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Abstract

The exact positioning of patients during radiotherapy is essential for high precision
treatment. Before each session, the patient must be accurately placed within the
treatment device. The analysis of megavoltage X-ray images, portal images, can
help to control this patient positioning. The particular problem of electronic portal
imaging devices however, is that they provide imagery with extremely low contrast.
Thus, common feature extraction schemes, such as simple edge detection, do not
produce reliable results. Moreover, it is a very challenging task to design any ro-
bust feature extractor for such images, since a method must be found that reliably
transforms the image information into a more useful form, whilst remaining robust
to a large degree of image quality.

To circumvent the step of feature extraction, the area-based method of least
squares template matching (LSM) has been chosen. LSM is an iterative and area-
based fitting method especially suitable for attaining very high precision, or for
processing low-contrast, noisy, and blurred imagery. This thesis reviews the mathe-
matical formalism of LSM and presents a framework for automatic quality control of
the resulting match. This quality control—a component often missing in commonly
used image matching methods—is achieved by self-diagnostic measures supervising
the iterative procedure.

The application of LSM to the problem of patient positioning was thoroughly
investigated. Three issues had to be tackled: the calibration of the newly acquired
portal image; the checking of the field shape; and the displacement measurement of
bony structures. Precise calibration has been achieved by matching the field edge
region to a reference shape, where LSM has proven to yield robust and accurate
results. Hence, it was feasible to check the field shape by simply computing the
normalized cross correlation between the actual and the prescribed field.

In several test series, the suitability of LSM was assessed to measure patient
displacement. The area-based matching of reference structures to the treatment
image was carried out using an affine or congruent transformation model. A very
promising success rate of over 90 % was achieved using clinical test data which
consisted of roughly 60 image series with a total of 500 portal images.

The optimum sources for reference data are the actual treatment settings for
the calibration, the planning data for checking the field shape, and digitally recon-
structed radiographs (DRR) for the displacement measurements. Due to missing
system integration however, an interim approach in terms of employed reference
data had to be chosen. That is, a validated portal image served as reference image

i



ii Abstract

for both the field edge as well as the anatomy match.
Using megavoltage DRRs with known ground truth, the systematic error, intro-

duced by neglecting the projective nature of the portal images, was investigated.
Furthermore, promising results for the multi-modal match between a DRR ref-
erence image and clinical portal images are presented; an approach which might
significantly increase the treatment accuracy.

The generic measuring tool developed in the course of this project has been
installed at the department of radio-oncology at the University Hospital of Zürich,
with additional installations planned for the near future. This enables further clinical
studies to be carried out, which will give useful insight about the current accuracy of
patient positioning, and eventually about the potential and the effects of improving
the treatment accuracy.



Zusammenfassung

Die Positionierung des Patienten während der Bestrahlung ist ein wesentlicher Be-
standteil in der präzisen Strahlentherapie. Bei jeder Sitzung muss der Patient im
Bestrahlungsgerät genau positioniert werden. Diese Positionierung kann durch die
Analyse von Portalbildern, während der Bestrahlung aufgenommenen Röntgenbil-
dern, unterstützt werden.

Das Problem von Portalbildern ist, dass sie extrem kontrastarm sind. Deshalb
funktionieren Standard-Algorithmen für die Merkmalsextraktion, wie zum Beispiel
die Kantendetektion, nicht mehr zuverlässig. Es ist eine sehr anspruchsvolle Auf-
gabe, einen robusten Algorithmus zur Merkmalsextraktion zu entwickeln, der bei
Portalbildern funktioniert. Es müsste eine Methode gefunden werden, welche die
geringe Bildinformation in eine nützlichere Form bringt, ohne direkt von der Bild-
qualität abhängig zu sein.

Um den Schritt der Merkmalsextraktion zu umgehen, wurde die least squares
template matching (LSM) Methode gewählt. LSM ist ein iterativer und auf Grau-
werten basierender Algorithmus, mit dem hohe Präzision erreicht werden kann, und
der für die Verarbeitung kontrastarmer und unscharfer Bilder geeignet ist. In dieser
Dissertation wird der mathematische Formalismus von LSM zusammengefasst und
eine Methode zur automatischen Qualitätskontrolle, die in vielen Bildanalyseverfah-
ren vernachlässigt wird, vorgestellt.

Bei der Anwendung von LSM auf das Problem der Patienten-Positionierung mus-
sten drei Teilprobleme gelöst werden: die Kalibrierung des eben aufgenommenen
Portalbildes, die Überprüfung der Form des Bestrahlungsfeldes, und die Messung
der Verschiebung von Knochenstrukturen. Die präzise Kalibrierung des Portalbil-
des wurde mittels Grauwert-Vergleich (Matching) der jeweiligen Feldform mit der
Feldform des Referenzbildes erreicht. Die Überprüfung der Feldform war somit durch
Berechnen der normierten Kreuzkorrelation von eigentlicher zu vom Arzt geplanter
Form möglich.

In diversen Testserien konnte die Eignung von LSM zur Verschiebungsmessung
von Knochenstrukturen bestätigt werden. Das Matching der Referenzstrukturen mit
dem Behandlungsbild basierte auf einer affinen oder kongruenten Abbildung. Die
klinischen Testdaten bestanden aus ungefähr 60 Serien von insgesamt 500 Portalbil-
dern, worin eine sehr vielversprechende Erfolgsquote von über 90 % erzielt wurde.

Optimale Referenzdaten wären die momentane Kollimatoreinstellung für die Ka-
librierung, die Planungsdaten für die Überprüfung der Feldform, und digital rekon-
struierte Röntgenbilder für die Verschiebungsmessung. Wegen der fehlenden Sy-
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iv Zusammenfassung

stemintegration mussten jedoch Zwischenlösungen gewählt werden. Das heisst ein
validiertes Portalbild diente als Referenzbild für das Matching der Feldgrenze und
der Knochenstrukturen.

Mit Hilfe von digital rekonstruierten Röntgenbildern wurde eine Testserie ge-
neriert, bei der die wirklichen Verschiebungen bekannt sind. Damit konnte der
systematische Fehler untersucht werden, der durch die Vernachlässigung der projek-
tiven Eigenschaften von Röntgenbildern eingeführt wurde. Darüber hinaus lieferte
LSM vielversprechende Resultate beim (multi-modalen) Matching zwischen einem
digital rekonstruierten Referenzbild und klinischen Portalbildern. Die Verwendung
eines digital rekonstruierten Referenzbildes könnte die Genauigkeit der Positionie-
rung nochmals erhöhen.

Das generische Messprogramm, das im Verlauf dieses Projektes entwickelt wur-
de, ist an der Abteilung für Radio-Onkologie am Universitätsspital Zürich instal-
liert worden. Ausserdem ist die Installation am Kantonsspital Winterthur noch in
diesem Jahr geplant. Somit wird es Klinikern ermöglicht, weiterführende medizi-
nische Studien durchzuführen. Diese Studien sollten nützliche Erkenntnisse über
die gegenwärtige Genauigkeit der Patienten-Positionierung und schliesslich über das
Potenzial und die Auswirkungen der Genauigkeitsverbesserung liefern.
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1
Introduction

The accuracy of radiotherapy treatment became an important issue in the last
decade. The advances in tumor localization and the possibility of three dimen-
sional treatment planning has been a cornerstone to more precise dose calculation,
and hence to more accurate irradiation. However, this still depends on the accurate
positioning of the patient at each treatment session, and an addressal of such a
fundamental aspect has been somewhat neglected in the development of irradiation
systems.

Improving the precision and reliability of the patient’s position provided the
motivation for this work. In particular, the analysis of megavoltage X-ray images,
portal images, acquired during therapy should help to check and improve the actual
patient’s position. Thus, positioning based on external features such as skin marks
should be replaced by positioning based on internal structures as close to the tumor
as possible.

The main problem to be tackled in order to make use of portal images is their
inherently low contrast. For computer vision, this leads to the challenge of robustly
analyzing low-contrast and noisy imagery.

1.1 High precision radiotherapy

Radiotherapy is, together with surgery and chemotherapy, one of the major cancer
treatment methods. Radiotherapy itself encompasses two different types of treat-
ment: palliative or curative. Palliative treatment is mainly to alleviate pain incurred
by the patient, as opposed to seeking a cure. The requirements on accuracy are there-
fore rather low, and problems occurring due to errors in patient alignment can be
accommodated. In this work however, I will concentrate on the curative treatment,
where accuracy is an important issue. The more accurate the irradiation is, the
better the dose distribution can be computed. This leads to narrower peaks at the
location of the tumor in the dose distribution. Hence, it is possible to administer
a higher radiation dose to the tumor while reducing the dosage in the surrounding
healthy tissue.

The advances in treatment planning systems allow a precise computation of
the theoretical three dimensional dose distribution. This computation is based on

1



2 Chapter 1. Introduction

the patient’s CT volume, acquired from the tumor region. The processing of this
CT volume is not fully automated, however. It is still necessary, for instance, to
manually optimize the segmentation of the CT volume, the procedure of separating
cancer cells from healthy tissue. Regardless of possible additional errors introduced
by the manual segmentation, planning systems remain an indispensable tool for dose
calculation and the resulting precision is sufficient for high precision radiotherapy.

An extreme case in terms of requirements on precision is the field of stereotactic
radiosurgery. The treatment procedures involved are based on the irradiation of a
small target volume with very narrow beams and from many different directions.
Precise positioning is required in order to ensure the concentration of radiation
in the target volume. Stereotactic radiosurgery is used in the treatment of brain
tumors and represents a valuable adjunct to surgical resection, radiotherapy, and
chemotherapy.

In each case, the limiting factor for an accurate treatment becomes the posi-
tioning of the patient. During a typical treatment, the patient is irradiated several
times over a the period of days or weeks. Before each session, the patient has to
be accurately positioned in the treatment device, a linear accelerator. The problem
then is twofold: before the first session, the patient’s pose within the treatment
device must be found to establish the connection between the planning data and
the actual treatment. Secondly, this initial position has to be marked in order to be
able to correctly reposition the patient before each session.

The initial position is always determined during a simulation phase, in which
the treatment is performed using diagnostic X-rays. The problem of fixation, the
marking of this position, has been tackled in several ways.

• Skin marks aligned with laser beams:
Once correctly positioned in the treatment simulation, lines are drawn on the
skin along two calibrated laser beams. In the treatment room, identical laser
beams allow the patient to be repositioned more or less accurately in the linear
accelerator.

• Moldings and other fixations:
Devices to fix the position relative to the table play an important role for the
treatment of certain regions. This is especially the case for brain tumors since
the skull can be fixed in an accurate way. Other regions however, such as the
pelvis, cause more difficulties in finding a reliable fixation.

• Video controlling:
An interesting application is the three dimensional analysis of video sequences.
The signals of two or more video cameras allow one to track the position in
space of special reflective markers on the skin.

Although important, these three measures suffer from the drawback that the fixation
and positioning is based on external and often non-rigid features. Furthermore, only
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the video controlling approach allows the position to be checked during the treat-
ment. Thus, the goal is to find alternative means of checking the patient position
based on robust features situated as close as possible to the tumor itself.

