.
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Figure 2.13. A sample of trees without nodal attributes.

T is a sample of trees with n = 11 members, t1, t2, . . . t11 shown in Figure 2.13.

Based on the integer tree metric dI , the support tree (tsup) and median tree (m) are

shown in Figure 2.14. Note that, n = 11 is an odd number. Therefore, the median

tree is unique.

In the left panel of Figure 2.14, the level-order index set of the support tree is

{1, 2, 3, 4, 6, 7}. And the numbers of appearance of each node are n1 = 11, n2 =

11, n3 = 6, n4 = 4, n5 = 0, n6 = 6, n7 = 3, respectively.
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According to the majority rule, the median tree consists of all nodes with appear-

ance number more than n
2
. The median tree is shown on the right panel in Figure

2.14.

Support tree Median tree

Figure 2.14. The support tree and the median tree.

The total variation of the sample T to its center, the sum of distances between

each tree ti and median tree m, is

11∑

i=1

dI(ti,m) = 17.

Next, a treeline, one-dimensional representation in the tree space T , which ex-

plains the greatest variability, will be found.

There are several treeline classes, which are different with respect to “equivalence”

(see Definition 2.5.2), which pass through the median tree m. Three such treelines,

l1, l2, and l3, are shown in Figure 2.15, Figure 2.16 and Figure 2.17.

The projections of the tree sample T on the representative treeline l1 are shown

in Figure 2.18. The total distance for the median tree m to each of the projections

of trees ti on treeline l1 is

11∑

i=1

dI(m,Pl1(ti)) = 4. (2.24)

This can be seen from the fact that there are only four trees in Figure 2.18 that are

different from the median tree in Figure 2.14 and each differs by only one branch. By

the tree version of the Pythagorean Theorem (see Section 2.5), the total distance for
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Figure 2.15. Representative treeline l1.
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Figure 2.16. Representative treeline l2.
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Figure 2.17. Representative treeline l3.
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Figure 2.18. Projection of the tree sample on the treeline l1.

41



the tree objects (ti) to their projections on the treeline (Pl1(ti)) is

11∑

i=1

dI(ti, Pl1(ti)) =
11∑

i=1

dI(ti,m)−
11∑

i=1

dI(m,Pl1(ti)) = 13, (2.25)

which is the variation unexplained by the treeline l1.

Similarly, the projections of the tree sample T on treelines l2 and l3, as shown in

Figure 2.19 and Figure 2.20, can be obtained.
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Figure 2.19. Projection of the tree sample on the treeline l2.

The corresponding sums of distances for Figure 2.19 are

11∑

i=1

dI(m,Pl2(ti)) = 10, (2.26)

11∑

i=1

dI(ti, Pl2(ti)) = 7. (2.27)

This can be seen that there are only six trees in Figure 2.19 that are different from

the objects themselves among which five differs by one nodes and one by two nodes.

Also, the corresponding sums of distances for Figure 2.20 are

11∑

i=1

dI(m,Pl3(ti)) = 3, (2.28)
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Figure 2.20. Projection of the tree sample on the treeline l3.

11∑

i=1

dI(ti, Pl3(ti)) = 14. (2.29)

Comparing the results, it shows that, the total variations explained by the treeline

l1, (4, from Equation 2.24) and l3 (3, from Equation 2.28) are very close. So, it is

not surprising that it is difficult to see visually in Figure 2.18 and Figure 2.20 which

captures more variability.

But, the total variation explained by the treeline l2 (10, from Equation 2.26) is

much further than those by l1 and l3. It can be seen visually that the projections

on the treeline l2 are closer to the objects themselves than those projections on the

treelines l1 or l3. Therefore, tree line l2 is the one-dimensional principal representation

of the tree sample T .

This example shows that, a one-dimensional representation (i.e., treeline), even

the one-dimensional principal representation, cannot explain all of the variation in

the data. An approach to study additional population structure is to study analogs

of higher dimensional subspaces. A more general 2-dimensional representation can
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be generated by adding or deleting 1 or 2 terminal nodes starting from the median

trees (see Chapter 4 for more discussion).

44



CHAPTER 3

Statistical Analysis on the Binary Tree Space with Nodal

Attributes

In Chapter 2, the methodology was developed for statistical analysis on the binary

tree space only considering the topological tree structure without nodal attributes.

The integer metric dI provided the foundation for finding the median tree and for

quantifying the variation. Furthermore, an analogous variation analysis method was

developed on the tree space without attributes. This chapter focuses on the statistical

analysis on the binary tree space with nodal attributes, which is of primary interest

in medical image analysis.

3.1. New Metric δ on Tree Space with Nodal Attributes

The integer tree metric dI captures topological structure of the tree population.

In many important cases, including image analysis, the nodes of the trees contain

useful attributes (numerical values, see Section 1.1), which should also be used in the

statistical analysis.

In this section, a metric will be defined on the trees with nodal attributes which

extends the integer tree metric dI . The attributes, contained in the node with level-

order index k on the tree t, are denoted by (xtk, ytk, . . .). For simplicity, the case

(xtk, ytk) will be treated explicitly. The general case is straightforward as discussed

in Remark 3.1.1.

Generally, the values of the nodal attributes, xtk and ytk, have no restriction

and can be any real value. But, after some appropriate transformation, the nodal

attributes can be assumed to be bounded. This is important to control the attribute



component of the metric, with respect to the topological component. For example,

for a mapping f ,

f : x 7→ 1

π
√
2
arctan(x)

f(x) ∈ [−
√

2
4
,
√

2
4
].

From now on, assume that xtk, ytk ∈ [−
√

2
4
,
√

2
4
]. The bound

√
2

4
is used because

the Euclidean distance between two-dimensional vectors, all that are treated in these

illustrative examples, whose entries satisfy this bound, is at most 1.

Recall from Equation (2.2) that, the integer metric dI can be written as,

dI(s, t) =
∞∑

k=1

1{k ∈ Ind(s)4Ind(t)}.

For any trees s and t with nodal attributes, define the new metric (Theorem 3.1.2

establishes that this is indeed a metric)

δ(s, t) = dI(s, t) + fδ(s, t), (3.1)

where

fδ(s, t) =

[ ∞∑

k=1

αk((xsk − xtk)
2 + (ysk − ytk)

2)1{k ∈ Ind(s) ∩ Ind(t)}

+
∞∑

k=1

αk(x
2
sk + y2

sk)1{k ∈ Ind(s)\Ind(t)}

+
∞∑

k=1

αk(x
2
tk + y2

tk)1{k ∈ Ind(t)\Ind(s)}
] 1

2

(3.2)

and {αk} is a non-negative weight series with
∑

k αk = 1. The last two summations in

Equation (3.2) are included to avoid loss of information from those nodal attributes

that are in one tree and not the other.

In Equation (3.1), the second term in the summation fδ, where “f” means frac-

tional part of the metric, is at most 1 (proof given in Proposition 3.1.1). Recall that,

the first term in the summation is denoted as dI where “I” means integer part of the

metric (see Section 2.2).
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Also, note that fδ is a square root of a weighted sum of squares. When trees s

and t have the same tree structure, fδ(s, t) can be viewed as a weighted Euclidean

distance. In particular, the nodal attributes can be combined into a single long vector.

Then, fδ(s, t) is a weighted Euclidean metric on these vectors.

When trees s and t have different tree structures, it is convenient to replace the

nonexistent nodal attributes with (0, 0). Thus, fδ can be rewritten as

fδ(s, t) = [
∞∑

k=1

αk((xsk − xtk)
2 + (ysk − ytk)

2)1{k ∈ Ind(s) ∩ Ind(t)}

+
∞∑

k=1

αk((xsk − 0)2 + (ysk − 0)2)1{k ∈ Ind(s)\Ind(t)}

+
∞∑

k=1

αk((0− xtk)
2 + (0− ytk)

2)1{k ∈ Ind(t)\Ind(s)}] 1

2

(3.3)

This also allows the nodal attributes to be combined into a single long vector. Then,

fδ(s, t) is a weighted Euclidean metric on these vectors.

For another view of fδ, rescale the entries of the vector by the square root of the

weights αk. Then, fδ is the ordinary Euclidean metric on these rescaled vectors.

From now on, all the theorems are developed for general weight sequences. But,

the power weight sequence, where the weight is {2−(2i+1)} for the node on the ith

level, i = 0, 1, 2, . . . in T , will be used in the examples.

Insight into the metric δ comes from Example 3.1.1.

Example 3.1.1. t1 and t2 are two trees with nodal attributes listed in Table 3.1.

level-order index t1 t2

1 (0.3,0.1) (0.2,0.1)

2 (0.15,0.25) (0.3,0.2)

Table 3.1. Nodal attributes of the trees t1 and t2.
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The following figure shows the graphical representation1 of the two trees t1 and

t2.

Figure 3.1. Graphical representation of trees t1 and t2 in Example 3.1.1.

Note that the trees t1 and t2 have the same tree structure which implies the integer

part of the distance, dI(t1, t2) = 0.

δ(t1, t2) = fδ(t1, t2)

=

√
√
√
√

1

2
((0.3− 0.2)2 + (0.1− 0.1)2)

︸ ︷︷ ︸

k=1

+
1

23
((0.15− 0.3)2 + (0.25− 0.2)2)

︸ ︷︷ ︸

k=2

= 0.0901

where k is the level-order index, 1
2
and 1

23 are the weights of the two nodes, respectively.

As noted above, fδ can be viewed as a weighted metric on the vectors (made up

of combined nodal attributes) [0.3, 0.1, 0.15, 0.25]′ and [0.2, 0.1, 0.3, 0.2]′.

From the alternative point of view, fδ(t1, t2) is the ordinary Euclidean distance

between the two weighted vectors ~v1 and ~v2

~v1 = [
0.3√
2
,
0.1√
2
,
0.15√
23
,
0.25√
23

]′;

~v2 = [
0.2√
2
,
0.1√
2
,
0.3√
23
,
0.2√
23

]′.

Proposition 3.1.1. For any two trees with nodal attributes, the fractional part

is at most 1, i.e.,

fδ(s, t) ≤ 1.

1For every node with positive nodal attributes (x, y), x is taken as the length and y is taken as
the width of the nodal box in the graphical representation.
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Proof. Note that, for k ∈ Ind(s) ∩ Ind(t),

(xsk − xtk)
2 + (ysk − ytk)

2 ≤ 1

because xsk, xtk, ysk, ytk ∈ [−
√

2
4
,
√

2
4
].

Similarly,

x2
sk + y2

sk ≤ 1

for k ∈ Ind(s)\Ind(t), and

x2
tk + y2

tk ≤ 1

for k ∈ Ind(t)\Ind(s). Therefore,

f 2
δ (s, t) =

∞∑

k=1

αk

[
((xsk − xtk)

2 + (ysk − ytk)
2)1{k ∈ Ind(s) ∩ Ind(t)}

+(x2
sk + y2

sk)1{k ∈ Ind(s)\Ind(t)}+ (x2
tk + y2

tk)1{k ∈ Ind(t)\Ind(s)}
]

≤
∞∑

k=0

αk

= 1.

¤

Remark 3.1.1. In general, when the attribute vector contains more than two

attributes, say N , 1
2
√
N

can be taken as the bound.

Next, Theorem 3.1.2 shows that δ is a metric. This requires the following assump-

tion.

Assumption 1. The weight αk is positive and
∑

αk = 1.

Theorem 3.1.2. Under Assumption 1, δ is a metric on the tree space with nodal

attributes.
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Proof. Suppose s, t and u are any three trees with nodal attributes.

Note that

δ(s, s) = dI(s, s) + fδ(s, s) = 0.