1.2 The potential of portal images

One promising type of sensor is the electronic portal imaging device (EPID), which
has become more readily available in recent years. This device registers a two
dimensional exit dose distribution during radiotherapy, similar to a diagnostic X-
ray.1 The main drawback of such portal images is their inherently low contrast
and substantial noise, rendering reliable image analysis a difficult problem. A main
goal of this project is to assess the suitability of portal images for an improved
position control. That is, to design a reliable measurement method for the patient
displacement.

Before exploiting the information of portal images, a few additional thoughts are
necessary regarding the actual problem. The patient’s position is defined in a three
dimensional patient coordinate system. Under the assumption of a rigid motion—
which I adopt throughout this thesis—the six parameters of translation and rotation
must be found to fully correct any patient setup error. This will hardly be possible
by analyzing one portal image, which only depicts the two dimensional projection
of the bony structures. It is straightforward to show that trying to solve for the
complete three dimensional parameter set with only one portal image would lead to
an ill-posed problem.

Still, portal images are a promising source of information. On one hand, we can
make assumptions on the three dimensional movement and use the two dimensional
measurements to estimate parts of the patient motion. In this case, the problems to
be dealt with include the, possibly neglected, projective nature of the portal images
and the systematic errors introduced by the rather constraining assumptions. These
shortcomings are partly compensated by introducing certain knowledge about the
anatomy or about the range of possible movements.

On the other hand, portal images are best used as additional information, sup-
plemented with the CT volume, the planning data and treatment settings, and
maybe the simulation images. Within such a framework, portal images can deliver
the missing amount of information to ensure accurate patient positioning. In or-
der to fully exploit and combine all this data, a great deal of system integration
on the side of the device software is essential. However, this necessary integration
is not yet available at the time of writing. Nonetheless, suitable interim solutions
can be found until further advances in terms of system integration will allow for an
optimum solution.

In employing portal images, two additional problems have to be tackled. Firstly,
the exact position of the EPID is unknown in general. Therefore, the portal images
have to be registered to establish a common coordinate system. There are several

1Electronic portal imaging devices are discussed in more detail in section 2.3.
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solutions to this problem, depending on the aforementioned system integration.
Usually, the registration is achieved by comparing the edge of the treatment field
with a gold standard of known position. Optimally, this gold standard is based on
the treatment settings; that is, on the current setup of the field shaping device, the
so-called multi-leaf collimator. If the information about treatment settings is not
available, as is often the case, the field shape of a previously registered portal image
must serve as gold standard.

Secondly, the shape of this treatment field must be checked if it matches the
form defined in the planning step. Again, there is an interim and an optimum
approach. The latter is given by comparing the actual field shape with a simulated
shape computed from the planning data. If the planning system does not support
such a simulation, the field shape of a previously checked portal image is used, as
in the registration step.

1.3 Low-contrast imagery:

Area-based versus feature-based methods

Noisy and low-contrast images pose uncommon problems to computer vision algo-
rithms. Usually, one of the first steps in image analysis is to transform the large
amount of information typically present in an image into a more practical repre-
sentation. In most computer vision algorithms, this transformation also involves a
significant reduction of the original information content.

A well-known example is applying a feature extraction operator, for instance
an edge detector. Although there are more general approaches, edge detectors are
mostly used to extract edges as a binary feature, that is, a gray level image signal
is reduced to a binary mask.

In many cases, exactly this reduction is desired to further process the vast amount
of input data, and hence the popularity of such approaches. However, many existing
methods deal rather carelessly with the information content of images. Often, too
much or the wrong part of the information is discarded during the various processing
steps, leading to a loss of both accuracy and reliability.

Nevertheless, numerous applications do not depend on fully exploiting all avail-
able information. It is thus reasonable to accept some loss of valid information in
exchange with a simplification of the algorithm. In the case of low-contrast imagery
however, a loss of accuracy or reliability might inhibit a successful outcome. Thus,
any information reduction applied to low-contrast imagery has to be carefully de-
signed. But it remains an open issue how to design such a feature extractor. Most,
if not all, feature extraction algorithms will not produce a reliable result operating
on imagery with a low signal to noise ratio like portal images.

This is the justification for using an area-based method, as opposed to a feature-
based method. Area-based methods do not require a specific feature extraction
step, since they directly use the image signal as input data. That is, the complete
image information is accessible. This may be both an advantage and a disadvantage,
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area-based feature-based

methods maximize cross correlation Canny edge detection

maximize mutual information Förstner’s operator

minimize sum of squared errors
(least squares template matching)

Gabor filters

. . . . . .

information full image information reduced information

advantages no feature extraction high separability

high precision

drawbacks gray scale dependent feature extraction necessary

precision dependent on feature
extraction

Table 1.1: Advantages and disadvantages of area-based and feature-based methods.
The listed methods are arbitrarily chosen examples from the numerous available
algorithms.

depending on the application. Table 1.1 summarizes the qualities of each type.
The main advantage of area-based methods—besides not having to extract any

features—is their potential for high precision measurements, which is a direct result
of using the full image information. For a correctly sampled image signal, the
precision is limited only by the signal to noise ratio. On the other hand, care
must be taken in designing area-based methods in order to reduce the gray scale
dependence as much as possible. In contrast to feature-based methods, where this
dependence is usually eliminated in the feature extraction step, area-based methods
must inherently supply the desired level of gray scale independence.

The advantage of feature-based methods lies in the possibility of achieving high
separability for certain features. With a well designed feature extractor, several
instances of one feature can be separately detected even if they are only few pixels
apart.2 However, the step of feature extraction is crucial, since the subsequent
matching procedure is dependent on its outcome.

Thus, area-based methods provide an elegant approach to circumvent the dif-
ficult step of feature extraction in low-contrast imagery. The costs are the higher
complexity of the matching algorithm and an inherent gray scale dependence, both
of which must be accommodated for. But as this thesis shows, both problems can
be solved for this application by employing the least squares template matching
method.

2For a more detailed discussion and interesting examples of different feature extractors please
refer to [Danuser 1997, section 3.3].
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Electronic portal imaging

In the last years, electronic portal imaging devices (EPID) have become more readily
available. The devices have definitively evolved from an experimental stage to a level,
where they can be employed in daily hospital routine. What is missing however,
is a convenient and reliable way of analyzing the thusly acquired images. In other
words, methods have to be developed to make reliable measurements based on such
portal images, in order to fully exploit the information contained herein.

Before I explain in more detail the potential and the drawbacks of the EPID
in section 2.3, a short overview of the current hospital practice and of the involved
devices is given in the first two sections. The important aspect of digitally recon-
structing a portal image with known parameters—hence generating an optimum
reference image from the CT volume—is outlined in section 2.4, followed by a de-
scription of the specific problem to solve. The chapter concludes with an overview
of previous work on portal imaging.

2.1 Current procedure for radiotherapy treatment

In high precision conformal radiotherapy it is essential to accurately position the
patient during the series of treatment sessions. Figure 2.1 gives an overview of the
various steps of conformal radiotherapy. First, CT volume data is acquired. Based
on this CT volume and the desired dose distribution, the physician defines the ir-
radiation directions and the field shapes—seen as white outlines in the megavoltage
X-ray images—in the planning step. At this stage, the theoretical dose distribution
within the CT volume is computed. Furthermore, digitally reconstructed radio-
graphs (DRR) can be computed from the CT data (figure 2.1a), which will be
discussed in section 2.4.

In order to reach the theoretical dose distribution as exactly as possible, the
patient must be positioned at each treatment session in accordance with the CT
coordinate system. Two possibilities exist to find this position for the initial treat-
ment. The conventional approach is to simulate the therapy using diagnostic X-rays
instead of megavoltage X-rays, which allows standard X-ray images to be acquired
(figure 2.1b). Based on these images, the patient is iteratively moved towards the
optimum position. The coordinate systems of the simulator and of the linear accel-

7
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treatmentsimulatorCT + planning

digital
reconstruction

dose distribution

of radiographs

+
3D data

a. DRR b. diagnostic X-ray c. megavoltage X-ray

Figure 2.1: Overview of the different steps of radiotherapy treatment. The three
steps CT+planning, simulator, and treatment yield three types of imagery: digitally
reconstructed radiographs (a), diagnostic X-ray images (b), and portal images (c).

erator are identical. As localization device serve two laser beams present at both
devices, which define two perpendicular planes. Hence, the patient can be reposi-
tioned in the same location by marking the skin along these planes and align these
line marks with the laser beams in the subsequent treatment.

The second possibility is to use virtual simulators. This is a rather new tech-
nology, where the localization device is directly integrated in the CT scanner. The
treatment simulation is carried out virtually by computing DRRs, thus rendering
an additional simulation step obsolete. Analogous to the conventional method, line
marks on the skin are used to realign the patient in the treatment room. Since
one source of error has thusly been eliminated, virtual simulation should be the
preferred method from the computer vision point of view. However, the computed
DRRs are not yet of the same quality as the diagnostic X-ray images obtained from
the standard simulator, which still lowers the acceptance of this technology among
physicians.

The drawback of these procedures is that the patient positioning is only based
on reference points outside the body. This might be suitable for rigid structures
as for tumors in the head region, but is error prone where the reference points
are on soft tissue, for instance in the case of the pelvis region. The position of
these reference points can significantly change over the period of treatment, which
introduces another source of error. For a more reliable alignment, stable features
close to the tumor should be employed.
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2.2 Simulator and linear accelerator

Both devices, the simulator and the linear accelerator, are identical in terms of
coordinate systems and geometry. As described in the previous section, two laser
beams present at both devices enable marking and localization of the patient within
this coordinate system.

The difference between the simulator and the linear accelerator is the different
types of X-rays used. Whereas the simulator contains a standard diagnostic X-ray
source of about 100 keV, the linear accelerator works with a megavoltage source
ranging from 6 to over 20 MeV. This has a major influence on the image contrast as
we will see in section 2.3. Otherwise, the two devices are very similar, which allows
me to concentrate on the linear accelerator in this section.

The main parts of a linear accelerator are the gantry, the collimator, the table,
and the portal imaging device. Figure 2.2 illustrates the various coordinate systems
corresponding to these parts. The main reference point is given by the isocenter, in
the figure marked by a thick black dot. The isocenter represents the intersection of
the beam axis with the rotation axis of the gantry.

The gantry contains the radiation source and a collimator device. It can be
rotated about the isocenter. The patient—or a CT volume during the digital recon-
struction of a portal image—is placed on a table which usually has four degrees of
freedom: translation in all three directions and rotation in the table plane. There-
fore, the gantry position together with the table orientation defines the irradiation
angle, that is, from which direction the beam enters the patient’s body.

The collimator device may be a simple perspex plate with mounted lead blocks
or, in newer installations, a multi-leaf collimator. Such a multi-leaf collimator device
consists of an array of small, longish lead blocks which can be positioned along one
axis according to the required beam shape. This results in characteristic steps in
the field edge contour, for instance visible in figure 2.1c.

2.3 Electronic portal imaging device

The most promising sensor for improving patient alignment is the electronic portal
imaging device (EPID). This device delivers images of the exit dose distribution
during treatment similar to a standard X-ray image.

Various types of EPIDs are available. An interesting although little bit outdated
review can be found in [Boyer et al. 1992]. Presently, most devices are either based
on a liquid ionization chamber or a fluorescent phosphor screen viewed by a CCD
camera. Examples of the latter system are the devices iView from Elekta Oncology
Systems (EOS) and BeamView from Siemens Oncology Care Systems.

An example of a liquid ionization chamber was developed by [van Herk and
Meertens 1988] and is available as PortalVision from Varian Oncology Systems.
Their portal imaging system consists of a 256×256 matrix ionization chamber on
an area of 32×32 cm2. This leads to a square pixel size of approximately 0.9 mm
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Figure 2.2: Coordinate systems of the linear accelerator.

in the plane of the isocenter for the standard setup as depicted in figure 2.3a. The
gray value resolution is 12 bit and the nonlinear input/output characteristics of this
device was further investigated by [Yin et al. 1994].

Most portal images used in this study were acquired using one of the Varian ac-
celerators 600C or 2100C and their EPID PortalVision. A few images were obtained
using the BeamView device from Siemens. In contrast to PortalVision, their device
provides 8 bit gray value images with a spatial resolution of 512×480 pixels resulting
in a square pixel size of about 0.5 mm in the isocenter plane. Both types of images,
PortalVision and BeamView images, were acquired at the University Hospital of
Zürich.

The exact location of the EPID is not known in general. Depending on the
installation, the degrees of freedom of the EPID ranges from 0 to 3, that is, from
more or less fixed to allowing translations in all three directions. Since rotational
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Figure 2.3: A standard treatment setup is illustrated in (a) including the patient
coordinate system. The EPID is typically located about 40 cm below the isocenter
plane. The four main beam directions are shown in (b).

movements are not possible, the beam axis always stays perpendicular to the image
plane.

An EPID is normally mounted opposite the gantry on a retractable arm, which
on some installations also reports the position of the EPID. In all cases however,
the position is only known up to a few millimeters. This calls for an additional
registration step before the connection between the image and the patient coordinate
system is made and a portal image can be used for measurements.

In contrast to diagnostic X-ray, which is acquired at energies below 200 keV,
megavoltage X-ray images are taken at treatment energy level which ranges from 6 to
over 20 MeV. At these energy levels, the attenuation is governed by Compton effects
and pair production. Figure 2.4 illustrates the influence of the various interaction
types in the case of photons in water.

The contrast of a X-ray image is mainly given by the difference of total at-
tenuation between soft tissue and bone. Qualitatively, this attenuation difference is
determined by analyzing the dependency of the various effects on the atomic number
Z. Since attenuation by photo effect is proportional to Z3, high contrast images are
obtained at low energies. Conversely, Compton absorption is only proportional to Z
which leads to significantly lower contrast in megavoltage X-ray images. Moreover,
there is typically a high amount of noise at high energies, thus further reducing the
signal to noise ratio of portal images. Figure 2.5 depicts two typical portal images
from the pelvis region.

Moreover, there is also the possibility of unstable features as shown in figure 2.5b.
The dark blur in the center of the image originates from air in the rectum and may
not be used for matching. Another type of unstable features are lines or edges only
visible under a certain view angle.
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Figure 2.4: Mass attenuation coefficients for photons in water or biological tissue.
Compton effects and pair production govern the total attenuation at high energies
[Marmier and Sheldon 1969].

a. b.

Figure 2.5: Two typical portal images from the pelvis region. The images are
bounded by the field edge and usually differ slightly in position and scale as in this
example. Typical for portal images are also unstable features like the dark blur in
(b), which originates from air in the rectum.
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a. 10 mm slices b. 3 mm slices c. 1 mm slices

Figure 2.6: Diagnostic (top row) and megavoltage DRRs (bottom row) of three CT
volumes with differing slice thickness. A CT volume with 10 mm slices is clearly not
suitable to compute DRRs (a). The quality increases significantly when using 3 mm
slices (b), which should be sufficient for measuring portal images. For comparison,
a high resolution example was computed from the Visible Woman dataset (c).

2.4 Digitally reconstructed radiographs

As illustrated in figure 2.1a, artificial X-ray images or digitally reconstructed ra-
diographs (DRR) can be computed from the CT volume [Sherouse et al. 1990,
Chaney et al. 1995]. The treatment setup depicted in figure 2.2 is simulated by
a ray-tracing based algorithm, correcting for the different absorption coefficients at
different beam energies. Depending on this correction, either diagnostic or mega-
voltage DRRs are obtained. Presently, most treatment planning systems allow the
computation of both types of DRRs. The simulation software used within this
project was ported from the “portal software tool” described in [Chaney et al. 1995]

and implemented in our lab during a master’s thesis [Styner 1997].

Portal images acquired during treatment can be directly matched with a mega-
voltage DRR, since their gray value characteristics are similar. This provides an
accurate link between the planning step and the actual treatment. Employing such
DRRs as reference images is potentially very interesting for increasing the accuracy
and efficiency of radiotherapy treatment. However, the slice thickness of the CT
must be less then 5 mm in order to achieve a sufficient image quality. Figure 2.6
illustrates the effect of the CT slice thickness on the quality of the DRRs. Clearly,
a CT volume with 10 mm slices is not suitable for computing a DRR, whereas 3 mm
slicing should be sufficient to reconstruct a reference portal image.
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2.5 Patient positioning using portal images

The accuracy achieved with the conventional procedure as described in section 2.1
is in the range of 10 to 20 mm. The goal is to find a method that increases this
accuracy to a few millimeters by analyzing the portal images. Furthermore, the
analysis must be fast enough to allow an early interruption of a treatment session.
Table 2.1 summarizes these specifications.

size of search window 10–20 mm
required accuracy 2–5 mm
computation time < 5 sec

Table 2.1: Specifications for the portal image analysis.

Before a portal image can be used for measurements, its coordinate system must
be calibrated with respect to the patient or CT coordinate system (see also fig-
ure 2.2). I have discussed in section 2.3 that the exact position of the EPID is not
know. In a first step, this position must be found, that is, the portal image must be
calibrated based on known features.

An ideal feature is the radiation field edge. Its shape is defined by the physician
in the planning step. During the treatment, the field shape is formed either by
lead blocks or by a computer controlled multi-leaf collimator. In the latter case,
the settings of the collimator can be used to generate a perfect standard for the
calibration. If this data is not to hand, the field shape of a previously registered
portal image serves as reference. In both approaches, the field edge of a newly
acquired portal image must be aligned with a reference field edge. A simple but
usually sufficient model for this field edge alignment is to allow for translation and
scale, accounting for the three degrees of freedom of the EPID. When minor rotation
should also be taken into account, a similarity transformation is used instead.

The exact shape of the field must also be checked based on the planned shape.
Ideally, this field edge check is achieved by directly comparing the current field
shape with a simulated field shape from the planning data. To date however, the
field shape must often be compared to a previously registered portal image, since
the planning data is not available. As similarity measure between the reference and
the treatment field edge serves the normalized cross correlation of their gray values,
which proves to be a robust measure for detecting field shape deviations.

Based on the field edge alignment, the displacement of bony structures must
be measured in order to check the patient position. As already mentioned in sec-
tion 2.3, the main difficulties arise from low contrast and unstable features. Also, the
projective nature of the portal images should be taken into account when the three
dimensional patient motion is to be estimated. This leads to the challenging task
of estimating at least parts of the rigid patient motion based on two dimensional
projections.

Similar to the previous steps of field edge alignment and check, there is an
optimum and an interim approach in terms of choosing the reference image. An
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interim solution optimum solution

field edge alignment
(calibration)

• field edge extraction on
reference image

• field edge alignment

• field simulation based on
collimator settings

• field edge alignment

field edge check • field edge extraction on
reference image

• field edge alignment

• similarity test on aligned
field edges

• field edge simulation
based on planning data

• field edge alignment

• similarity test

anatomy alignment • define portal image as
reference image

• portal alignment to
portal image alignment

• computation of DRRs
based on planning data

• DRR to portal image
alignment

Table 2.2: Interim and optimum solution of the three main stages. Interim solu-
tions only differ in the choice of the reference data and of the algorithm.

optimum reference are megavoltage DRRs, computed from the CT volume and the
planning data. However, such a DRR can only be computed when a high resolution
CT was acquired (slice thickness smaller than 5 mm). Within this work, only a few
such datasets were acquired. In all other image series, an interim approach had to
be chosen, where the reference image is a previously registered portal image, usually
the first portal image of a series.

Table 2.2 gives an overview of the three main stages and both their interim and
optimum solution. It is important to note that the interim solutions differ only in
the choice of the reference data and not in the choice of the algorithm. That is,
the same methods can be applied once the optimum reference images are available.
Thus, most examples in this thesis were computed by applying the framework of
the interim solution. Figure 2.7 depicts an overview of the resulting algorithm parts
(gray boxes) and their results.

2.6 Previous work on portal image analysis

The previous section explained the need to extract and align the field edges of two
portal images before measuring the actual anatomy displacement. On all three steps
of portal image analysis, previous work has been carried out, which is summarized
in the following. The anatomy alignment is further subdivided into strict two di-
mensional methods and combined or three dimensional methods, which try to take
into account the third dimension.
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Figure 2.7: Flowchart of the interim alignment procedure (gray boxes represent
algorithm parts). The result of the field edge match is used as initial guess for the
anatomy alignment (dotted arrow).

2.6.1 Field edge extraction

A simple method for extracting the field edge was presented by [Bijhold et al. 1991a].
They first approximate the field edge position by thresholding the portal image at a
suitable value which is obtained analyzing local minima in the gray value histogram.
In a second phase, all edge pixels are shifted in the direction of local maximum
gradient employing Sobel compass filters.

[Leszczynski et al. 1992] proposed the application of the Canny edge detection
operator followed by a sequential contour following algorithm. Their method is based
on the work of [Lacroix 1988] and [Kunt 1982]. Additionally, they apply a heuristic,
regression-type strategy to segment the contour into straight line segments.

Completely based on line segments is the field edge extraction method published
by [Eilertsen et al. 1994]. They use the Laplace of Gaussian operator as feature
extractor and apply the Radon transformation to detect straight lines. In a second
phase, these line segments are connected again using the Radon transformation.

A slightly different approach was described by [Wang and Fallone 1995]. They
threshold the gradient image leading to a binary edge map, where the edge is a
few pixels wide. Consequently, the region inside this binary edge is a few pixels
smaller than the real size of the radiation field. Applying several dilation and erosion
operations, a series of one pixel wide field edge candidates is generated. Their
respective mean gray values represent the general form of the field edge slope, to
which a hyperbolic tangent function with four degrees of freedom is fitted. The most
probable field edge is then selected based on the resulting parameters. They claimed
to have successful results on both, double and single exposure portal images.
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2.6.2 Field edge alignment

For the field edge alignment, [Bijhold et al. 1992] proposed to apply the method of
normalized or invariant moments. They computed the invariant moments of the one-
pixel wide field edge contour and compared them to the moments of the reference
contour. [Wang and Fallone 1994] applied the same method to the whole radiation
field mask, not only to the contour. Their results have indicated that this approach
leads to an improved registration of the field edges.