On the other hand, for two binary trees s and t, if δ(s, t) = 0, then dI(s, t) = 0 and

fδ(s, t) = 0 because both tree functions dI and fδ are non-negative. Therefore, the

tree s and tree t have the same tree structure and nodal attributes. That is, s = t.

Also, the symmetry property is straightforward because dI and fδ are both sym-

metric functions on tree space.

Now, the triangle inequality will be proved; that is,

δ(s, t) ≤ δ(s, u) + δ(u, t). (3.4)

Recall that dI is a metric on the tree space without nodal attributes and pseudo-

metric on the tree space with nodal attributes (see Theorem 2.2.2 in Section 2.2).

Thus, the triangle inequality is satisfied; that is,

dI(s, t) ≤ dI(s, u) + dI(u, t).

Also, fδ is the same as the weighted Euclidean distance between two attribute

vectors. Therefore, the triangle inequality is satisfied.

Thus, in general, the triangle inequality (3.4) is satisfied. δ is a metric on the tree

space with nodal attributes. ¤

Remark 3.1.2. For a non-negative weight series {αk}, δ is a pseudo metric. In

fact, if some weight is equal to zero, there exist two trees s and t (s 6= t), such that

δ(s, t) = 0.

When a general weight sequence is used, the fractional part can be very small. In

some problems, the level of the trees in the population is finite. In that case, it might

make sense to assign positive weights to all of those nodes only.
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The set of all subtrees of a particular tree is an analog of the “subspace generated

by the tree”. In particular,

Definition 3.1.1. For any tree w in T , Let Tw denote the set of all subtrees (see

Definition 2.1.3) of w. That is,

Tw = {t : Ind(t) ⊆ Ind(w)}. (3.5)

Note that the Definition 3.1.1 is not restrictive because w can be the union of any

finite population of trees. Thus, Tw plays a role similar to the “subspace generated

by a set of vectors”.

In Definition 3.1.1, Tw consists of all of the subtrees of the tree w. Here, the term

“subtree” refers to the topological relationship. That is, a tree t is a member of Tw
(i.e., t ∈ Tw), if Ind(t) ⊆ Ind(w), without regard to the attributes. Hence, the name

“topological subtree” is used for this relationship. For example, if t ∈ Tw, then the

tree t is a topological subtree of the tree w, denoted by t
T

⊆ w or w
T

⊇ t. The following

definition is for a different, but also useful, notion of subtree, the “attribute subtree”.

Definition 3.1.2. For two trees s and t, the tree s is called the attribute sub-

tree of the tree t, denoted by s
A

⊆ t or t
A

⊇ s, if

Ind(s) ⊆ Ind(t),

and for every node k ∈ Ind(s), the two trees have the same nodal attributes.

Remark 3.1.3. From Definition 3.1.2, if the tree s is an attribute subtree of the

tree t, then s is also a topological subtree of the tree t.

Definition 3.1.3. For two trees s and t (s
T

⊆ t), the tree s is called the proper

topological subtree of the tree t, denoted by s
T⊂ t or t

T⊃ s, if the set Ind(s) is a

proper subset of the set Ind(t), i.e.,

Ind(s) ⊂ Ind(t).
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Definition 3.1.4. In Definition 3.1.2, the tree s is called the proper attribute

subtree of the tree t, denoted by s
A⊂ t or t

A⊃ s, if the set Ind(s) is a proper subset

of the set Ind(t), i.e.,

Ind(s) ⊂ Ind(t).

Proposition 3.1.3. If two trees w1 and w2 have the same tree structures, i.e.,

Ind(w1) = Ind(w2), then Tw1
= Tw2

.

Using the notation N(t) to denote the total number of nodes of tree t, ∀t ∈ Tw,
the following inequality holds

N(t) ≤ N(w).

In the tree subspace Tw, equal weight 1
N(w)

is assigned to each node. That is, the

weight αk is

αk =







1
N(w)

, if k ∈ Ind(w)

0, if k 6∈ Ind(w).

(3.6)

Thus, restrict the metric δ to the following metric ρ: for any two trees s, t ∈ Tw,

ρ(s, t) = dI(s, t) +




1

N(w)

∑

k∈Ind(w)

((xsk − xtk)
2 + (ysk − ytk)

2)1{k ∈ Ind(s) ∩ Ind(t)}

+
1

N(w)

∑

k∈Ind(w)

((xsk)
2 + (ysk)

2)1{k ∈ Ind(s)\Ind(t)}

+
1

N(w)

∑

k∈Ind(w)

((xtk)
2 + (ytk)

2)1{k ∈ Ind(t)\Ind(s)}





1

2

= dI(s, t) + fρ(s, t).

(3.7)

From Remark 3.1.2, ρ is not a metric on the tree space T because the weight

αk = 0 if k 6∈ Ind(w). But, following the same proof as was used for Theorem 3.1.2,

Proposition 3.1.4 holds.
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Proposition 3.1.4. ρ is a metric on the tree subspace Tw.

Example 3.1.2. Let t1 and t2 be the trees as given in Example 3.1.1. They are

members of the tree subspace Tw, where Ind(w) = {1, 2, 3}.

Note that

ρ(t1, t2) = fρ(t1, t2)

=

√
√
√
√

1

3
((0.3− 0.2)2 + (0.1− 0.1)2)

︸ ︷︷ ︸

k=1

+
1

3
((0.15− 0.3)2 + (0.25− 0.2)2)

︸ ︷︷ ︸

k=2

= 0.1080.

It shows that δ(t1, t2) < ρ(t1, t2). The reason is that, the metric δ puts much

smaller weights on the nodes with larger level-order indices. Thus, the nodal at-

tributes of the nodes with larger level-order indices have less impact on the distance.

In Section 3.6, the metric ρ will be used for easy hand calculation; while in the other

sections, the general metric δ is applied (the power sequence is used as the weights

in δ for illustration).

3.2. Formulating the Nodal Attributes and Representing the Trees

In this section, the question of how to represent the trees in terms of their topolo-

gies and nodal attributes will be discussed.

In Example 3.1.1, a table is used to represent the trees by listing the level-order

indices on the left column followed by the corresponding nodal attributes.

For example, t is a tree with level-order index set Ind(t) = {k1, k2, . . .}, where
k1 < k2 < · · · . Then, the tree is represented as shown in Table 3.2.

Note that, for a node which does not appear in the tree t, its nodal attributes are

recorded as “n/a” in the table.
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level-order index nodal attributes of t
...

...

k1 (xtk1
, ytk1

)
...

...

k2 (xtk2
, ytk2

)
...

...

Table 3.2. Representation of the tree t by using a table of level-order

indices and corresponding nodal attributes.

As mentioned in the previous section, each tree is associated with a numerical data

vector. The fractional part distance fδ is the weighted Euclidean distance between

those vectors. The following rule is used to formulate the nodal attribute vector.

Padding Rule for Attribute Vectors

For a tree t, its associated nodal attribute vector ~v is defined as

~v = [v1, v2, . . .],

where for k = 1, 2, . . . ,

(v2k−1, v2k) =







(xtk, ytk), if k ∈ Ind(t)

(0, 0), if k 6∈ Ind(t).

(3.8)

If T is a sample of trees in the finite level tree subspace Tw, then for every ele-

ment in the sample T , (v2k−1, v2k) = (0, 0), when k 6∈ Ind(w). Therefore, the nodal

attributes can be simply recorded as a vector of length 2N(w), where N(w) is the

total number of nodes of the tree w.
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Furthermore, the fractional part metric fρ on finite level trees is proportional to

the ordinary Euclidean distance d. That is, for t1, t2 ∈ Tw,

fρ(t1, t2) =
1

√

N(w)
d(~v1, ~v2),

where ~v1 and ~v2 are the nodal attribute vectors of the trees t1 and t2 respectively.

3.3. Median-mean Tree of the Tree Sample with Nodal Attributes

In Section 2.3, the problem of how to find the median tree for a tree sample

T = {t1, t2, . . . , tn} without nodal attributes has been solved. The solution for the

metric dI was the majority rule (see Theorem 2.3.2 for the algorithm). Now, a

new metric δ, which also considers nodal attributes, is given. In this section, a new

“center point” of the tree sample with nodal attributes, called the median-mean tree,

will be developed. The name “median-mean” is used because it has properties of

both a median with respect to dI and a mean with respect to fδ.

Definition 3.3.1. A tree is called a median-mean tree for a tree sample T =

{t1, t2, . . . , tn}, denoted by mδ, if it minimizes

n∑

i=1

dI(t, ti) (3.9)

over all trees t ∈ T and has nodal attributes, for the node k ∈ Ind(mδ),

xmδk =

∑n

i=1 xtik1{k ∈ Ind(ti)}
∑n

i=1 1{k ∈ Ind(ti)}
(3.10)

ymδk =

∑n

i=1 ytik1{k ∈ Ind(ti)}
∑n

i=1 1{k ∈ Ind(ti)}
(3.11)

Remark 3.3.1. The new “center point” mδ is called “median-mean” because

its tree structure complies with the majority rule with appearance number at least n
2

and because its nodal attributes can be calculated as a “sample mean”.
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The median-mean tree defined in Definition 3.3.1 may or may not be unique, as

shown in Examples 3.3.1 and 3.3.2 below. A variation which is unique is given in

Definition 3.3.2.

Definition 3.3.2. The median-mean tree with the smallest number of nodes is

called the minimal median-mean tree with nodal attributes (denoted by µδ).

The following example shows the lack of the uniqueness of median-mean tree. But

the minimal median-mean tree is unique, as shown in Proposition 3.3.1.

Example 3.3.1. For a tree sample T = {t1, t2}, the nodal attributes are listed in

Table 3.3.

level-order index t1 t2

1 (0.1,0.2) (0.3,0.3)

2 (0.1,0.1) N/A

3 N/A (0.2,0.2)

Table 3.3. Nodal attributes of t1 and t2 in Example 3.3.1.

Figure 3.2. Graphical representation of the tree sample of Example 3.3.1.

There are four median-mean trees for this sample (see Figure 3.3). Because there

are only two trees in the sample, all topological subtrees of the union tree satisfy the

majority rule. There exists a median-mean tree for each topological subtree. The

nodal attributes of the median-mean trees are shown in Table 3.4.
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level-order index attributes

1 (0.2,0.25)

2 N/A

3 N/A

level-order index attributes

1 (0.2,0.25)

2 (0.1,0.1)

3 N/A

level-order index attributes

1 (0.2,0.25)

2 N/A

3 (0.2,0.2)

level-order index attributes

1 (0.2,0.25)

2 (0.1,0.1)

3 (0.2,0.2)

Table 3.4. Nodal attributes for the four median-mean trees.

Figure 3.3. Graphical representation of the four median-mean trees

of the tree sample in Example 3.3.1.

The first one is the minimal median-mean tree µδ, which has the smallest number

of nodes. Note that its structure is the same as that of the minimal median tree

without nodal attributes, µ.

In the following Example 3.3.2, both the median-mean tree and the minimal

median-mean tree are unique.

Example 3.3.2. For a tree sample T = {t1, t2, t3, t4} as shown in Figure 3.4, the

nodal attributes are listed in Table 3.5.

In this example, by the majority rule, the median tree is unique without nodal

attributes. Considering the nodal attributes, only one median-mean tree listed in

Table 3.6, which is also the minimal median-mean tree, will be obtained.

The two examples above motivate the following proposition.
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level-order index t1 t2 t3 t4

1 (0.2,0.2) (0.3,0.3) (0.2,0.3) (0.3,0.2)

2 (0.1,0.3) (0.3,0.2) (0.2,0.1) N/A

3 (0.3,0.1) (0.2,0.3) N/A (0.3,0.2)

Table 3.5. Nodal attributes of the tree sample in Example 3.3.2.