The method of invariant moments to compare image patterns was first intro-
duced by [Hu 1962] and further extended by various authors. Moments can be
made invariant to translation, rotation and scale and thus provide a measure to
compare the shape of two objects. Refer to [Teh and Chin 1988] for an overview
and evaluation of the different algorithms. However, employing invariant moments
for measuring a transformation between two objects has various disadvantages. The
main problem is that differences in shape may significantly influence translation
and rotation measurements, especially if only applied to the contour. Thus, it is
not surprising that [Wang and Fallone 1994] achieved better results, but they still
suffer from the mentioned drawbacks. Moreover, both approaches strongly rely on
a reliable and accurate field edge extraction algorithm, which is difficult to achieve
for all kinds of portal images.

Another approach to align to outlines is given by polynomial warping as proposed
by [Eilertsen et al. 1994]. The corner coordinates of the field edge polygons were
chosen as tie-points, which can be mapped onto each other using a least squares
estimation technique. They used the six affine parameters as transformation model.
However, this method depends on the accuracy of the extracted field edge contour
like the method of invariant moments.

2.6.3 Two dimensional anatomy alignment

The various methods for portal image registration can be divided into the two cat-
egories presented in section 1.3: area-based and feature-based methods. Probably
the best known feature-based methods are point-to-point (or landmark) algorithms,
where a certain number of landmarks have to be identified in both images (for in-
stance [Meertens et al. 1990], [Ding et al. 1993], [McParland and Kumaradas 1995]).
This approach was further developed by [Balter et al. 1992], who align open curve
segments and points seen on two radiographs employing the Procrustes algorithm
[Schonemann 1966]. Still, the features must be delineated in both the reference and
the search image and thus requires a great deal of user interaction.

Such landmark methods greatly depend on the exact localization of the land-
marks by the physician. This is not only time-consuming, but also varies for dif-
ferent operators. First attempts to reduce the workload and the variation lead to
hybrid methods, where features are only delineated in the reference image. Even if
these methods are still strongly operator dependent, the restriction to the reference
image diminishes the workload substantially.



18 Chapter 2. Electronic portal imaging

An example for this type of methods is the chamfer matching algorithm. Cham-
fer matching is a technique originating from the artificial intelligence community
[Barrow et al. 1977] and was applied to edge matching by [Borgefors 1988]. The
application to portal images was presented by [Gilhuijs and van Herk 1993]. In their
approach, significant ridges have to be manually outlined in the reference image.
These outlines are then matched onto the detected features of the treatment image.
As feature detector served the morphological top-hat transform (see for instance
[Serra 1982]). Hence, this method depends on the correct selection of ridges, that is,
the operator has to know about the top-hat transform in order to extract the same
features as the morphological feature detector. In the follow-up paper [Gilhuijs et
al. 1995], they used a multi-scale medial axis transformation as feature detector and
found slightly better results.

A similar approach is described in [Fritsch et al. 1995]. Instead of the top-hat
transform, they introduce the notion of cores. Cores are skeleton-like structures,
representing medialness of the object. The advantage of their method is that cores
are extracted on the reference image as well. This reduces the operator variabil-
ity, since reference structures are merely selected and do not have to be manually
outlined.

[Eilertsen et al. 1994] presented the application of an unsharp masking technique.
They implemented unsharp masking by subtracting a low-pass filtered version of the
image with subsequent manual thresholding. The resulting binary ridge maps of the
reference and treatment image were then correlated within the three dimensional
search space of translation and rotation.

However, since portal images are inherently noisy and low in contrast, it is diffi-
cult to robustly detect features like edges, ridges or cores. Therefore, an area-based
algorithm promises to be superior to a feature-based algorithm.

A well known area-based technique is minimizing the gray value correlation coef-
ficient. An early paper on the application of gray value correlation to portal images
was presented by [Jones and Boyer 1991]. They implemented a FFT-based search
of one region of interest on the discrete pixel grid. Further speed up of the extensive
search for the best fit was achieved by [Radcliffe et al. 1994], with a special type
of “statistical” correlation. Such speed up is necessary in order to allow for more
degrees of freedom than just translation, that is to include rotation or even scale in
the search space. Additional parameters quickly lead to an explosion of the size of
the search space, which renders an efficient implementation difficult. [Moseley and
Munro 1994] therefore restricted their independent registration of several anatomic
regions to translation with the drawback of being sensitive to rotation. From the
resulting set of translations of the individual regions, they computed a similarity
transformation. Due to the initial restriction to translation however, this method
is sensitive to rotation. Still, they claim a precision within one pixel if the rotation
was below 4◦.

A two step procedure was proposed by [Dong and Boyer 1996], where a coarse
result is first computed based on translation only. Then, a refined result is obtained
by searching the three dimensional search space also including rotation. Even with
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this two step approach, they were forced to use rather large step size, for instance
3◦ for the rotation parameter.

In an earlier publication, [Dong and Boyer 1995] used a megavoltage DRR as
reference image instead of an approved portal image as in the aforementioned area-
based methods. They showed promising results on the gray value correlation of a
megavoltage DRR with a treatment image.

However, the limitations of all these area-based methods for matching portal
images lie in the restriction to translation or in a coarse search grid for computational
reasons. Furthermore, none of the aforementioned methods, feature-based or area-
based, show an error propagation analysis for the measured displacement. This
would be crucial for any kind of automated quality control, which is necessary to
achieve the reliability and accuracy required for daily hospital routine. In current
clinical practice, the result must be visually checked and often manually corrected.

In [Berger and Danuser 1997], the application of least squares template matching
(LSM) to portal images has been presented. As I will discuss in this thesis, LSM
overcomes the problem of large search spaces since it is based on an optimization
strategy. Moreover, the least squares framework allows one to compute the error
propagation and thus to develop an automated quality control.

2.6.4 Three dimensional anatomy alignment

One of the first three dimensional approach was presented by [Brunie et al. 1993].
Based on CT or MR volume data, they matched the projections of a segmented
feature with its corresponding feature in the portal image. The strength of this
technique is the fusion of three and two dimensional data. Results were shown on
a head phantom. However, I believe that the aforementioned drawbacks of feature-
based matching will reduce the accuracy and robustness in practice.

A landmark based, three dimensional verification method was presented by [Bi-
jhold 1993]. Based on the CT, he manually localized anatomical match points in
both the simulator and the treatment image including the third dimension.

A different approach was proposed by [Gilhuijs et al. 1996]. Bony structures
present in the CT data are mapped onto the projected portal images under different
irradiation angles and the most similar view is chosen as the current patient position.
They used the simplex method as optimization strategy. However, they only showed
results on simulated data, which is simpler than the application to real portal images.

An interesting combination of area-based and feature-based methods has been
presented by [Bansal et al. 1998], who applied a framework similar to the Ex-
pectation-Maximization algorithm (see for instance [Dempster et al. 1977]). The
mutual information between the portal image and a computed projection is maxi-
mized, while estimating a rough classification into bone and background at the same
time. They chose an annealing schedule as optimization strategy comparable to the
method of simulated annealing.

In [Berger and Gerig 1998], we have shown the feasibility of comparing a mega-
voltage DRR with portal images by applying least squares template matching.
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Least squares template matching

LSM is an area-based matching algorithm. It replaces the conventional multi-stage
approach where feature extraction is followed by thresholding, binarization and a
discrete search. The main idea of LSM is to fit the image signal of a template into
the search image, minimizing the sum of squared errors between the gray values of
the two regions.

Thus, LSM does not depend on the extraction of binary (also called non-iconic)
image features. This is an important advantage in low contrast and blurred imagery,
where feature extraction is mostly unreliable. Furthermore, unlike in most correla-
tion methods, the optimum transformation is not searched on a discrete grid, but
approached using an optimization scheme. Assuming that a fair initial guess can be
supplied, this is not only faster but also more accurate.

3.1 Previous work on LSM

Early work in this field was presented by [Lucas and Kanade 1981], who published
an iterative image registration scheme based on LSM. Among the first papers that
discussed the concept of exploiting the full information of the statistical models
for robust template matching are [Grün 1985] and [Förstner 1987]. [Bergen et al.
1992] describe basically the same algorithm for motion estimation. It was further
developed by [Lindeberg 1995] using a multi-scale approach.

Following and extending the work of Grün, [Danuser and Mazza 1996] achieved
highly accurate results at the resolution limit of a light microscope. The high ac-
curacy of this technique even in the case of low-contrast imagery is extensively
exploited in [Danuser 1996]. The paper reports on high accuracy positional mea-
surements of a calibration grid used to calibrate a stereo light microscope. Com-
pared to this application, additional problems arise in portal images from the higher
complexity and variability of the image scene, and from the effects of out-of-plane
rotations on projected images. On the other hand, the requirements on accuracy
are not as high in portal imaging.

A similar technique for the registration of medical image series is reported by
[Unser et al. 1995], where each image is matched to the reference image based
on a global gray value difference measure using a pyramid scheme. It was further

21
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developed in [Thévenaz et al. 1998] to include volume registration using a three
dimensional affine transformation. In contrast to their work, our framework does
not rely on one global template, but on several small templates each containing a
significant image structure. Thus, the inclusion of distinct but insignificant image
features which vary between the data of one sequence is avoided and the impact of
global gray value errors such as intensity inhomogeneity is reduced.

Least squares matching techniques have also been applied to tracking problems.
[Jianbo Shi and Tomasi 1994] separately track a series of small templates using an
affine transformation model and also select good features based on the normal matrix
of the linear least squares system. An application of piecewise projective tracking
was described by [Gleicher 1997]. Both approaches did not tackle the problem of
illumination insensitivity, which was presented in a more recent paper by [Hager
and Belhumeur 1998]. They also provide an overview of the application of LSM to
tracking problems.

In the following three sections, the generic framework of solving least squares
problems is reviewed including error propagation and self-diagnosis. The less general
case of template matching is presented in detail starting with section 3.5.

3.2 General least squares framework

Least squares estimation is widely dealt with in standard literature. In this section,
a short summary is given about the parts relevant to LSM. For more in-depth
information the reader may for instance refer to [Höpcke 1980], where the emphasis
is on adjustment theory, or [Koch 1988] for parameter estimation.

Least squares estimation problems are commonly described with a set of rela-
tions between idealized, unperturbed measurements, denoted by `, and the unknown
model parameters ζ. The most general model consists of a set of functions Fk, which
we collect in a vector valued function

F (ζ, `) = 0 . (3.1)

The unperturbed measurements ` are unknown. The actual measurements l, also
called observations, are always subject to errors and only their expected value is
equivalent to `

` = E[ l ] .

In order to account for these errors, the expected value ` is replaced by ` = l+el. The
vector el is called residual vector. Estimates of the measurements and parameters
must not be confounded with the actual unknown values and are denoted by êl, ˆ̀,
and ζ̂, respectively.

The measurements are often at least partly independent of the parameters. With
regard to the image matching problem, equation (3.1) is formulated as a sum of the
dependent and independent observations. Denoting the independent observations
with l2 and the others with l1, we write

F1(ζ, l1+el1) + F2(l2+el2) = 0 (3.2)
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without loss of generality, since the vector valued functions F1,2 can both take on
zero values.

The residuals can also be introduced in the space of the function vector F in-
stead of the observation space of l. However, there are substantial disadvantages
in some circumstances and a few thoughts are necessary before such simplification.
Solving (3.2) in the least squares sense results in a best linear unbiased estimator 1 for
ζ. If we further assume normally distributed observations, it turns into a maximum
likelihood estimator (MLE). These important properties are lost when changing
the residual model to functional residuals. Nevertheless, under certain assumptions
about the functions Fi, the additional bias can be neglected. One important prereq-
uisite is that Fi must be linear in li, which we will always assume within this work.
For a more detailed discussion about differences between these two residual models
I refer to [Danuser and Stricker 1998]. Exploiting these assumptions, equation (3.2)
simplifies to

F1(ζ, l1) + e′l1 + F2(l2) + e′l2 = 0

F1(ζ, l1) + F2(l2) + eL = 0 (3.3)

where we combine the residuals

eL := e′l1 + e′l2 . (3.4)

At this point, I also introduce the notion of the weight matrix Pll and the cofactor
matrix Qll. Denoting the covariance matrix of the measurements l with Σll, their
weight matrix is defined as multiple of the inverse of Σll.

Pll = σ2
0 Σ−1

ll (3.5)

The factor σ2
0 is called the variance of unit weight, since with Pll := I follows

Σll = σ2
0 I. The cofactor matrix Qll is defined as the inverse of Pll

Qll = P−1
ll =

1

σ2
0

Σll . (3.6)

Defining the covariance matrix of the measurements is an important modeling step.
Usually, it is not possible to fully define Σll, as the factor σ2

0 is often unknown
a priori. Nevertheless, the weight matrix Pll is specified after an a priori analysis
of the estimation problem. Therefore, the weights of the optimization are based on
physical properties instead of heuristics, which is an important advantage over other
optimization methods. In particular, the knowledge of the relative uncertainty of
the input data renders data fusion and error propagation possible.

The least squares objective function aims at minimizing the squared sum of the
residuals considering the different weights of the observations. Along with the com-
bination of the residual defined in equation (3.4), a weight matrix PLL and an unit

1Strictly, the estimator is only unbiased for linear problems. Applied to nonlinear models, the
random errors cause an additional statistical bias [Box 1971], which can be neglected in most cases.
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variance σ2
L0 are introduced for the combined observations. Thus, we can formulate

the goal function as Θ = eTLPLL eL. Notice that for uncorrelated observations, PLL
is a diagonal matrix.

Minimizing this goal function leads together with equation (3.3) to an uncon-
strained nonlinear least squares (NLS) problem

minimize
[
eTLPLL eL

]
where eL = −F1(ζ, l1)− F2(l2) .

This optimization problem can either be solved using the Levenberg–Marquardt
method [Marquardt 1963] or by applying a Gauss–Newton scheme. Please consult
for instance [Gill et al. 1981, section 4.7] or [Press et al. 1994, pp. 683] for details.
Both methods iteratively solve this equation using a linear approximation for equa-
tion (3.3), but the Levenberg–Marquardt method combines Gauss–Newton with the
steepest-descent method. The differences of these two optimization methods are
discussed in detail in section A.2. The linearization of equation (3.3) is further
described in section 3.3.

Constraints on the model parameters ζ are formulated in analogy to equa-
tion (3.1). Again, the constraint functions Gk are collected in a vector valued
function G:

G(ζ) = 0 . (3.7)

The constraint NLS problem defined by equations (3.1) and (3.7) is either solved
using a Lagrange formalism or by introducing the constraints as so-called zero or
pseudo observations. In this work, I will concentrate on the latter, interpreting the
constraints as zero observations with very small variances.

G(ζ) + e0 = 0 , (3.8)

denoting the residuals by e0 analogous to eL. Such constraints are called soft or
spring constraints, in contrast to hard constraints when applying the Lagrange for-
malism.

In particular, constraints can be used to suppress the estimation of a certain
parameter by fixing it to an a priori value. In this case, a constraint function Gk

is formulated as Gk(ζ) = ζi − ζ̄i, where ζ̄i is the a priori value for parameter ζi.
Inserting into equation (3.8) it follows

ζi − ζ̄i + e0k = 0 . (3.9)

Another important case is tying two parameters together. It is straightforward to
derive the corresponding constraint equation, which will force parameter ζi and ζj
to be equal after the optimization

ζi − ζj + e0k = 0 . (3.10)

Using such constraints, implementation problems due to the varying number of
parameters are avoided. This of course at the cost of a slightly less stable equation
system and larger matrices.
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All constraints Gk are added to the original observations using large correspond-
ing weights P0 in the augmented weight matrix P . These weights correspond to
the relative accuracy compared to the variances of the estimated parameters as will
be discussed in section 3.3. Each constraint Gk(ζ) = 0 will then hold through the
optimization with this specified accuracy. The augmented function vectors and the
residual vector are denoted by

F ∗1 :=
[
F1

G

]
, F ∗2 :=

[
F2

0

]
, e :=

[
eL
e0

]
,

leading to a formally unconstrained NLS problem

minimize
[
eTPe

]
where e = −F ∗1 (ζ, l1)− F ∗2 (l2) (3.11)

Matrices P and Q represent the augmented weight matrix and cofactor matrix,
respectively:

P :=

[
PLL 0
0 P0

]
, Q :=

[
QLL 0

0 Q0

]
,

with Q0 = P−1
0 being the cofactor matrix of the constraints.

3.3 Linearization and error propagation

One major advantage of the least squares framework is the possibility of rigorous
error propagation. Equation (3.11) defines a NLS estimation problem which can be
linearized around the current estimate ζ̂◦. Note that we already assumed F ∗i to be
linear in li when the residual e was introduced. Thus, the derivatives ∇̀ F ∗1,2 reduce
to constants and are included in e.

F ∗1 (ζ̂◦, l1) + A∆ζ + F ∗2 (l2) + e = 0 (3.12)

Matrix A represents the Jacobian ∇ζ F ∗1 and ∆ζ = ζ̂− ζ̂◦. Denoting the functional

residuals by w = F ∗1 (ζ̂◦, l1)+F ∗2 (l2) and solving for the residuals e, the following
expression for the goal function is found

eTPe = ∆ζTATPA∆ζ + 2 ∆ζTATP w + wTPw , (3.13)

which is solved by setting the first derivative with respect to the variable ∆ζ to zero

ATPA∆ζ + ATP w = 0 . (3.14)

Thus, the estimates for the parameter change and the residuals are given by

∆̂ζ = −(ATPA)−1 ATP w

ê = −A ∆̂ζ − w

The statistics of the parameter estimate ζ̂ := ζ̂◦ + ∆̂ζ in the adjusted system is
the same as the statistics of the parameter update ∆̂ζ. Therefore, we can directly
compute the cofactor matrix Qζ̂ζ̂. To propagate the covariances from the observa-
tions to the estimated parameters, the following error propagation theorem is used:
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Theorem (error propagation). The covariance matrix Σyy of a linearly trans-
formed random vector y = Hx + c is given by Σyy = H ΣxxH

T (cf. for instance
[Koch 1988, pp. 115]).

Thus, we derive the cofactor matrix Qζ̂ζ̂ using the properties Qww =Q= P−1 and
QT=Q

Qζ̂ζ̂ = (ATPA)−1ATP Q ((ATPA)−1 ATP )T

Qζ̂ζ̂ = (ATPA)−1 (3.15)

and a similar expression is found for the cofactor matrix of the residuals Qêê:

Qêê = Q− A (ATPA)−1 AT . (3.16)

3.4 Diagnostic measures

The strict least squares framework allows for a number of diagnostic measures, for
instance to judge the goodness of fit or the parameter determinability. Hence, various
tests are applied to supervise the iteration progress and the final result, yielding self-
diagnosis of the framework. The following section outlines the employed measures.
Details and proofs about statistics and hypothesis testing in general are found in
many textbooks, for example [Papoulis 1991] or [Koch 1988] for hypothesis testing
in linear models.

3.4.1 A posteriori noise estimate

After the completed adjustment, the a posteriori noise estimate σ̂L0 of the combined
observations is computed using

σ̂2
L0 =

êTLPLL êL
n− r

, (3.17)

where n is the number of observations and r is the number of parameters or degrees
of freedom. Please recall from equation (3.3) that êL is an estimate of the combined
residual of the observations l1 and l2. Hence, σ̂L0 is the a posteriori noise estimate
of the combined observations.

The noise estimate of the original observations can only be computed with knowl-
edge of the original noise processes. Two simple but common cases are of particular
interest:

1. Combination of exact measurements with zero variance, for instance artificial
model data, with the actual measurements of variance σ0. In this case the a
posteriori noise estimate σ̂0 of the actual measurements is identical to σ̂L0:

σ̂0 ≡ σ̂L0 .
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2. Addition or subtraction of two normally distributed measurements with differ-
ent variances σ0 and λσ0. Then, the a priori noise of the combined observations
amounts to

σL0 =
√

1 + λ σ0

and the a posteriori estimate σ̂0 equals to

σ̂0 =
σ̂L0√
1 + λ

.

3.4.2 Global model test

It can be shown that σ̂0 is an unbiased estimator of σ0 if and only if the model
corresponds to the input data [Koch 1988]. But in most practical cases σ̂0 is biased
since it also includes errors caused by an inaccurate model. A standard procedure
in parameter estimation theory is to test the hypothesis σ̂0 = σ0 against σ̂0 >σ0 in
order to check the correctness of the model:

H0 : σ̂0 = σ0 against H1 : σ̂0 > σ0 based on q = (n−r) σ̂
2
0

σ2
0

.

Under the assumption that the observations are normally distributed, the test statis-
tic q is chi-square distributed with n−r degrees of freedom: q ∼ χ2(n−r). The
hypothesis H0 is accepted with a significance level of α if and only if

q < χ2
1−α(n− r) .

In some cases when σ̂0<σ0 must be considered an error, the hypothesis

H0 : σ̂0 = σ0 against H1 : σ̂0 6= σ0 based on q = (n−r) σ̂
2
0

σ2
0

.

shall be tested instead, which is accepted with a significance level of α if and only if

χ2
α/2(n− r) < q < χ2

1−α/2(n− r) .