Figure 3.4. Graphical representation of the tree sample in Example 3.3.2.

level-order index attributes

1 (0.25,0.25)

2 (0.20,0.20)

3 (0.267,0.20)

Table 3.6. Nodal attributes of the median-mean tree of Example 3.3.2.

Proposition 3.3.1. The minimal median-mean tree with nodal attributes is unique.

Also, it has the same tree structure as that of the minimal median tree without nodal

attributes.

Proof. Since the median-mean tree minimizes Equation (3.9), the median-mean tree is

also a median tree without nodal attributes. By Theorem 2.3.4, the minimal median

tree is unique without nodal attributes. Hence, the minimal median-mean tree is also

unique. ¤
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The following Example 3.3.3 is used to show that the median-mean tree may not

minimize the sum
n∑

i=1

δ(ti,mδ).

Example 3.3.3. For a tree sample T = {t1, t2, t3}, the nodal attributes are listed

in Table 3.7.

level-order index t1 t2 t3

1 (0.2,0.2) (0.2,0.2) (0.2,0.2)

2 (0,0.3) (0.3,0) (0,0)

Table 3.7. Nodal attributes of the tree sample T in Example 3.3.3.

In this example, there is a unique median-mean tree with nodal attributes mδ,

listed in Table 3.8.

level-order index nodal attributes

1 (0.2,0.2)

2 (0.1,0.1)

Table 3.8. Nodal attributes of the median-mean tree of Example 3.3.3.

The total distance about the median-mean tree mδ is

3∑

i=1

δ(ti,mδ) = 0.2081.

Now, consider the tree s (see Table 3.9). The total distance from s to the other trees

is
3∑

i=1

δ(ti, s) = 0.2049.

59



level-order index s

1 (0.2,0.2)

2 (0.06,0.06)

Table 3.9. Nodal attributes of the tree s.

Hence,
3∑

i=1

δ(ti,mδ) >
3∑

i=1

δ(ti, s).

That is, the median-mean tree mδ does not minimize the sum
∑

i δ(ti, t) over all t.

Remark 3.3.2. Recall from Section 2.3 that, the median tree without nodal at-

tributes minimizes the sum
∑

i dI(ti, t), over all t, while the median-mean tree with

nodal attributes mδ may not minimize the sum
∑

i δ(ti, t). This is not surprising,

because even in Euclidean space R
d, the sample mean minimize the sum of squared

distances to the data, not the sum of distances. The reason of making this choice of

the median-mean tree is, that it fits best with the coming decomposition of variation,

into topological and attribute components.

3.4. Quantifying the Variation in the Tree Space with Nodal Attributes

Now, for a tree sample T with nodal attributes, a metric δ was defined. The

next question is how to quantify the variation of the sample to the “center point”—

median-mean tree.

An important foundation of “variation” is the tree function:

Vδ(s, t) = dI(s, t) + f 2
δ (s, t). (3.12)

Definition 3.4.1. Let T be a sample of trees with nodal attributes. The tree mδ

is a median-mean tree according to the metric δ. The variation of a tree t, in the

sample, about the median-mean tree is defined as Vδ(t,mδ).
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Remark 3.4.1. Vδ(·,mδ) is a function defined on a tree space, but it is not a metric

because the triangle inequality is not satisfied, just as squared Euclidean distance is

not a metric.

Recall that, the median-mean tree is not unique when the sample size n is an

even number and some nodes appear n
2
times in the sample. Does the total variation

depend on the choice of median-mean tree, when it is not unique? The following

proposition answers this question.

Theorem 3.4.1. Let T = {t1, t2, . . . , tn} be a finite sample of trees with nodal

attributes. The sum of variation to the median-mean tree over elements in the sample

n∑

i=1

Vδ(ti,mδ) (3.13)

is constant over all median-mean trees of the sample T .

Proof. Suppose n = 2q, where q is some positive integer, since otherwise the median-

mean tree is unique. Let s be any median-mean tree, that is not the minimal median-

mean tree µδ. A proof will be provided for the following equality

n∑

i=1

Vδ(ti, s) =
n∑

i=1

Vδ(ti, µδ). (3.14)

Since µδ is the minimal median-mean tree, µδ is an attribute subtree of s. Thus,

there exists a sequence of median-mean trees {si}, such that

µδ = s1

A

⊆ s2 · · ·
A

⊆ sK = s,

where si is an attribute subtree of si+1, and si+1 has one more node (denoted by ki+1)

than si, for i = 1, . . . , K − 1. It is straightforward that the node ki+1 appears exactly

q = n
2
times in the sample.
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For 1 ≤ p ≤ K − 1,

n∑

i=1

Vδ(ti, sp+1)

=
n∑

i=1

Vδ(ti, sp)−
n∑

i=1

αkp+1
(x2

tikp+1
+ y2

tikp+1
)1{kp+1 ∈ Ind(ti)}

+ qαkp+1
(x2

sp+1kp+1
+ y2

sp+1kp+1
)

+
n∑

i=1

αkp+1
((xtikp+1

− xsp+1kp+1
)2 + (ytikp+1

− ysp+1kp+1
)2)1{kp+1 ∈ Ind(ti)}.

(3.15)

By the definition of the median-mean tree,

n∑

i=1

((xtikp+1
− xsp+1kp+1

)2 + (ytikp+1
− ysp+1kp+1

)2)1{kp+1 ∈ Ind(ti)}

=
n∑

i=1

(x2
tikp+1

+ y2
tikp+1

)1{kp+1 ∈ Ind(ti)}

− q(x2
sp+1kp+1

+ y2
sp+1kp+1

).

(3.16)

Combining Equations (3.15) and (3.16),

n∑

i=1

Vδ(ti, sp+1) =
n∑

i=1

Vδ(ti, sp).

Repeatly over p = 1, 2, . . . , K − 1,

n∑

i=1

Vδ(ti, µδ) = · · · =
n∑

i=1

Vδ(ti, s).

¤

Remark 3.4.2. This shows why the median-mean tree is a very natural notion of

“center”, as discussed in Section 3.3 .

3.5. Treeline and Projection in Finite Level Tree Subspace Tw

In Sections 3.3 and 3.4, the center point of a sample of trees with nodal attributes

and the total variation of the sample to its median-mean tree have been defined.
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Also, according to Theorem 3.4.1, the total variation about the median-mean tree is

constant over all choices of median-mean trees.

In Euclidean space, principal component analysis (PCA) provides a useful decom-

position of complex data sets, in terms of simple one-dimensional representations of

the data. Binary tree space is not a linear space, but useful one-dimensional represen-

tations are developed. There are two important types, defined below, both of which

are called “treeline”.

In this section, the treeline, which plays the role of line in Euclidean space, is

defined in tree space. Hence, an analogy of PCA is developed to find treelines, which

explain important features of the sample.

Definition 3.5.1. Suppose l = {u0, u1, u2, . . .} is a sequence of trees with nodal

attributes in the subspace Tw. The set l is called a structure treeline (s-treeline)

starting from u0 if for i = 1, 2, 3, . . .,

(1) ui−1 can be obtained by deleting a terminal node (denoted by νi) from the

tree ui;

(2) The next node to be deleted, νi−1 is the parent of νi;

(3) There does not exist an attribute subtree of u0, denoted as u, such that u

can be obtained by deleting some ancestor nodes of ν1.

In Definition 3.5.1, the tree ui−1 is an attribute subtree of the trees ui, ui+1, etc.

Therefore, the nodes with level-order index k in the s-treeline have the same nodal

attributes. Since every element in the s-treeline is a topological subtree of w, the

length of the s-treeline is finite and cannot exceed the number of levels of the tree w.

Figure 3.6 shows an example of an s-treeline in Tw, where w has the tree structure

shown in Figure 3.5.
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Figure 3.5. Tree structure of an example tree w.

Figure 3.6. An example of an s-treeline in Tw, for w defined in Figure 3.5.

Definition 3.5.2. A structure treeline l is called passing through the tree u,

if the tree u is an element of the tree set l, i.e., u ∈ l.

Recall from Section 1.2 that, in the blood vessel data, Figure 1.9 shows a structure

treeline passing through the media-mean tree with nodal attributes.

An s-treeline indicates a direction of changing tree structures. The following

definition will describe a quite different direction in which all trees have the same tree

structure but changing nodal attributes.

Definition 3.5.3. Suppose l = {uλ : λ ∈ R} is a set of trees with nodal attributes

in the subspace Tw. The set l is called an attribute treeline (a-treeline) passing

through a tree u0 if

(1) every tree uλ has the same tree structure as u0;

(2) the nodal attribute vector is equal to ~v0+λ~v, where ~v0 is the attribute vector

of the tree u0 and ~v is some fixed vector, ~v 6= ~0.
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Remark 3.5.1. An a-treeline is determined by the tree u0 and vector ~v. Also, it

is a set of trees of the form

l = {u : u has same structure as u0 with nodal

attributes equal to ~v0 + λ~v}

Note that there are uncountably many elements on an a-treeline because it has

the same cardinality as the real numbers. Figure 3.7 shows some elements with

λ = 0.5, 1.0, 1.2, 1.5 and ~v = [0.2, 0.1, 0.1, 0.2, 0.1, 0.1, 0.2, 0.2]′ in an a-treeline in Tw.

Figure 3.7. An example of an a-treeline in Tw.

In Section 1.2, Figure 1.10 and Figure 1.12 illustrate two attribute treelines. There

are six subplots in each figure, which depicts one location on the attribute treeline.

From now on, both s-treelines and a-treelines are called treelines. An analogy of

the first principal component is the treeline which explains most of the data. Before

finding this, the projection of a tree on a treeline is defined in the tree subspace Tw.

Definition 3.5.4. Let l be a treeline. For any tree t, a tree on the treeline is

called a projection of the tree t if it minimizes δ(t, u) over all trees u on the treeline

l.

Recall that, the projection of a point on a line is unique in Euclidean space. Is it

still unique in the tree space with nodal attributes?

Proposition 3.5.1. Under Assumption 1, the projection of a tree t on a treeline

l is unique.
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Proof. The proof will be provided for s-treelines and a-treelines separately.

Case 1: l is an s-treeline.

Suppose l = {u0, u1, u2, . . .}. First, the topological structure is considered. Let p

be the index of the smallest dI-closest, to the tree t, member of treeline l; i.e.,

p = inf{i : dI(ui, t) ≤ dI(uj, t), j = 1, 2, . . .}.

Consider the two elements up and up+1 on the treeline l. By definition of the

s-treeline, the tree up can be obtained by deleting a node νp+1 from the tree up+1. It

will now be shown that, νp+1 6∈ Ind(t). Otherwise,

dI(up+1, t) = dI(up, t)− 1,

which is a contradiction with the definition of p. Thus, νp+1 6∈ Ind(t), and

dI(up+1, t) = dI(up, t) + 1. (3.17)

Iteratively, for i = 1, 2, . . ., the tree up+i can be obtained by deleting a node νp+i+1

from the tree up+i+1. The node νp+i+1 is an offspring node of the node νp+1. Since

νp+1 6∈ Ind(t), for i = 1, 2, . . ., νp+i+1 6∈ Ind(t). Hence,

dI(up+i+1, t) = dI(up+i, t) + 1. (3.18)

Next, consider the two trees up−1 and up on the treeline l. The tree up−1 can

be obtained by deleting a node νp from the tree up. It will now be shown that,

νp ∈ Ind(t). Otherwise,

dI(up−1, t) = dI(up, t)− 1,

which is a contradiction with the definition of p. Hence, νp ∈ Ind(t), and

dI(up−1, t) = dI(up, t) + 1. (3.19)

Iteratively, for i = 1, 2, . . . , p − 1, the tree up−i−1 can be obtained by deleting a

node νp−i from the tree up−i. The node νp−i is an ancestor node of the node νp. Since
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νp ∈ Ind(t), for i = 1, 2, . . . , p− 1, νp−i ∈ Ind(t). Thus,

dI(up−i−1, t) = dI(up−i, t) + 1. (3.20)

Hence, there is a unique tree up such that, for i 6= p

dI(ui, t) > dI(up, t). (3.21)

Next, the attribute component of the metric is considered. It will be shown that

the tree up is the unique projection of t on the s-treeline l by considering the fractional

part fδ as well. Recall that, for i 6= p,

δ(ui, t)− δ(up, t) = (dI(ui, t)− dI(up, t)) + (fδ(ui, t)− fδ(up, t)).