However, either of the two measures do not include any normalization of the
model data. Therefore it depends on the gray value scaling of the model compared
to the noise level, that is the signal to noise ratio. Additionally, the a priori noise
σ0 must be known. These two problems are serious drawbacks especially in the
case of image matching. On the one hand, it is often difficult to gain a reliable a
priori estimate of the noise level. A possible estimation method was presented by
[Voorhess and Poggio 1987], but it starts to fail when too many features are present
in the image. On the other hand, signal to noise ratios may vary significantly. For
these reasons, the goodness of fit is tested using the cross correlation value instead,
as described in the following section.
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3.4.3 Cross correlation value

In the adjusted state, that is after completing the optimization, the cross correlation
between the model and the observed data represents a criterion for the goodness of
fit. It describes the linear correlation of two random variables and is mostly used in
its normalized form. For the sake of completeness the formula is repeated here for
the correlation of −F1 with F2:

ρ(−F1, F1) = −E[F1F2]− E[F1]E[F2]√
E[F 2

1 ]E[F 2
2 ]

.

At the correct estimate, this value is very close to 1.0 and therefore suitable to dis-
criminate wrong results from correct estimates. The application to LSM is described
in more detail in section 3.11.

3.4.4 Estimation of parameter accuracy

Parameter estimation in linear least squares problems is extensively discussed in
standard literature on parameter estimation theory (for instance [Koch 1988]). The
iterative solution of equation (3.3) is an unbiased estimate for the unknowns with a
stochastic variance expressed by the diagonal elements of the covariance matrix

Σζ̂ζ̂ = σ̂0 ·Qζ̂ζ̂ . (3.18)

The value σ̂0 denotes the a posteriori noise estimate computed using equation (3.17)
and Qζ̂ζ̂ is the cofactor matrix as defined in the equation (3.15). It is important
to note that this formula strongly relies on a correct weight matrix P . Please refer
to section 3.10 for a description of the problems arising from an incorrect weight
matrix and how to avoid them.

3.4.5 Determinability analysis

Special attention has been paid to the analysis of the parameter determinability.
[Danuser and Mazza 1996] proposed to test the relative contribution δi to the trace
of the cofactor matrix Qζ̂ζ̂

δ∗i =

∣∣∣tr[Qζ̂ζ̂]− tr[Qi
ζ̂ζ̂]
∣∣∣

tr[Qζ̂ζ̂]
, (3.19)

where Qi
ζ̂ζ̂ is the cofactor matrix with parameter i excluded.

This measure stems from the idea to use the trace of the cofactor matrix Qζ̂ζ̂ as
basis for a measure of the overall precision of the least squares estimation problem
[Grün 1986].2 Since the difference of the traces represent a change in precision,
δi describes the influence of each parameter to the overall precision and thus is

2In particular he describes the mean variance 1
r tr[Qζ̂ζ̂] as a suitable precision measure.
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coupled with the influence of each parameter upon the others. However, a few
thoughts are necessary to describe this influence in more detail and to understand
why equation (3.19) has to be adapted for our application.

In order to exclude one parameter, the constraint ζi− ζ̄i = 0 is added in the form
of an additional zero observation as described in section 3.2, equation (3.9). We will
assume a large weight of pn+1 → ∞ for this constraint, which automatically leads
to a zero variance for the excluded parameter i. This variance difference appears
of course in the measure presented in equation (3.19), which is not desirable since
δi would be dependent of the original cofactor (qζ̂ζ̂)ii of parameter i. Thus, the
corrected equation for the contribution is written as

δi =
tri[Qζ̂ζ̂]− tri[Qi

ζ̂ζ̂]

tr[Qζ̂ζ̂]
, (3.20)

where tri[.] stands for the trace omitting element (i, i) and where we also took
advantage of the fact that the trace of the cofactor matrix—which is the sum of the
variances—will always decrease when excluding a parameter. This latter expression
for the contribution δi describes the influence of each parameter upon the precision of
the others. Weakly determinable parameters cause quasi-singular normal equations,
thus a large change in the trace of the cofactor matrix.

Strictly, the contribution value is only meaningful in the adjusted state, that is
after optimization. Still it is useful before and between iteration steps employing
a multistage approach. The application of such a procedure to LSM is explained
in section 3.11. More details on the contribution values are shown in the result
section 3.12.

The influence of this additional uncorrelated observation to the original normal
equation system is derived by applying the framework of the Kalman-Bucy filter
technique for recursive parameter estimation (see for instance [Koch 1988]). Hence,
the partial cofactor matrix Qi

ζ̂ζ̂ can be directly computed from Qζ̂ζ̂:

Qi
ζ̂ζ̂ = Qζ̂ζ̂ −Qζ̂ζ̂A

T
n+1

(
An+1Qζ̂ζ̂A

T
n+1

)−1
An+1Qζ̂ζ̂ , (3.21)

under the assumption that the constraint was introduced with a weight pn+1 →∞.
Applying this framework to (3.20) yields a simple expression for the contribution
value

δi =

∑
j 6=i qij

2

qii
∑
j qjj2

, (3.22)

where qij denotes the elements of the full cofactor matrix Qζ̂ζ̂.
If this contribution δi is high, this parameter strongly influences the estimation of

one or more parameters. One might consider excluding parameter i by applying the
formalism for parameter constraints described in section 3.2. However, three impor-
tant aspects have to be considered when using the contribution δi as determinability
measure.

1. It is only a suitable measure for parameter sets which are more or less uncor-
related by design. In the case of correlated parameters, the exclusion of one
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single parameter obviously influences its correlated counterparts and probably
leads to a high contribution value δi. Depending on the degree of correlation,
excluding such a parameter might actually weaken the determinability or at
least lead to the undesired result of quasi excluding the correlated parameters
as well. More suitable would be to test the contribution when tying correlated
parameters together, which can be achieved by a similar framework. However,
the contribution value does not reveal any information about which parame-
ters are correlated with each other. Thus, the parameter correlations must be
investigated in more detail, which is explained in the following section.

2. The trace of the cofactor matrix is only then a meaningful measure, if the vari-
ances of the parameters are of the same magnitude. We will see in section 3.11
that this is not true for affine transformation parameters, for instance. In such
cases, either parameter subgroups are tested or the correlation matrix Cζ̂ζ̂ must
be used instead of the cofactor matrix.

3. The contribution value δi is a sum of local measures and not a global mea-
sure. That is, no global determinability is tested. This may lead to a high
contribution value for a parameter which would be determinable from a global
point of view but not anywhere locally. An illustration of this fact is found in
figure 3.11.

4. It might not be a good idea to exclude one single parameter after all. A
good example is a set of transformation parameters which define an affine
transformation. The exclusion of one of the scaling parameters for instance
automatically inhibits the estimation of a rotation as well. Thus, it is impor-
tant to define a suitable reduction of the parameter set if the full set is not
determinable.

3.4.6 Parameter correlation analysis

The matrix of parameter correlation is computed by normalizing the elements of the
cofactor matrix Qζ̂ζ̂ by the corresponding diagonal elements:

(cζ̂ζ̂)ij =
qij√
qii qjj

.

The resulting correlation matrix Cζ̂ζ̂ corresponds to the cofactor matrix of a trans-
formed parameter set ζ∗ = [ ζ1

q11
, . . . , ζi

qii
, . . . , ζr

qrr
].

The strategy how to react on high correlations strongly depends on the appli-
cation. Often, it is possible to anticipate potentially correlated parameters, as in
the case of transformation parameters. Please refer to section 3.11 for a possible
strategy.
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3.4.7 Residual analysis: local redundancies

The matrix R = QêêQ
−1 can be used to compute local redundancies [Förstner 1987].

Note that the cofactor matrix Qêê of the residuals is always of full rank, even if the
observations are uncorrelated. Since the number of observation is typically large, the
computation of the full matrix Qêê is not feasible. Nevertheless, only the diagonal
elements of R have to be known in order to compute local redundancies. From
equation (3.16)

QêêQ
−1 = I − A (ATPA)−1 ATQ−1

R = I − AQζ̂ζ̂ A
TQ−1 ,

the following expression for a diagonal element rkk is found for uncorrelated obser-
vations, that is if Q is diagonal:

rkk = 1− AkQζ̂ζ̂ A
T
k qkk ,

where Ak is row k of matrix A. Thus, is is possible to compute the diagonal elements
of R without having to build up matrix A, analogous to building the normal matrix
N . The trace of R, that is the sum of all local redundancies, equals to the overall
redundancy of the least squares problem n−r where n is the number of observations
and r the number of parameters.

tr[QêêQ
−1] = n− r .

Thus, the values rkk describe how the redundancy is distributed over the observa-
tions. Even if it is not meaningful to analyze the redundancy of each observation,
it is often helpful to compute group redundancies of certain observation groups.

3.5 Unconstrained LSM

The LSM includes two observations, the template image f [.] and the search image
g[.], called patch. While the template is independent of the model parameters ζ,
the patch g[.] cannot be separated. Applying strictly the least squares framework
of equation (3.2), this leads to the equation

F (ζ, g+eg) + f + ef = 0 ,

where f correspond to l2 and g to l1. In the case of LSM, where the function F
consists of a geometric and a linear radiometric transformation of g, the aforemen-
tioned simplification of applying the residuals in the transformed observation space
does not considerably influence the result. Hence, equation (3.3) is used instead:

F (ζ, g) + f + e = 0 . (3.23)

The main modeling step lies in the definition of the function F . The simultaneous
estimation of both types of transformations (geometric and radiometric) would lead
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g

Figure 3.1: The ambiguity between radiometric and geometric transformation.
Local operators cannot distinguish between the two types of transformations, hence
a simultaneous estimation could lead to an ill-conditioned system.

to an overdetermined system, since it is not possible to distinguish them locally (cf.
figure 3.1). In order to overcome this problem, the parameters of the radiometric
transformation are estimated based on a global measure within the template region
apart from the actual least squares optimization. The resulting radiometrically
adjusted patch ḡ[.] is then used for the next optimization step. In the case of a
linear transformation this can be written as

TR : g −→ ḡ , where ḡ[.] = α + β g[.] . (3.24)

The radiometric parameters α and β are then treated as known values and hence
equation (3.23) becomes

F̄ (ξ, ḡ) + f + e = 0 , (3.25)

writing ξ for the remaining parameters.
The geometric relation between the original template and the matched area

is defined by an arbitrary transformation. Depending on the type of the chosen
transformation, this allows for displacement, rotation and/or deformation of the
template. In the general case, the image coordinates u are transformed using the
parameter vector ξ to

x = ψ(ξ, u) . (3.26)

Thus, the function F̄ is defined as

F̄ (ξ, ḡ) := − ḡ(ψ(ξ, u))

which leads together with equation (3.25) to the final form of the LSM observation
equations

f [u] + e[u] = ḡ(x) . (3.27)

Equation (3.27) represents a relation between each gray value within the template
and its corresponding image intensity in the search image. Notice that square brack-
ets denote functions defined on a discrete grid. The functions g(.) and ḡ(.) simply
represent the continuous versions of g[.] and ḡ[.], respectively. Hence, the template
gray values f [u] are defined on the grid of the reference image while ḡ(x) = ḡ(ψ(ξ, u))
fall between the grid of the search image. Interpolating the gray values ḡ(ψ(ξ, u))
for a given ξ we substitute

g̃ξ[u] := ḡ(ψ(ξ, u)) .
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f [u]

u2u2

g̃[u]
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ḡ(x)

x2
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Figure 3.2: Coordinate system transformation between template f and radio-
metrically adjusted search image ḡ. The vector u stands for the discrete image
coordinates, x denotes the transformed coordinates as defined in equation (3.26).

Based on a coordinate list u[k], equation (3.27) is reordered into a vector notation

f + e = g̃ , (3.28)

building a series of n equations, where n is the number of pixels included in the tem-
plate and k= 1 . . . n. Together with the least squares objective function eTPe this
defines an unconstrained NLS problem. Following the framework described in sec-
tion 3.3, equations (3.12) to (3.15), this nonlinear problem is iteratively solved using
a Gauss–Newton scheme. A new estimate ξ̂ = ξ◦+∆ξ is computed linearizing the
observation equations around the current estimate ξ◦ or x◦=ψ(ξ◦, u), respectively:

f [u] + e[u] = ḡ(x◦) +∇ξ ḡ(x◦) ∆ξ (3.29)

f + e = g̃◦ + A ·∆ξ . (3.30)

Matrix A is the n× r Jacobian matrix with respect to the parameter vector ξ where
r denotes the number of parameters.

If we neglect the stochastic nature of the Jacobian matrix, this linear problem
corresponds to a Gauss-Markov model with full rank. Note that only under this
assumption, the observations are separated from the parameters. The linear prob-
lem (3.30) is solved analytically setting the first derivative of the least squares goal
function eTPe to zero, which yields the normal equation system

ATPA ·∆ξ = −ATP (g̃◦ − f) (3.31)

N ·∆ξ = −ATP w . (3.32)

Notice that if P is a diagonal or a band-diagonal matrix, the matrix A does not
have to be computed and stored as a whole. The weight matrix P is diagonal if
and only if the observations are independent of each other. This is usually assumed
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for the original observations f and g. However, this assumption is not fulfilled
for the transformed and interpolated patch g̃ or for Gaussian filtered observations.
The statistics of such transformed observations are investigated in more detail in
section 3.10 for the case of two dimensional LSM.

An estimate of the influence of an incorrect weight matrix is given in [Koch
1988]. For the sake of completeness, the result of this analysis is described here;
more details can be found in the original work. Denoting the correct weight matrix
with P , we choose an incorrect weight matrix P + ∆P . We further assume the
elements of ∆P to be small such that products can be neglected where ∆P appears
twice. This leads to the following expression for the actual parameter estimate

ATPA ·∆ξ̃ = −ATPw − AT∆Pw + AT∆PA (ATPA)−1ATPw . (3.33)

Nevertheless, it is common to choose a diagonal weight matrix P , since the
influence of neglecting the statistical dependence becomes only significant for high
precision measurements. Therefore, it is sufficient to compute A row by row in order
to build the normal matrix N . This is an important property, since the size of A
increases with the number of pixels included in the templates.

As long as A has no row deficiency, the r×r normal matrix ATPA is always pos-
itive definite and symmetric and hence the Cholesky decomposition can be applied
to solve equation (3.31). After each iteration step, matrix A must be recomputed
using the updated set of parameters ξt+1 = ξt + ∆ξ. When the parameter change
∆ξ falls below a specified numerical resolution the iteration process is stopped.

3.6 Multi template extension

Using multiple templates instead of one large template allows significant and stable
regions to be selected without including regions unsuitable for matching. This is
an important aspect for the application to megavoltage X-ray imagery and will be
discussed in chapter 5.

There are several ways to extend the standard LSM to multiple templates.
For all of them, the equation (3.27) has to be adapted to include multiple tem-
plates and their corresponding patches, indicated in the following with a superscript
K = 1 . . . N . Denoting the different areas of each template by uK , the observation
equations are thus written as

f [uK ] + e[uK ] = ḡK(xK) , (3.34)

with the radiometric corrections

T KR : g −→ ḡK , where ḡK [.] = αK + βK g[.] (3.35)

and the geometric transformations

xK = ψ(ξK , uK) , (3.36)
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analogous to equations (3.24) and (3.26). Of course it is also possible to define a
different geometric transformation function ψK for each template. However, it will
usually be sufficient to employ the same function with different parameter sets as
written in equation (3.36).

The observations can be reordered into a vector notation in the same way as
for the single template matching (3.28) using the coordinate lists uK [k]. The vector
notations fK+ eK = g̃K for each template are combined into one equation

f 1

f 2

...
fN

+


e1

e2

...
eN

 =


g̃1

g̃2

...
g̃N

 (3.37)

3.6.1 Single global transformation

The most straightforward extension is to keep one single transformation for all
patches such that ξK ≡ ξ, which leads to

xK = ψ(ξ, uK) . (3.38)

Formally, this procedure is equal to defining one large template with several
scattered regions of interest. However, since the radiometric parameters αK and βK

may vary between the templates, it is possible to compensate for global gray value
differences like bias fields.

3.6.2 Global and local transformations

A more general approach is to assign a separate set of parameters ξK to each patch
and add global soft constraints. This will result in a blockwise filled Jacobian matrix
A as depicted in figure 3.3.

A1

AK

Ac

}
}
nK

n1

} nc
AN nN}

r︷ ︸︸ ︷

n


Figure 3.3: Illustration of the Jacobian matrix A when using different parameter
sets for each template and soft constraints. AK denote the submatrices of each
template while additional soft constraints are represented by Ac.
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For the following analysis on the sparsity of the normal matrix ATPA, the weight
matrix P is assumed to be a diagonal matrix, which is true for many practical cases.
In order to further simplify the expressions, the weight matrix is set to the identity
matrix, since the weight factors have no qualitative influence on the result.

Figure 3.4 shows the two parts of the normal matrix: the blockdiagonal part of
the observations and the constraint part (Ac)T (Ac) which is in general a full matrix.


r

r︷ ︸︸ ︷

(AK)T (AK)

+=ATA

(Ac)T (Ac)

Figure 3.4: Illustration of the normal matrix N = ATA when using different param-
eter sets for each template and soft constraints. N can be split into an observation
part (left) and a constraint part (right).

3.7 Affine transformation as geometric transfor-

mation

So far no assumptions have been made on the dimensionality of the problem and on
what type of transformation is used. In the following, the case of a two dimensional
affine transformation is presented. The corresponding parameter vector consists of
six variables ξ = [t1, t2,m1, s1, s2,m2]T and the coordinate transformation is written
as3

x =

[
t1
t2

]
+

[
m1 s1

s2 m2

]
u . (3.39)

The derivative ∇ξ ḡ(x) is then calculated explicitly using the chain rule:

∇ξ ḡ(x) =
(
∂
∂t1
, ∂
∂t2
, ∂
∂m1

, ∂
∂s1
, ∂
∂s2
, ∂
∂m2

)
ḡ(x)

=
[
∂ḡ
∂x1
, ∂ḡ
∂x2
, ∂ḡ
∂x1
u1,

∂ḡ
∂x1
u2,

∂ḡ
∂x2
u1,

∂ḡ
∂x2
u2

]
.

In vector notation, this leads to the n× 6 Jacobian matrix A (cf. equation (3.30)),
each row Ak representing the derivatives at xk = ψ(ξ, u[k]). Denoting the derivatives
by g̃x1() and g̃x2(), we write

Ak = [ḡx1 , ḡx2 , ḡx1u1, ḡx1u2, ḡx2u1, ḡx2u2] ,

3The parameter names ti, mi and si were chosen based on their interpretation as translation,
magnification and shear, respectively.



3.8. Linear constraints 37

leaving out the parameter x[k] of the functions ḡxi(.) for better readability. Using
the resampled patch image g̃[.] instead of ḡ(.), the final form for the implementation
is achieved

Ak = [g̃u1 , g̃u2 , g̃u1u1, g̃u1u2, g̃u2u1, g̃u2u2] ,

again omitting the parameter u[k] of the functions g̃ui [.].
As mentioned in the previous section, the normal matrix N = ATPA can be built

computing A row by row, as long as the weight matrix P is diagonal. If the gray
values of each pixel are considered independent this is fulfilled and N is computed
without the need to multiply large matrices.

3.8 Linear constraints

As we have seen in section 3.2, the least squares formalism allows one to introduce
additional constraints in a simple and intuitive way. In addition to the observation
equations, zero observations are included in the framework, which results in soft or
spring constraints. Equation (3.9) and (3.10) give two examples of such constraint
equations.

In this section, I will apply this technique to LSM. As an examples serves the
reduction of an affine to a similarity transformation. Instead of reparametrization,
we still employ equation (3.39) as transformation equation and add the following
constraints to the parameter vector ξ:

m1 −m2 + em = 0
s1 + s2 + es = 0

(3.40)

The inclusion of the constraints in the normal equation system (3.32) strictly follows
the framework shown in section 3.2. Analogous to the observation equations (3.27),
the constraints are linearized around the current estimates m◦i and s◦i . Thus, the
matrix A is augmented by the constraint vectors

Am = [0, 0, 1, 0, 0,−1]

As = [0, 0, 0, 1, 1, 0]

and the corresponding residuals are given by wm = −m◦1 +m◦2 and ws = −s◦1 − s◦2.

3.9 Nonlinear constraints

Nonlinear constraints must be linearized in order to include them in the least squares
framework. This is not trivial in the general case and often increases the risk of
oscillation in parameter space. Still, this problem can be solved for special cases, in
particular for the constraint

m2
1 + s2

1 − 1 + ec = 0 , (3.41)



38 Chapter 3. Least squares template matching

� 1 � 0.5 0.5 1 1.5 2

� 1

� 0.5

0.5

1

1.5

2

m1

s1

wc = 1
2
(1−m◦12−s◦12)

wc =
√
m◦1

2+s◦1
2 − (m◦1

2+s◦1
2)

m2
1 + s2

1 = 1

(m◦1, s
◦
1)

Figure 3.5: Graphical interpretation of the uncorrected linearized constraint (thin
line) and corrected version (thick line). Oscillations are greatly reduced when using
the corrected version.

which is used together with constraints (3.40) for estimating a congruent transfor-
mation. The straightforward linearization around the current estimates m◦1 and s◦1
yields the linear constraint equation

2 ∆m1m
◦
1 + 2 ∆s1 s

◦
1 − (1−m◦1

2−s◦1
2) + ec = 0 ,

leading to the constraint vector Ac = [0, 0,m◦1, s
◦
1, 0, 0] with a residual of wc =

1
2
(1−m◦12−s◦12).

However, this is not optimal. The thin line in figure 3.5 illustrates the constraint
line defined by this equation. Clearly, the simple linearized constraint is biased and
thus often causes oscillation during optimization. An improved version is achieved
by adding a correction term to the residual, computed by using simple geometric
relations (figure 3.5, thick line). This adjustment results in the improved residual

wc =
√
m◦1

2 + s◦1
2 − (m◦1

2 + s◦1
2) . (3.42)

3.10 Correct design of the weight matrix

In order to investigate the actual variances and covariances of an interpolated or
Gaussian filtered image, we will assume that all pixel values are independent and
normally distributed with an identical variance σ2

0 and varying mean values µk

f, g ∼ N (µ, σ2
0I) . (3.43)

3.10.1 Variance and covariance after Gaussian filtering

The main effect of Gaussian filtering is the reduction of the variance of the input
signal. A detailed analysis of this noise reduction can be found in section A.3, while
the most important findings are summarized in this section.
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Figure 3.6: Figure (a) depicts the variance after Gaussian filtering depending on
the filter width σG and with different filter support. In (b), the covariance values
between two filtered values are shown for a 11×11 filter with σG=2.