Also, from Equation (3.21),

dI(ui, t)− dI(up, t) ≥ 1.

The proof will be finished by showing the following inequality

|fδ(ui, t)− fδ(up, t)| < 1. (3.22)

Since the fractional part of the distance is always no more than 1,

|fδ(ui, t)− fδ(up, t)| ≤ 1.

Note that, if

|fδ(ui, t)− fδ(up, t)| = 1,

then

1 = |fδ(ui, t)− fδ(up, t)| ≤ |fδ(ui, up)| ,

because fδ is the weighted Euclidean distance on the attribute vectors.

Since the fractional part metric is at most 1,

|fδ(ui, up)| = 1.
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In fact, for any two trees on the s-treeline, one of the two trees is an attribute

subtree of the other one. Without loss of generality, assume that the tree ui is an

attribute subtree of the tree up, and

Ind(up)\Ind(ui) = K,

where the set K is some proper subset of the positive integers.

Furthermore,

1 = f 2
δ (ui, up) ≤

∑

k∈K
αk < 1,

which is a contradiction.

Hence, the inequality (3.22) is satisfied. Thus,

δ(ui, t)− δ(up, t) > 0

i.e., up is the unique projection.

Case 2: l is an a-treeline.

Suppose the a-treeline l = {uλ;λ ∈ R} and all the elements have the same tree

structure. In this case, the integer part metric dI(uλ, t) is a constant over all λ.

Also, the fractional part metric is the ordinary Euclidean distance between weighted

attribute vectors. By the uniqueness of the projection in the Euclidean space, the

projection of a tree t on an a-treeline is also unique. ¤

Remark 3.5.2. From the proof above, the projection of a tree t on an s-treeline

according to the metric δ has the same tree structure as that of the projection without

nodal attributes (see Section 2.4).

Remark 3.5.3. From the definition of the metric δ (see Equations 3.1 and 3.2 in

Section 3.1), the Assumption 1 (see Section 3.1) is very critical for the uniqueness of

the projection. If some weights are equal to zero or the sum is more than 1, then

non-uniqueness may arise.

68



Since the projection of a tree t on a treeline l is unique, the projection is denoted

by Pl(t).

Definition 3.5.5. A tree is called an average support tree (denoted by ta) if

it is a support tree and its nodal attributes are, for the node k ∈ Ind(ta),

xtak =

∑n

i=1 xtik1{k ∈ Ind(ti)}
∑n

i=1 1{k ∈ Ind(ti)}
(3.23)

ytak =

∑n

i=1 ytik1{k ∈ Ind(ti)}
∑n

i=1 1{k ∈ Ind(ti)}
. (3.24)

Proposition 3.5.2. Let T be a sample of trees. The median-mean tree is an

attribute subtree of the average support tree.

In this paper, only the s-treelines, where every element is an attribute subtree

of the average support tree, are considered, because this gives a tree version of the

Pythagorean Theorem (Theorem 3.5.4).

The Pythagorean Theorem is critical to the decomposition of the sums of squares

in classical analysis of variance (ANOVA). An analog of this is now developed for tree

populations. Theorem 3.5.3 gives a Pythagorean Theorem for a-treeline.

Theorem 3.5.3. (Tree version of the Pythagorean Theorem: Part I) Let l be an

a-treeline passing through a tree u in the tree space T . Then, for any t ∈ T ,

Vδ(t, u) = Vδ(t, Pl(t)) + Vδ(Pl(t), u) (3.25)

Proof. The projection tree Pl(t) has the same tree structure as the tree u. Therefore,

dI(Pl(t), u) = 0 (3.26)

and

dI(t, Pl(t)) = dI(t, u).
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Next, it needs to prove

f 2
δ (t, u) = f 2

δ (t, Pl(t)) + f 2
δ (Pl(t), u). (3.27)

for the a-treeline l.

Note that, for the nodes with level-order index k ∈ Ind(t)\Ind(u), the contri-

bution of its nodal attributes to both sides of Equation (3.27) is the same. Thus,

without loss of generality, assume that Ind(t) ⊆ Ind(u). Its attribute vector has the

same length as that of the tree u by adding zeroes on Ind(u)\Ind(t).
The metric δ is the same as the Euclidean distance of two weighted vectors. Thus,

it is straightforward that Equation (3.27) follows from the ordinary Pythagorean

Theorem. ¤

Theorem 3.5.4 gives a Pythagorean Theorem for s-treeline.

Theorem 3.5.4. (Tree version of the Pythagorean Theorem: Part II) Let T =

{t1, t2, . . . , tn} be a sample of finite level trees. Let l be an s-treeline where every

element is an attribute subtree of the average support tree of T . Then, for any u ∈ l,

n∑

i=1

Vδ(ti, u) =
n∑

i=1

Vδ(ti, Pl(ti)) +
n∑

i=1

Vδ(Pl(ti), u) (3.28)

Proof. Theorem 2.5.1 showed that, for any i,

dI(ti, u) = dI(ti, Pl(ti)) + dI(Pl(ti), u). (3.29)

Therefore,
n∑

i=1

dI(ti, u) =
n∑

i=1

dI(ti, Pl(ti)) +
n∑

i=1

dI(Pl(ti), u). (3.30)

Next, a proof will be provided for

n∑

i=1

f 2
δ (ti, u) =

n∑

i=1

f 2
δ (ti, Pl(ti)) +

n∑

i=1

f 2
δ (Pl(ti), u). (3.31)
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In fact, since l passes through the tree u, Pl(ti)
A

⊆ u or u
A

⊆ Pl(ti). Without loss

of generality, assume that

Pl(t1)
A

⊆ u, . . . , Pl(tK)
A

⊆ u, Pl(tK+1)
A

⊇ u, . . . , Pl(tn)
A

⊇ u (3.32)

for some K ∈ {0, 1, . . . , n}. If K = 0, then the tree u is an attribute subtree of Pl(ti),

for i = 1, 2, . . . , n; while, if K = n, then Pl(ti) is an attribute subtree of the tree u,

for i = 1, 2, . . . , n.

First, for i = 1, 2, . . . , K, Pl(ti) is an attribute subtree of u. A proof will be

provided for

f 2
δ (ti, u) = f 2

δ (ti, Pl(ti)) + f 2
δ (Pl(ti), u). (3.33)

Suppose that t is a tree in the set {t1, . . . , tK}, then Pl(t)
A

⊆ u, and for all k ∈
Ind(Pl(t))∩ Ind(u), two trees Pl(t) and u have the same nodal attributes for node k.

Therefore,

f 2
δ (Pl(t), u) =

∞∑

k=1

αk(x
2
uk + y2

uk)1{k ∈ Ind(u)\Ind(Pl(t))}. (3.34)

Furthermore, the tree Pl(t) is the projection of the tree t on the treeline l. The

following equality will be demonstrated

Ind(t) ∩ Ind(u) = Ind(t) ∩ Ind(Pl(t)). (3.35)

Since Pl(t) is an attribute subtree of the tree u,

Ind(t) ∩ Ind(u) ⊇ Ind(t) ∩ Ind(Pl(t)).

Also, if there exists a node ν, such that

ν ∈ Ind(t) ∩ Ind(u), but ν 6∈ Ind(t) ∩ Ind(Pl(t)),

then, there exists a tree u∗ on the treeline l, such that Ind(u∗) ⊇ Ind(Pl(t)) ∪ {ν}
and u∗ is closer to the tree t than Pl(t), which is a contradiction with the assumption

that the tree Pl(t) is the projection of the tree t. Therefore, Equation (3.35) holds.
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Recall from Equation (3.2) that, the squared fractional part of the distance be-

tween the two trees t and u is,

f 2
δ (t, u) =

∞∑

k=1

αk((xtk − xuk)
2 + (ytk − yuk)

2)1{k ∈ Ind(t) ∩ Ind(u)}

+
∞∑

k=1

αk(x
2
tk + y2

tk)1{k ∈ Ind(t)\Ind(u)}

+
∞∑

k=1

αk(x
2
uk + y2

uk)1{k ∈ Ind(u)\Ind(t)}.

(3.36)

Similarly, the squared fractional part of the distance between the two trees t and

Pl(t) is,

f 2
δ (t, Pl(t)) =

∞∑

k=1

αk((xtk − xPl(t)k)
2 + (ytk − yPl(t)k)

2)1{k ∈ Ind(t) ∩ Ind(Pl(t))}

+
∞∑

k=1

αk(x
2
tk + y2

tk)1{k ∈ Ind(t)\Ind(Pl(t))}

+
∞∑

k=1

αk(x
2
Pl(t)k

+ y2
Pl(t)k

)1{k ∈ Ind(Pl(t))\Ind(t)}.

(3.37)

By the assumption that, Pl(t) is an attribute subtree of u, for any node k ∈ Ind(Pl(t)),

xPl(t)k = xuk and yPl(t)k = yuk.

By Equation (3.35),

f 2
δ (t, Pl(t)) =

∞∑

k=1

αk((xtk − xuk)
2 + (ytk − yuk)

2)1{k ∈ Ind(t) ∩ Ind(u)}

+
∞∑

k=1

αk(x
2
tk + y2

tk)1{k ∈ Ind(t)\Ind(Pl(t))}

+
∞∑

k=1

αk(x
2
uk + y2

uk)1{k ∈ Ind(Pl(t))\Ind(t)}.

(3.38)
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P
l
(t)

t

Figure 3.8. Venn diagram for the sets u, Pl(t) and t when Pl(t)
A

⊆ u.

Thus, combining Equations (3.38) and (3.34),

f 2
δ (t, Pl(t)) + f 2

δ (Pl(t), u)

=
∞∑

k=1

αk((xtk − xuk)
2 + (ytk − yuk)

2)1{k ∈ Ind(t) ∩ Ind(u)}

+
∞∑

k=1

αk(x
2
tk + y2

tk)1{k ∈ Ind(t)\Ind(Pl(t))}

+
∞∑

k=1

αk(x
2
uk + y2

uk)1{k ∈ Ind(Pl(t))\Ind(t)}

+
∞∑

k=1

αk(x
2
uk + y2

uk)1{k ∈ Ind(u)\Ind(Pl(t))}.

(3.39)

Using Equation (3.35),

Ind(t) ∩ Ind(u) ∩ Ind(Pl(t)) = Ind(t) ∩ Ind(Pl(t)) ∩ Ind(Pl(t)) = ∅. (3.40)

Note that Equation (3.40) shows that the shaded area in Figure 3.8 is empty.

Now using the set relationship of the trees t, u, and Pl(t) (see Figure 3.8) and

Equation (3.40), the following equations are established,

Ind(t)\Ind(Pl(t)) = Ind(t)\Ind(u), (3.41)

(Ind(Pl(t))\Ind(t)) ∪ (Ind(u)\Ind(Pl(t))) = Ind(u)\Ind(t), (3.42)
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and

(Ind(Pl(t))\Ind(t)) ∩ (Ind(u)\Ind(Pl(t))) = ∅. (3.43)

Using Equations (3.36), (3.39), (3.41), (3.42) and (3.43),

f 2
δ (t, Pl(t)) + f 2

δ (Pl(t), u)

=
∞∑

k=1

αk((xtk − xuk)
2 + (ytk − yuk)

2)1{k ∈ Ind(t) ∩ Ind(u)}

+
∞∑

k=1

αk(x
2
tk + y2

tk)1{k ∈ Ind(t)\Ind(u)}

+
∞∑

k=1

αk(x
2
uk + y2

uk)(1{k ∈ Ind(Pl(t))\Ind(t)}+ 1{k ∈ Ind(u)\Ind(Pl(t))})

=
∞∑

k=1

αk((xtk − xuk)
2 + (ytk − yuk)

2)1{k ∈ Ind(t) ∩ Ind(u)}

+
∞∑

k=1

αk(x
2
tk + y2

tk)1{k ∈ Ind(t)\Ind(u)}

+
∞∑

k=1

αk(x
2
uk + y2

uk)1{k ∈ Ind(u)\Ind(t)}

= f 2
δ (t, u).

By now, the single tree version of the Pythagorean Theorem is satisfied when the

tree Pl(ti) is an attribute subtree of the tree u. That is, for i ≤ K,

Vδ(ti, u) = Vδ(ti, Pl(ti)) + Vδ(Pl(ti), u). (3.44)

For i > K, Pl(ti)
A

⊇ u. Note that the tree Pl(ti) is the projection of the tree ti,

which implies,

Ind(Pl(ti)) ∩ Ind(u) ∩ Ind(ti) = ∅, (3.45)

by the same argument that was used to establish Equation (3.40). Equation (3.45)

shows that the shaded region in Figure 3.9 is empty.
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(t)
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t

Figure 3.9. Venn diagram for the sets u, Pl(t) and t when Pl(t)
A

⊇ u,

where the tree t is a member of the set {tK+1, . . . , tn}.

Thus, using the set relationship of the trees u, Pl(ti) and ti (see Figure 3.9) and

Equation (3.45), the following equations are established,

(Ind(ti)\Ind(Pl(ti))) ∪ (Ind(Pl(ti))\Ind(u)) = Ind(ti)\Ind(u), (3.46)

(Ind(ti)\Ind(Pl(ti))) ∩ (Ind(Pl(ti))\Ind(u)) = ∅, (3.47)

(Ind(Pl(ti))\Ind(u)) ∪ (Ind(ti) ∩ Ind(u)) = Ind(ti) ∩ Ind(Pl(ti)), (3.48)

and

Ind(Pl(ti))\Ind(t) = Ind(u)\Ind(ti). (3.49)

Hence, using Equations (3.36), (3.46) and (3.47),

f 2
δ (ti, u) =

∑

k∈Ind(ti)∩Ind(u)

αk((xtik − xuk)
2 + (ytik − yuk)

2)

+
∑

k∈Ind(ti)\Ind(Pl(ti))

αk(x
2
tik

+ y2
tik
) +

∑

k∈Ind(Pl(ti))\Ind(u)

αk(x
2
tik

+ y2
tik
)

+
∑

k∈Ind(u)\Ind(ti)
αk(x

2
uk + y2

uk)

(3.50)
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Using Equations (3.37), (3.48) and (3.49),

f 2
δ (ti, Pl(ti)) =

∑

k∈Ind(Pl(ti))\Ind(u)

αk((xtik − xPl(ti)k)
2 + (ytik − yPl(ti)k)

2)

+
∑

k∈Ind(ti)∩Ind(u)

αk((xtik − xPl(ti)k)
2 + (ytik − yPl(ti)k)

2)

+
∑

k∈Ind(ti)\Ind(Pl(ti))

αk(x
2
tik

+ y2
tik
) +

∑

k∈Ind(u)\Ind(ti)
αk(x

2
Pl(ti)k

+ y2
Pl(ti)k

).

(3.51)

From the fact that, for k ∈ Ind(ti) ∩ Ind(u) or k ∈ Ind(u)\Ind(ti),

xPl(ti)k = xuk, and yPl(ti)k = yuk. (3.52)

Thus, Equation (3.51) can be rewritten as,

f 2
δ (ti, Pl(ti)) =

∑

k∈Ind(Pl(ti))\Ind(u)

αk((xtik − xPl(ti)k)
2 + (ytik − yPl(ti)k)

2)

+
∑

k∈Ind(ti)∩Ind(u)

αk((xtik − xuk)
2 + (ytik − yuk)

2)

+
∑

k∈Ind(ti)\Ind(Pl(ti))

αk(x
2
tik

+ y2
tik
) +

∑

k∈Ind(u)\Ind(ti)
αk(x

2
uk + y2

uk).

(3.53)

Also, because u is an attribute subtree of the tree Pl(ti),

f 2
δ (Pl(ti), u) =

∑

k∈Ind(Pl(ti))\Ind(u)

αk(x
2
Pl(ti)k

+ y2
Pl(ti)k

). (3.54)
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By Equations (3.50), (3.53) and (3.54),

n∑

i=K+1

(f 2
δ (ti, u)− f 2

ρ (ti, Pl(ti))− f 2
δ (Pl(ti), u))

=
n∑

i=K+1

∑

k∈Ind(Pl(ti))\Ind(u)

αk[(x
2
tik

+ y2
tik
)− ((xtik − xPl(ti)k)

2

+ (ytik − yPl(ti)k)
2)− (x2

Pl(ti)k
+ y2

Pl(ti)k
)]

=
n∑

i=K+1

∑

k∈Ind(Pl(ti))\Ind(u)

2αk(xtikxPl(ti)k − x2
Pl(ti)k

+ ytikyPl(ti)k − y2
Pl(ti)k

)

=
n∑

i=K+1

∑

k∈Ind(Pl(ti))\Ind(u)

2αk(xtikxPl(ti)k − x2
Pl(ti)k

)

+
n∑

i=K+1

∑

k∈Ind(Pl(ti))\Ind(u)

2αk(ytikyPl(ti)k − y2
Pl(ti)k

)

= S1 + S2.

(3.55)

Next, it will be shown that S1 = 0 and S2 = 0. In fact,

S1 =
n∑

i=K+1

∑

k∈Ind(Pl(ti))\Ind(u)

2αk(xtikxPl(ti)k − x2
Pl(ti)k

)

=
n∑

i=1

∑

k∈Ind(Pl(ti))\Ind(u)

2αk(xtikxPl(ti)k − x2
Pl(ti)k

)

(3.56)

because for i ≤ K, Pl(ti)
A

⊆ u, therefore

Ind(Pl(ti))\Ind(u) = ∅.

Furthermore, by Equation (3.56),

S1 =
n∑

i=1

∞∑

k=1

2αk(xtikxPl(ti)k − x2
Pl(ti)k

)1{k ∈ Ind(Pl(ti))\Ind(u)}

=
∞∑

k=1

n∑

i=1

2αk(xtikxPl(ti)k − x2
Pl(ti)k

)1{k ∈ Ind(Pl(ti))\Ind(u)}.
(3.57)

Recall from Definition 3.5.1, two trees u1 and u2 on the s-treeline have one of the

following two relations: u1

A

⊆ u2 or u2

A

⊆ u1. Therefore, without loss of generality,

77



assume

Pl(t1)
A

⊆ Pl(t2)
A

⊆ · · ·
A

⊆ Pl(tn). (3.58)

For simplicity, denote the tree Pl(tn) by U and the tree Pl(t1) by L. Since Pl(ti) is

an attribute subtree of the tree U , for node k ∈ Ind(Pl(ti)),

xPl(ti)k = xUk, and yPl(ti)k = yUk. (3.59)

Therefore,

S1 =
∞∑

k=1

2αk(
n∑

i=1

(xtikxPl(ti)k − x2
Pl(ti)k

)1{k ∈ Ind(Pl(ti))\Ind(u)})

=
∞∑

k=1

2αk[
n∑

i=1

(xtikxUk − x2
Uk)1{k ∈ Ind(Pl(ti))\Ind(u)}]

=
∞∑

k=1

2αkxUk[
n∑

i=1

(xtik − xUk)1{k ∈ Ind(Pl(ti))\Ind(u)}]

=
∞∑

k=1

2αkxUkS1,k

(3.60)

Next, it will be shown that S1,k = 0.

If k 6∈ ∪n
i=1{Ind(Pl(ti))\Ind(u)}, then S1,k = 0.

Otherwise, if k ∈ ∪n
i=1{Ind(Pl(ti))\Ind(u)}, by Equation (3.58), assume that

k 6∈ Ind(Pl(tM))\Ind(u), but k ∈ Ind(Pl(tM+1))\Ind(u), for some M ≥ 1.

Figure 3.9 shows that Ind(Pl(ti))\Ind(u) is a subset of Ind(ti) because the shaded

area is empty. Therefore, k ∈ Ind(ti), for i > M .

For i ≤ M , if k ∈ Ind(ti), then there exists a tree u∗∗ on the treeline, containing

Ind(Pl(ti)) ∪ {k} and closer to ti which is a contradiction with the fact that Pl(ti) is

the projection of ti on l. Thus, tM+1, . . . , tn contain node k; while, t1, . . . , tM , do not

contain node k.

By the fact that Pl(ti) is an element on the s-treeline l, on which the nodal

attributes can be calculated as a sample average (see Definitions 3.5.5 and 3.5.1) and
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Equation (3.59),

xUk =

∑n

j=M+1 xtjk

n−M
. (3.61)

Moreover,

S1,k =
n∑

i=1

(xtik − xUk)1{k ∈ Ind(Pl(ti))\Ind(u)}

=
n∑

i=M+1

(xtik − xUk)

= 0.

Therefore, S1 = 0. Similarly, by the same argument, S2 = 0. Finally, summing

Equation (3.44) over i = 1, 2, . . . , K and combining Equation(3.55) and Equation

(3.29), Equation (3.28) holds. ¤

Remark 3.5.4. Note that, in Equation (3.56), while the summation of

∑

k∈Ind(Pl(ti))\Ind(u)

2αk(xtikxPl(ti)k − x2
Pl(ti)k

)

over i is zero, the individual entry need not be zero. Thus, the Pythagorean Theorem

3.5.4 is only true in the stated summation form, for some tree u.

3.6. Principal Component Analysis on Finite Level Trees with Nodal

Attributes

In Section 3.1, a new metric δ was defined on the tree space with nodal attributes

and a specific metric ρ was defined on the finite level tree space. Note that the

metric δ (or, ρ) is the sum of the integer part metric dI and the fractional part

fδ (fρ). Furthermore, the variation of a sample of trees about its “center point”—

the median-mean tree, was defined. In this section, the problem of finding simple

explanation of the variation of the sample will be discussed.

In standard statistics, principal component analysis (PCA) is a very useful tool

to explain the variation in terms of a few orthogonal directions (i.e., one-dimensional
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representations). But for tree space which is not a Euclidean space, can an analog of

the PCA method be developed?

When all the trees in the sample T have the same tree structure, it is straight-

forward that the median-mean tree mδ has the same tree structure as the other trees

and the sum of the integer part distances

n∑

i=1

dI(ti,mδ) = 0.

Also, the attribute vectors have the same length. The fractional part metric fδ (or,

fρ) is equivalent to the ordinary Euclidean space on the weighted attribute vectors. In

particular, fρ is proportional to the ordinary Euclidean distance between two vectors

(see Section 3.2). Therefore, the standard PCA can be applied in this case.

Next, a more difficult question is how to analyze the variation when not all the

trees have the same tree structure in T . To analyze the variation, both the integer

part metric and the fractional part need to be taken into account; that is, both tree

structure and nodal attributes should be considered.

Recall that, in Section 2.4 and Section 2.5, the idea of treeline was developed as

a one-dimensional representation of the data in the binary tree space. Also, the tree

version PCA was developed on tree space without nodal attributes.

Now, on the binary tree space with nodal attributes, the tree version PCA without

nodal attributes and the standard PCA on Euclidean space, will be combined to de-

velop a new PCA on tree space with nodal attributes. The tree version PCA without

nodal attributes will be used to capture interesting features of the tree structure and

the idea of standard PCA will be used to analyze the nodal attributes.

Definition 3.6.1. An s-treeline is called a one-dimensional principal struc-

ture representation (treeline) of the sample T if it minimizes the sum

n∑

i=1

Vδ(ti, Pl(ti)) (3.62)
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over all binary s-treelines l passing through the minimal median-mean tree µδ in the

sample T .

According to the tree version of the Pythagorean Theorem (Theorem 3.5.4), min-

imizing the sum (3.62) is equivalent to maximizing the following sum

n∑

i=1

Vδ(µδ, Pl(ti)). (3.63)

Recall from the analysis of the blood vessel data in Section 1.2, Figure 1.9 shows

the principal structure treeline l = {u0, u1, u2} with nodal attributes, where u1 is the

unique median-mean tree (also the minimal median-mean tree) of the sample. Figure

1.8 shows the topological tree structures of the principal structure treeline in Figure

1.9.

In Example 3.6.1 and 3.6.2, the metric ρ will be used to illustrate the new tree

version PCA on the finite level trees with attributes.

Example 3.6.1. Let T = {t1, . . . , t5} be a sample of finite level trees in Tw with

sample size n = 5, where w is shown in Figure 3.10. The nodal attributes for those

five trees are shown in Table 3.10.

w

Figure 3.10. Binary tree w.

The support tree tsup and average support tree ta of the sample T are shown in

Figure 3.12.
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I II III IV V

Figure 3.11. The binary tree sample T .

level-order index I II III IV V

1 (0.35,0.35) (0.35,0.35) (0.35,0.35) (0.10,0.10) (0.10,0.10)

2 (0.15,0.15) (0.25,0.25) (0.20,0.20) (0.15,0.15) (0.25,0.25)

4 n/a n/a n/a (0.05,0.05) (0.05,0.05)

Table 3.10. Nodal attributes of the tree sample in Example 3.6.1.

support tree average support tree

Figure 3.12. Support tree and average support tree of the sample T .

The median-mean tree mρ, center point of the sample T , is shown in Figure 3.13.

Note that there is a unique median-mean tree for the sample T . Therefore, the tree

mρ is also the minimal median-mean tree. The nodal attributes of the average support

tree ta and the median-mean binary tree mρ are listed in Table 3.11.

Some calculation shows that the total variation to the center point is

5∑

i=1

Vρ(ti,mρ) = 2.045 (3.64)

where Vρ = dI + f 2
ρ and N(w) = 4 in the definition of the factional part metric fρ.
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level-order index ta mρ

1 (0.25,0.25) (0.25,0.25)

2 (0.2,0.2) (0.2,0.2)

4 (0.05,0.05) n/a

Table 3.11. Nodal attributes of the trees ta and mρ.

median−mean

Figure 3.13. The median-mean tree mρ of the sample T .

Next, find the treeline to describe features of the data. Note that a reasonable

s-treeline for this sample l = {u1, u2, u3} is shown in Figure 3.14.

Figure 3.14. The s-treeline l = {u1, u2, u3} for the sample T . This is

the one-dimensional principal structure representation.

Also, the projections of the five types of trees are u2, u2, u2, u3, u3 respectively.

Some calculation results in:

5∑

i=1

Vρ(Pl(ti),mρ) = 2.0025

and
5∑

i=1

Vρ(Pl(ti), ti) = 0.0425,
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which verifies the tree version of the Pythagorean Theorem, i.e.,

5∑

i=1

Vρ(ti,mρ) =
5∑

i=1

Vρ(Pl(ti),mρ) +
5∑

i=1

Vρ(Pl(ti), ti).

In Example 3.6.1, the proportion of variation that the one-dimensional structure

representation explains is

∑5
i=1 Vρ(Pl(ti),mρ)
∑5

i=1 Vρ(ti,mρ)
=

2.0025

2.045
= 97.92%.

There is no other s-treeline to explain more about the total variation in Example

3.6.1. Now, the other type of treeline — a-treeline, will be applied.

Recall that, in Definition 3.5.3, an a-treeline is determined by a tree u0 and an

attribute vector ~v.

Definition 3.6.2. Let ~c be any vector of attributes. An a-treeline e, determined

by u0 and ~v, is called a ~c-induced a-treeline if ~v is a restriction of ~c, in particular,

(v2k−1, v2k) =







(c2k−1, c2k), if k ∈ Ind(u0)

(0, 0), if k 6∈ Ind(u0).

(3.65)

Each tree tj, it has a unique projection Pl(tj) on the s-treeline l, which is a

one-dimensional structure representation. For any vector ~c and tree Pl(tj), there

is a ~c-induced a-treeline ej. Now, find a vector (first principal direction ~p1) which

minimizes
n∑

j=1

Vδ(tj, Pej(tj)). (3.66)

over all vectors ~c. The corresponding induced a-treelines are called principal attribute

treelines.

Definition 3.6.3. The vector ~p1, which minimizes Equation (3.66) over all vectors

~c, is called the principal attribute direction.
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Similar to the PCA in ordinary Euclidean space, other orthogonal (with respect

to the inner product in the embedded Euclidean space defined at Equation (3.8))

vectors ~p2, ~p3, . . ., can be defined. Furthermore, denote the induced a-treeline by the

vector ~pk passing through the tree Pl(tj) by ejk.

The idea of the ~c-induced a-treeline is now illustrated in the context of the previous

Example 3.6.1. The first principal direction is

~p1 = [1, 1, 0, 0, 0, 0, 0, 0]′,

because the dominant variation is in the direction of x1 = y1. The second principal

direction is

~p2 = [0, 0, 1, 1, 0, 0, 0, 0]′,

because the second orthogonal direction of variation is x2 = y2.

Thus,
5∑

i=1

Vρ(Pl(ti), Pei1(ti)) = 0.0375 (3.67)

and
5∑

i=1

Vρ(Pl(ti), Pei2(ti)) = 0.005. (3.68)

According to the Equations (3.67) and (3.68), the ANOVA

5∑

i=1

Vρ(Pl(ti), Pei1(ti)) +
5∑

i=1

Vρ(Pl(ti), Pei2(ti)) = 0.0425 =
5∑

i=1

Vρ(Pl(ti), ti)

is straightforward.

Note that, in Example 3.6.1, the total variation, 2.045, was decomposed into three

parts. The first part, 2.0025, was explained by the first principal structure treeline.

And, two attribute directions explained 0.0375 and 0.005 respectively.

Example 3.6.2. Let w be a tree with level-order index set Ind(w) = {1, 2, 3, 7}.
T = {t1, t2, . . . , tn} is a sample of trees in the tree subspace Tw. Also, there are four

types of trees in the sample T , type I, II, III, IV (see Table 3.12 and Figure 3.15).
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Type III and IV are replicated m times, so that the numbers of elements of each type

are 1, 1, m and m (m > 1).

level-order index I II III IV

1 (0.3,0.3) (0.2,0.2) (0.3,0.3) (0.2,0.2)

2 (0.2,0.2) (0.2,0.2) (0.2,0.2) (0.2,0.2)

3 (0.1,0.1) (0.3,0.3) (0.1,0.1) (0.3,0.3)

7 (0.1,0.1) (0.1,0.1) n/a n/a

Table 3.12. Nodal attributes of the four basic trees.

I II III IV

Figure 3.15. Four types of tree structures in Example 3.6.2.

The median-mean tree mρ (it is also the minimal median-mean tree, because it is

unique when m > 1) and the average support tree are shown in Figure 3.16.

median−mean average support tree

Figure 3.16. The median-mean tree and the average support tree in

Example 3.6.2.
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The total variation is

2m+2∑

i=1

Vρ(ti,mρ) = 0.0125m+ 2.0225. (3.69)

Two reasonable s-treelines passing through the unique median-mean tree, l1 and

l2, are shown in Figure 3.17 and Figure 3.18.

Figure 3.17. The structure treeline l1 in Example 3.6.2.

Figure 3.18. The structure treeline l2 in Example 3.6.2.

By calculation,

2m+2∑

i=1

Vρ(Pl1(ti), ti) = 0.0125m+ 0.0125,

and
2m+2∑

i=1

Vρ(Pl2(ti), ti) = 0.0125m+ 2.0225.

Hence, the s-treeline l1 is the one-dimensional principal structure representation.

By the tree version of the Pythagorean Theorem,

2m+2∑

i=1

Vρ(Pl1(ti),mρ) =
2m+2∑

i=1

Vρ(ti,mρ)−
2m+2∑

i=1

Vρ(Pl1(ti), ti) = 2.01.

Therefore, the proportion of the total variation that the one-dimensional principal

structure representation l1 explains is
∑2m+2

i=1 Vρ(Pl1(ti),mρ)
∑2m+2

i=1 Vρ(ti,mρ)
=

2.01

0.0125m+ 2.0225
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Note that this proportion is arbitrarily small by taking m large. Thus, this is an

example where the tree structure component of variability (in either the l1 or l2) is

negligible. So, it is important to also analyze the attribute components.

Next, find the principal attribute direction to decompose the variation in the

direction of the attributes.

By calculation, the first principal attribute direction is

~p1 = [−1,−1, 0, 0, 2, 2, 0, 0]′;

Furthermore,
2m+2∑

i=1

Vρ(Pei1(ti), ti) = 0.

By the tree version of the Pythagorean Theorem, the proportion of variation explained

by the first principal attribute direction is

0.0125m+ 0.0125

0.0125m+ 2.0225
,

which converges to 1 as m→∞.

3.7. Computation of the Principal Attribute Direction

In Section 3.6, a new tool of variation analysis on the tree space with nodal

attributes, the tree version of the PCA, was developed. This new method decomposed

the total variation by finding the one-dimensional principal structure representation

(see Definition 3.6.1) and the principal attribute direction (see Definition 3.6.3).

For serious real data problems, computation of the variation analysis is challeng-

ing. In this section, an algorithm is proposed, which provides a simple approximation

of the principal attribute direction.

Let T = {t1, . . . , tn} be a sample of trees. The treeline l is the one-dimensional

principal structure representation. The projection of the tree ti onto the treeline l is

denoted by the projection function, Pl(ti), for i = 1, . . . , n.
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Next, consider the average support tree, w, of the tree sample T . Then, every

tree ti is a member of Tw, i.e., Ind(ti) ⊆ Ind(w). Recall from Section 3.2 that, by

the Padding Rule for Attribute Vectors, there exists an attribute vector, with length

r (of the attribute vector of the tree w), associated with each tree ti. The goal is to

find a vector which minimizes

Z(~v) =
n∑

j=1

Vδ(tj, Pej (tj)) (3.70)

over all vectors ~v, where ej is the ~v-induced attribute treeline passing through the

tree Pl(tj). Figures 3.19 - 3.21 will illustrate the idea in two dimensional space.

Algorithm:

(1) For a starting direction ~v0 (shown as
−−→
OA0 in Figure 3.19), calculate the sum,

Z(~v0).

(2) Starting from the vector
−−→
OA0, compare the sum Z for four directions

−−→
OBi,

i = 1, 2, 3, 4 (see Figure 3.20) and find the minimum value, without loss of

generality, assume
−−→
OB1 is the smallest.

(3) Normalize the vector
−−→
OA1=

−−→
OB1/‖

−−→
OB1‖, and repeat step (2) by starting from

the vector
−−→
OA1 (see Figure 3.21).

Repeat this process, say k times, the approximate direction will be provided. For

general nodal attribute vectors with length r, in step (2), Z will be calculated over 2r,

instead of 2r, different directions. Those 2r directions are generated by starting from

the direction
−−→
OA0 choosing one coordinate each time, and adding or subtracting a

constant from that coordinate.

The solution provided by this algorithm depends on the choice of the starting

direction. Sometimes, when Z has multi-minima, this algorithm may provide a local

minimum instead of the global minimum. It is of interest to compare the results

by choosing different starting directions. For computational speed, all the results of

the blood vessel data as shown in Sections 1.2 and 3.9 are based on a single starting
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Figure 3.19. Step (1).
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Figure 3.20. Step (2).
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Figure 3.21. Step (3).

direction. Comparison of multiple choices of the starting direction has not been tried

yet.

3.8. Comparison of the Tree Version PCA and Regular PCA

In this section, comparison between the tree version Principal Component Analysis

and the regular Principal Component Analysis will be provided by using some toy

examples.

Example 3.8.1. The attributes of a toy sample of trees, all with same tree struc-

ture of size n = 6, are given in the Table 3.13.

Since all the trees have the same structure, for any two trees, the integer part

metric is zero. Thus, the metric is determined by the fractional part metric. Recall

that, in Section 3.1, the fractional part metric can be viewed as the regular Euclidean

distance of two weighted attribute vectors.
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level-order index Attributes

1 (0.25,0.25)

2 (-0.25,-0.25)

3 (0.05,0.05)

level-order index Attributes

1 (0.15,0.15)

2 (0.25,0.25)

3 (0.05,0.05)

level-order index Attributes

1 (-0.20,-0.20)

2 (0.15,0.15)

3 (-0.05,-0.05)

level-order index Attributes

1 (0.25,0.25)

2 (-0.15,-0.15)

3 (-0.05,-0.05)

level-order index Attributes

1 (-0.20,-0.20)

2 (-0.35,-0.35)

3 (0.05,0.05)

level-order index Attributes

1 (-0.25,-0.25)

2 (0.35,0.35)

3 (-0.05,-0.05)

Table 3.13. The attributes of six trees in the tree sample.

The corresponding weighted attribute vectors are

















0.25√
2

0.25√
2

−0.25√
23

−0.25√
23

0.05√
23

0.05√
23

















,

















0.15√
2

0.15√
2

0.25√
23

0.25√
23

0.05√
23

0.05√
23

















,

















−0.20√
2

−0.20√
2

0.15√
23

0.15√
23

−0.05√
23

−0.05√
23

















,

















0.25√
2

0.25√
2

−0.15√
23

−0.15√
23

−0.05√
23

−0.05√
23

















,

















−0.20√
2

−0.20√
2

−0.35√
23

−0.35√
23

0.05√
23

0.05√
23

















,

















−0.25√
2

−0.25√
2

0.35√
23

0.35√
23

−0.05√
23

−0.05√
23

















.

The total variation, in the regular PCA sense, is 0.3975. Also, three non-zero

eigenvalues are

λ1 = 0.0611, λ2 = 0.0178, λ3 = 0.0006.
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The first eigenvector is

[−0.6814,−0.6814, 0.1870, 0.1870,−0.0280,−0.0280]′.

Recall that, this eigenvector has been computed for the transformed data. Applying

the inverse-transformation, the eigenvector is

~v1 = [−0.6183,−0.6183, 0.3393, 0.3393,−0.0508,−0.0508]′.

Note that the first principal component explains

λ1

λ1 + λ2 + λ3

= 76.86%

of the total variation.

Now applying the tree version PCA, the total variation is 0.3975 and the approx-

imate first principal (attribute) direction

~v2 = [−0.6180,−0.6182, 0.3396, 0.3397,−0.0512,−0.0504]′.

Note that there is some difference between ~v1 and ~v2 due to the error in the approx-

imation of ~v2. The variation explained by the first principal (attribute) direction ~v2

is 0.3055. Hence, the proportion explained by the first principal (attribute) direction

~v2 is
0.3055

0.3975
= 0.7686.

Example 3.8.1 verifies that, for the sample of trees with the same structure, the

tree version PCA and the regular PCA obtain the same result essentially. In the

following Example 3.8.2, the members in a sample of trees have different structures.

And, the tree version PCA finds a more appropriate mode of variation than the one

given by regular PCA.

Example 3.8.2. Let T = {t1, t2, . . . , t13} be a sample of trees with size n = 13.

Each member in T has one of the two structures shown in Figure 3.22. The attributes

have the form shown in Table 3.14, where x and y are real values in [0,
√

2
4
]. Note
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that, for the trees without node 3, the corresponding nodal attributes are denoted

as (?, ?) (see Table 3.15). Thus, trees t1, t2, . . . , t7 have three nodes, while the others

have two nodes.

Type I Type II

Figure 3.22. Two types of tree structures in T .

Level-order index Attributes

1 (0.1,0.1)

2 (x,x)

3 (y,y)

Table 3.14. Attribute form of trees in T .

1 2 3 4 5 6 7

x 0.267 0.280 0.250 0.241 0.242 0.251 0.252

y 0.220 0.230 0.200 0.180 0.180 0.190 0.190

8 9 10 11 12 13

x 0.276 0.285 0.266 0.210 0.220 0.200

y ? ? ? ? ? ?

Table 3.15. Values of x’s and y’s for all trees in T .

To apply the regular PCA, a sequence of equal-dimensional vectors are needed. A

natural approach is to substitute the non-existent nodal attributes ? by the sample

average of all the others.
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The corresponding weighted attributes are

(
x√
23
,

x√
23

) and (
y√
23
,

y√
23

)

for node 2 and node 3 respectively. Hence, the weighted attribute vector can be

written as

[
0.1√
2
,
0.1√
2
,

x√
23
,

x√
23
,

y√
23
,

y√
23

].

It shows that x/
√
8 and y/

√
8 are the two important components of the attribute

vector. For simple visualization, in the later study, the principal components will be

represented in two-dimensional space of x and y, instead of six-dimensional space.

The scatter plot of the attributes, x and y, is shown in Figure 3.23. It shows that,

the attributes of the Type II trees (seven, shown with “+”) forms a pattern from

lower left to upper right. The attributes of the Type I trees (six, shown with “×”)
have been divided into two groups with a gap in the middle.

Nodal attribute x

N
od

al
 a

ttr
ib

ut
e 

y

Type I
Type II
Sample Mean

Figure 3.23. Scatter plot of the nodal attributes.

Applying the regular PCA to the weighted attribute vectors, gives the first prin-

cipal direction (first eigenvector, the solid line in Figure 3.24). It shows that the trees
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with the Type I structure have a strong effect on the attribute direction, pulling it

towards a horizontal line.

Regular PCA

Tree version PCA

Nodal attribute x

N
od

al
 a

ttr
ib

ut
e 

y

Type I
Type II
Center

Figure 3.24. Principal attribute directions given by Regular PCA

and Tree version PCA.

Next, the tree version PCA will be applied to the tree sample T . The tree version

PCA has two steps, finding the principal structure direction and finding the principal

attribute direction.

The first two elements (denoted as u0 and u1) on the principal structure treeline

l is shown in Figure 3.25. Note that u1 is the median-mean tree of the sample T .

Moreover, the elements in T can be categorized by projection on the treeline l. The

trees with Type I structure have projection u0 on the treeline l; while, the trees with

Type II structure have projection u1 instead.

u
0

u
1

Figure 3.25. Principal structure treeline l = {u0, u1}.
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Based on the principal structure treeline, the principal attribute direction is cal-

culated and shown as the dashed line in Figure 3.24. Comparing with the direction

given by regular PCA, it is more appropriate for the reason that it represents the

relation of the (weighted) attributes. The Type I elements should not influence the

direction because they contain no information about the relationship between the

attributes x and y.

Next, the attributes of the six trees with Type I structure will be studied. All

these six trees have a common projection on the principal structure treeline u0. The

projection coefficients of these trees on the attributes treeline passing through u0 are

shown in Figure 3.26. Note that there is a big jump from the negative coefficients to

the positive ones.

0
Projection coefficients

Figure 3.26. Projection coefficients of the trees with Type I structure

on the principal attribute direction.

This section shows that the tree version PCA is a generalization of the regular

PCA. When all the trees in the sample have the same structure, the principal attribute

direction is the same as the first eigenvector given by the regular PCA with inverse-

transformation. When the structures are not all the same, the tree version PCA will

give a more appropriate attribute direction.

3.9. More Data Analysis on the Blood Vessel Data

In Section 1.2, an exploratory data analysis based on the eleven blood vessel trees

from three people was discussed. In that analysis, the “central trees”, median-mean

trees, are given for the reduced linear trees of each patient (see Figure 1.6) and the
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combined population (see Figure 1.7). Furthermore, the tree version PCA found a

surprising characteristic of the population, that there are two different orientations

about the blood flow in the data set. This dominated the total variation, perhaps

obscuring population features of more biological interest.

In this section, the brain blood vessel data collected from 10 people has been

provided. An example of a brain blood vessel system is shown in Figure 1.4. There

are three important components for the brain blood vessel system: left carotid, right

carotid and vertebrobasilar system. Each component will be represented as a tree-

structured object. This data set has 30 trees from 10 people, that is, three components

for each person.

Each component consists of one root vessel and many offspring vessels. Each blood

vessel is denoted as a node in the tree structure. For each blood vessel, information

such as parent’s ID, the point of attachment on the parent, the coordinates of a

sequence of points along this blood vessel are recorded.

To avoid the difference between patients, the shape will be rescaled by subtracting

the minimum and dividing the range, for each coordinate. Those rescaled coordinates

are used in the following.

Like the analysis in Section 1.2, here only a simple linear approximation of each

blood vessel is used. The nodal attributes for the root node have the following form

[0, three coordinates of the starting point, three coordinates of the ending point];

while, the following attributes of the non-root nodes are used

[p, 0, 0, 0, three coordinates of the ending point],

where p is the proportion parameter,

p =
Distance of starting point to point of attachment on its parent

Distance of starting point to ending point on its parent
.
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In this application, each node has seven attributes and each attribute is between

0 and 1. Recall from Section 3.1 that, to make the fractional part metric fδ no more

than 1, the assumption that each node consists of two attributes and each attribute

is bounded by [−
√

2
4
,
√

2
4
] was made. Here, the attributes are divided by 2

√
7. Hence,

in this new analysis, the attributes are between 0 and 1
2
√

7
.

By the definition of the metric δ (see Equations (3.1), (3.2) and (3.3)), the nodal

attributes, which only appeared in one tree, are treated as (0, 0). Here, the value 0 is

an extreme of the nodal attributes. Therefore, for each node, those nodal attributes

need to be centralized by subtracting the average nodal attributes of this node (the

sum of nodal attributes divided by the number of appearances of this node in this

population).

Again, for reasons of computational tractability (see Section 3.7 for the current

algorithm), like the analysis in Section 1.2, an attribute subtree of each component

is considered. Next, take the root node and the first two nodes closest to the starting

point of the root node by comparing the total number of voxels between the starting

point of the root and the vessels. Therefore, there are two types of tree structures

among those 30 trees (see Figure 3.27). Note that, in Figure 3.27, the edge between

two nodes only shows that the corresponding two vessels are connected, and its length

and orientation are not meaningful here.

Type I Type II

Figure 3.27. Two types of tree structures of the reduced blood vessel trees.

Next, the features of left carotid and right carotid systems will be explored.
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First, look at the population of all 10 left carotid vessel trees (see Figure 3.28).

Among those 10 left carotid trees, six of them have Type I tree structure and the

other four trees have Type II structures. By the majority rule (see Theorem 2.3.2 for

the algorithm), the median-mean tree must have Type I structure.

Figure 3.28. The population of 10 left carotid vessel trees. The black

thicker tree is the median-mean tree.

Figure 3.29 illustrates the principal structure treeline without nodal attributes;

while Figure 3.30 shows the same structure treeline with nodal attributes. Figure

3.29 shows the dominate direction of the topological structure changing, u1 and u2

adding one left node on u0 and u1. It is hard to see differences in the parts of Figure

3.30, because the added branches are very close to each other.

Note that no one in the left carotid population has projection of u0 onto this

structure treeline. Also, the Type I tree has projection u1 on the treeline and Type

II tree has projection u2.

Next, find the principal attribute direction. Recall from Section 3.5 that, there

are uncountably many elements on the attribute treeline. Figure 3.31 and Figure

3.33 illustrate the principal attribute treelines passing through the median-mean tree
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Figure 3.29. Principal structure treeline l = {u0, u1, u2} without

nodal attributes.

Figure 3.30. Principal structure treeline l = {u0, u1, u2} with nodal

attributes, with 2, 3 and 4 nodes respectively.

and the average support tree.2 There are 9 subplots in each figure and each subplot

depicts one location on the attribute treeline.

In Figure 3.31, from the first 4 subplots, it shows that the vessel tree becomes

smaller, but the orientation of the main root does not change too much. In the next

5 subplots, the vessel tree becomes larger and the orientation of the main root is

changing to a different direction at the same time. This is not a surprising feature

of the population, because in Figure 3.28, the trees in red color and yellow color

form a pattern of becoming smaller and shifting down (which is illustrated in the

first 4 subplots in Figure 3.31); while, for the green-colored and cyan-colored trees,

the orientation of the main root goes in a much different direction. Also, Figure

3.32 shows the projection coefficients of the 10 trees on the attribute treeline passing

2In this section, the principal attribute direction is calculated for the centralized data. But, the
central tree will be “added” when plot those blood vessel trees.
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Figure 3.31. Principal attribute treeline passing through the median-

mean tree for the population of left carotid trees. The cyan-colored

branch is the root.

through the median-mean tree. There are two small clusters, indicated by yellow and

cyan colors. The red-colored tree is far from the center, which can be seen from the

population plot (Figure 3.28).

0

Figure 3.32. Projection coefficients of 10 trees on the attribute tree-

line passing through the median-mean tree for the population of left

carotid trees, colored as in Figure 3.28.
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Figure 3.33 shows the attribute treeline passing through the average support tree.

Similar to Figure 3.31, it shows the same features that the vessel trees become smaller

and then the orientation of the main root is jumping out. The projections shown in

Figure 3.34 are very similar to those in Figure 3.32. This shows that for this data set,

there is little difference between projection on the treelines passing through median-

mean tree and the average support tree.

Figure 3.33. Principal attribute treeline passing through the average

support tree for the population of left carotid trees. The cyan-colored

branch is the root.

Next, the population of right carotid vessel trees will be analyzed as shown in

Figure 3.35. Among those 10 trees, there are the same two possible tree structures

as shown in Figure 3.27, and 5 trees each.

By the majority rule (Theorem 2.3.2), the median-mean tree is not unique. Figure

3.36 shows all four median-mean trees (structure only, without nodal attributes ).

102



0

Figure 3.34. Projection coefficients of 10 trees on the attribute tree-

line passing through the average support tree for the population of left

carotid trees, colored as in Figure 3.28.

Figure 3.35. A population of 10 right carotid vessel trees, colored as

in Figure 3.28. The black thicker tree is one of the four median-mean

trees, and its topological structure is the second shown in Figure 3.36.

Figure 3.36. The topological structures of four median-mean trees of

the population of 10 right carotid vessel trees.
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Recall from Section 3.4 that, the total variation about the median-mean tree is

constant and does not depend on how the tie is broken between the median-mean

trees. In this paper, the general recommendation is to use the minimal median-mean

tree (denoted by m1, the first one shown in Figure 3.36) because it is unique. But,

because 5 elements in the population have the same tree structure as the second

median-mean tree (denoted by m2) and none have the m1 structure, the following

calculations are based on the second median-mean tree, m2.

There are two structure treelines that are important to this population l1 and l2,

shown in Figure 3.37 and Figure 3.38.

Figure 3.37. Structure treeline l1.

Figure 3.38. Structure treeline l2.

By calculation, both l1 and l2 are one-dimension principal structure representation.

In the process of finding the principal attribute direction, it may depend on the choice

of the structure treeline. Here, the treeline l1 is used for the calculation purpose of

the principal attribute direction.

Like Figure 3.31, Figure 3.39 illustrates the principal attribute treeline passing

though the second median-mean tree by depicting 9 locations on this attribute tree-

line. The first four subplots indicate the attribute changing in the direction of the
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orientation of the root node; while the next five subplots indicate the changing in

terms of the size of the vessel trees. Because of human symmetry, similarities are

expected in Figure 3.31. A clear difference is visible in the ordering, which is the

same phenomenon as the arbitrary directions of eigenvector (positive or negative) in

PCA. When the ordering in 3.39 is reversed, then a common structure can be seen.

Figure 3.39. Principal attribute treeline passing through the median-

mean tree for the population of right carotid trees. The cyan-colored

branch is the root.

Figure 3.40 shows the projection coefficients on this attribute treeline. Comparing

with the projection coefficients shown in Figures 3.32 and 3.34, these 10 right carotid

trees are divided into two groups by the projection with a gap in the middle, denoted

as “5” and “4”. A further check of symmetry comes from comparison with Figure

3.32, so the same colors have been used. The groupings from Figure 3.32 still hold
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roughly although one yellow point has changed group. Thus, approximate symmetry

holds, but that case exhibits clear asymmetry.

0

Figure 3.40. Projection coefficients of 10 trees on the attribute tree-

line passing through the median-mean tree for the population of right

carotid trees. Colors are the same as Figure 3.32.

Figure 3.41 shows the principal attribute treeline passing through the average

support tree. And, Figure 3.42 shows the projections on this treeline. The main

ideas are quite similar as for Figure 3.39, with again similar lessons. As in Figure

3.40, the population of right carotid trees are divided into two groups.

The analysis of the vertebrobasilar vessel trees is not shown here, because it was

quite similar to the left and right carotid trees.

In this example, the tree version PCA gave an analysis of the characteristics

of two populations (left carotid and right carotid). The dominant component of

variation of the attributes consists of the orientation changing of the root node and

the enlargement of the size of the vessel trees.

In this data analysis, the projection coefficient plots illustrated interesting clusters

of the data. The yellow and cyan colored groupings for the left carotid trees roughly

hold for the right carotid trees, except that one yellow point changed group. This

indicated approximate symmetry, but asymmetry is also visible in the case of that

yellow point which changed group.
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Figure 3.41. Principal attribute treeline passing through the average

support tree for the population of right carotid trees. The cyan-colored

branch is the root.

0

Figure 3.42. Projection coefficients of 10 trees on the attribute tree-

line passing through the average support tree for the population of right

carotid trees. Colors are the same as Figure 3.34.
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CHAPTER 4

Conclusions and Discussion

In this dissertation, a new method for understanding the structure of populations

of tree-structured objects was developed. This method was based on the new metric δ,

which measures the difference of topological structure and nodal attributes. For tree-

structured objects with this non-linear metric δ, many standard notions of classical

statistics, such as population center point, have been developed here.

A “central tree”, the median-mean tree, was introduced as a combination of the

idea of “sample median” with respect to the topological properties and “sample mean”

with respect to the geometric properties (i.e., attribute properties). Quick and easy

computation of the topological structure of the median-mean tree was developed

through the majority rule. The structure of the median-mean tree (which has the same

topological structure as the median tree) was determined by the nodal appearance

number, which must be at least n
2
. Also, the nodal attributes of the median-mean

tree can be calculated as the sample average.

Furthermore, a new tool of variation analysis, a tree version PCA was developed.

This was based on the notion of “treelines” which played the role of one-dimensional

representation in tree space. A key theoretical contribution was the tree version of the

Pythagorean Theorem that provided the foundation of the ANOVA type of variation

decomposition. This tree version PCA analysis provided a useful tool for finding the

characteristics of the topological structure and of the nodal attributes by pointing

out the dominant directions of change in structure and of change in nodal attributes.

For both real data examples in Sections 1.2 and 3.9, only the trees up to three

levels are considered. For more complex situations, the median-mean tree is still



computationally tractable by using the majority rule. But, the variation analysis

is computationally intensive (see Section 3.7 for the current algorithm), and a more

efficient algorithm is needed, in order to address problems of the scale needed in

medical image analysis.

The example with blood vessel data described in Section 1.2 showed how the

method can find interesting clusters in the data. The projections onto the dominant

treeline provided a clear view of clustering. According to the projections on the two

different types of treeline, the groupings into clusters may vary.

In this example, the 11 trees formed two different “bimodal distributions” from

the two viewpoints of the structure and of the attributes. The bimodality of the

projections on the principal attribute direction was caused by the use of two different

arbitrary directions of blood flow, with no biological interest. Moreover, in this ex-

ample, the median-mean tree was not close to any of those 11 trees. Therefore, this

notion of “center” is not representative of any individual, as is common with bimodal

populations.

In most cases, the two one-dimensional representations of the principal struc-

ture representation and the principal attribute direction, are not enough. A simple

approach is to consider more one-dimensional attribute directions (other than the

principal attribute direction). A more complicated approach is to study analogs of

higher dimensional subspaces.

The simple approach works in the attribute directions by methods similar to

additional principal directions in regular PCA. For these additional directions, it is

conjectured that the uniqueness of the projection (Proposition 3.5.1) and the tree

version of the Pythagorean Theorem (Part I, Theorem 3.5.3) will still hold.

For the more complicated structure representation, a more general 2-dimensional

structure representation can be generated by adding or deleting 1 or 2 terminal nodes
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starting from the median-mean trees. For the higher dimensional structure represen-

tations, the projection may not be unique; but it is conjectured the tree version of

the Pythagorean Theorem (Part II, Theorem 3.5.4) still holds.

These will be considered in future research.

The example in Section 3.9 showed another application of the new methodology.

The tree version PCA gave an analysis of the characteristics of the left and right

carotid trees. The principal attribute directions for both left and right carotid trees

consist of the orientation changing of the root node and the enlargement of the size

of the vessel trees. Also, the projection coefficient plots showed that the yellow and

cyan colored groupings for the left carotid trees roughly hold for the right carotid

trees, except that one yellow point changed group. This indicated the approximate

symmetry between the left and right carotid trees, except for the yellow case.

In the two examples described in Sections 1.2 and 3.9, the attributes used for the

statistical analysis include the coordinates of the starting point and ending point for

the root node, and the coordinates of the ending point plus the proportion parameter

for the non-root nodes. A linear approximation of each blood vessel was considered.

Many other attributes, such as radii and arc length of the blood vessels and the

additional location information along each blood vessel, have been ignored. In future

research, those attributes could be included.

Next, since the median-mean trees were calculated and the variations were quan-

tified for the left and right carotid samples, statistical inference about the left and

right carotid tree populations is an interesting problem. For example, a maximum

likelihood estimator and confidence “region” for the population (not the empirical

population) central tree could be developed. Hypotheses testing is also of interest.

This motivates the definition of a probability measure which provides the foundation

for statistical inference in tree space.
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In this dissertation, each node was assumed to contain some attributes, and the

weight assigned to that node is positive. In some conceivable applications, some nodes

may not contain any attributes. A similar mathematical approach can be taken by

putting positive weights onto only the set of nodes with nodal attributes.

In this research, only binary tree-structured objects are considered. This is

straightforward to generalize to general tree-structured objects. Great care in this

generalization will be needed in defining the labels of the nodes, such as the level-order

index. A much more challenging generalization will be to graph-structured objects.

Here a new metric is needed to take the possibilities of isolated nodes and loops into

account. These will be considered in future research.
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