For a discrete Gaussian filter of width σG and limited support (2m+1)×(2m+1),
the variance reduction can be written as

σ∗0
2(m,σG) = σ2

0

∑m
i=−m

∑m
j=−m e

−(i2+j2)
σG(∑m

i=−m
∑m
j=−m e

−(i2+j2)
2σG

)2 ,

always under the assumption (3.43). The term in the denominator is a correction
factor in order to avoid amplification of the image signal. Interesting limits of this
expression and formulas for specific support sizes are discussed in section A.3.

A simple approximation can be computed under the assumption that σG > 0.6
and that m is sufficiently large (at least about 2σG):

σ∗0
2(σG,m) ≈ σ2

0

4πσ2
G

for σG ≥ 0.6 . (3.44)

Figure 3.6 illustrates the variance reduction for the common support sizes 3×3,
5×5, and 7×7 pixels. For each size, the maximum reduction corresponds to applying
a box filter, that is σ∗0

2 = σ2
0/(2m+1)2.

Analogous, the covariance of a discrete Gaussian filter is approximated by

σ∗ 2
xy (σG, d) ≈ σ2

0

4π σ2
G

e
−
d21+d22
4σ2
G for σG ≥ 0.6 , (3.45)

where d is the distance between the two pixels. This distribution corresponds to
a Gaussian distribution with a standard deviation of

√
2 σG and is illustrated in

figure 3.6b for a 11×11 filter with σG=2.

3.10.2 Variance and covariance after bilinear interpolation

Bilinear interpolated values are computed by a weighted sum of the four neighboring
pixels. See equation (A.9) for the complete formula. Exploiting assumption (3.43),
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Figure 3.7: Variance of an interpolated pixel depending on the fractional part of
its coordinate (a) and the distribution of variances within a resampled image under
a rotation of 5◦ (b).

the following simple expression for the actual standard deviation σ∗0 of an interpo-
lated value f(x=bxc+d) is found:

σ∗0
2(d) = σ2

0

(
1− 2 d1 + 2 d1

2
) (

1− 2 d2 + 2 d2
2
)
. (3.46)

Figure 3.7a illustrates this influence of bilinear interpolation to the pixel variance.
At integer coordinates (the four corners in figure 3.7a), the variance of course equals
the original variance σ2

0, which was set to 1 for this illustration. As expected, the
lowest value is attained in the center and equals σ2

0/4. More interesting is the
distribution of variances within an image after interpolation. Figure 3.7b depicts
the situation after resampling a rotated image.

In the same manner, the covariance between two interpolated pixels is computed.
Please refer to section A.4 for a detailed analysis. An interesting special case is the
covariance after a pure translation, which is displayed in figure 3.8a. In this case,
both coordinates have equal fractional parts d but they are one pixel apart. The
resulting covariance is written as

σ∗ 2
xy,2(d) = σ2

0 (−2d1
2 + 2d1 − 1) (d2 − 1) d2 . (3.47)

Similar expressions can be found for other special cases. An example of the covari-
ances after a rotation of 45◦ is given in figure 3.8b.

3.10.3 Combined weight matrix

The combined observations in the LSM observation equation 3.27 are given by g̃−f .
In real applications, the original observations f and g are usually Gaussian filtered
to reduce noise and to lower the effect of the uneven smoothing by the subsequent
bilinear interpolation of g (see also figure 3.7b).

First of all, this leads to dependencies between adjacent observations. Thus,
it would be necessary to introduce observation covariances, which leads to a non-
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Figure 3.8: Covariance values between two interpolated pixels depending on the
fractional part of the translation. (a) depicts the situation without rotation, whereas
in (b) the transformation included a rotation of 45◦.

diagonal weight matrix. Since it is far easier to work with diagonal weight matri-
ces, covariances are most often neglected. I will neglect them also, although a few
thoughts are necessary before doing so.

We have seen from equation (3.45) that the covariance between two pixels in a
Gaussian filtered image signal is approximated by

σ∗ 2
xy (σG, d) ≈ σ∗0

2 e
−
d21+d22
4σ2
G .

Assuming a filter width of σG = 1, the covariance of directly adjacent pixels amounts
to 0.78 σ∗0

2. When neglecting such a high covariance, we have to expect large error in
the subsequent statistics, even if the actual parameter estimate will not be influenced
significantly. The reason is that correlated observations are added to the system as
independent observations, which will result in a too optimistic estimate of parameter
variances, for instance.

An easy but very effective solution is to leave a certain distance between em-
ployed observations. Already a minimum distance of 2 (every other pixel) leads to
a maximum covariance of about 0.37σ∗0

2. In many applications it is even possible
to only use every third pixel in each dimension which lowers the covariance to little
over 0.1σ∗0

2. It is important to note that no loss of accuracy is to be expected, since
almost no information is taken away, only correlated observations.

Having justified neglecting the covariances under certain conditions, a closer
look to the observation variances is taken. Assuming the same variance σ2

0 for both
original observations, the variance of the smoothed observations are all equal and
approximated by equation (3.44). However, the variance of the interpolated values
g̃ is further reduced by the bilinear interpolation. Please refer to section A.4.1 for
details on this reduction.

The result is a different variance for each pixel in g̃. Since this is a little awkward
to deal with, the effect of bilinear interpolation is often neglected. Equation (3.33)
provides an expression to estimate the error which has to be expected. In this for-
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mula, P stands for the correct but unknown weight matrix and ∆P for the pertur-
bation. The magnitude of this perturbation is given by the largest possible error in
the weight matrix, which is made for interpolated pixels lying exactly in the middle
of the four neighboring original pixels. Equation (A.12) can be used to approximate
this maximum variance reduction.

If we for instance assume a filter width of σG=1, the relative error (σ∗0−σ̄0)/σ̄0 is
approximately 0.2. Thus, a feasible empirical test is to construct a diagonal matrix
∆P with diagonal elements randomly chosen from the interval [−0.1, 0.1] and to
define the matrix P as I − ∆P , without loss of generality. It can be shown that
the resulting error is very small for typical computer vision applications and may
be neglected unless very high accuracy is required.

3.11 Self-diagnosis within LSM

The diagnostic measures presented in section 3.4 are integrated into the least squares
template matching in order to stabilize the optimization and to reduce the risk of
getting caught in a local minimum different from the global minimum. Figure 3.10
gives an overview of the complete matching algorithm including the self-diagnosis.

Whenever feasible, the initial parameter set is reduced such that the convergence
radius of the optimization is as large as possible. Of course, this restricted parameter
set must sufficiently approximate the final parameter set. A possible restriction
might be for instance the use of a congruent instead of a full affine transformation.
A complete reduction scheme employing the information of parameter correlation is
given in figure 3.9.

The next step is to check the determinability of the chosen parameter set. Since
the statistics behind the diagnostic measures is valid only in the adjusted state,
they can not be applied directly to the initial system. However, an upper bound for
the determinability is computed matching the templates onto themselves before the
actual optimization and analyzing the parameter correlation and the contribution
values δi of this perfect match. It is advisable not to use exactly the same tem-
plate data to match onto, but a smoothed or noisy version, in order to avoid a too
optimistic upper bound.

Based on this upper bound, a coarse result is computed using the restricted
parameter set. This first estimate is then tested for plausibility by computing the
normalized cross correlation

ρ(f, g) =

∑
(f − µf )(g − µg)
(
∑
f 2 ·∑ g2)

1
2

.

As we have discussed in section 3.4.2, this correlation measure is better suited than
the global model test, because of its normalization. Depending on the outcome of
the plausibility check, different actions are taken:

• If the estimate is considered plausible, the full affine parameter set is tested for
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Figure 3.9: Reduction scheme for the estimation of transformation parameters.
Depending on the parameter correlations denoted by ‘∼’ the transformation model
is restricted.

determinability. The optimization is continued with the full parameter set if
none of the parameters show intolerably large correlations or contributions δi.

• If the estimate was rejected, the estimation may be restarted with an even
more reduced parameter set if feasible or starting from a different initial guess.
Alternatively, if multiple templates are used and the correlation value is com-
puted for each template, specific templates can be excluded when their corre-
lation value indicates a local mismatch.

3.12 Results of statistical tests

The meaning of the contribution values δi in equation (3.22) is explained in fig-
ure 3.11. The 63×63 test images contain a circle and a corner with a signal to noise
ratio of 10. Both are Gaussian filtered with σ=1.

The circle feature allows for the estimation of the translation and the scaling
parameters but not the shear parameters. Building the normal equation system
by matching the template onto itself and using an affine transformation as defined
by equation (3.39), the contribution values shown in figure 3.11b result. They are
once computed based on the correlation matrix Cξ̂ξ̂ and also based on the shape part

Q
(3−6)
ξ̂ξ̂

of the cofactor matrix. As expected, the contribution of the shear parameters
s1,2 is significantly higher than of the scaling parameters m1,2, which reveals the
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Figure 3.10: Flowchart of the diagnostic measures.

weak determinability of the two shear parameters. Both measures—based on the
correlation and on the cofactor matrix—perform well.

The second example reveals one of the problems when this local measure is used
as determinability test. Such a corner feature would allow for the estimation of
translation and shear. However, the shear parameters si are locally correlated with
the translation parameters although they are globally determinable, which leads to
high contribution values (figure 3.11d).

These cases must identified by a parameter correlation analysis. In the example
of this corner feature, the correlation matrix correctly points out the dependence
between translation and shear by a correlation value over 0.7. Another example is
given in figure 3.12 where the same corner feature was rotated by 45◦. In other
words, scaling and shear parameters are strongly correlated with themselves. The
correlation matrix Cξ̂ξ̂ amounts to

Cξ̂ξ̂ =



1.000 −0.005 −0.271 0.019 0.022 0.276
−0.005 1.000 0.016 0.319 −0.261 0.012
−0.271 0.016 1.000 −0.038 −0.061 0.772

0.019 0.319 −0.038 1.000 0.756 −0.025
0.022 −0.261 −0.061 0.756 1.000 −0.039
0.276 0.012 0.772 −0.025 −0.039 1.000


(3.48)

and reveals the high correlations as expected (printed in bold).
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Figure 3.11: Mesh views of the test images for the determinability analysis and
the corresponding contribution values, based on a match onto themselves. In (a
and b), the contribution values correctly identify the shear parameters as being
weakly determinable. However, the second example points out one of the problems
of this local measure. The shear parameters si are strongly correlated with the
translation parameters although they are globally determinable (c and d).
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Figure 3.12: Correlation analysis of a corner feature. The correlation matrix
correctly reveals the strong dependency of the scaling and the shear parameters
with themselves. See equation 3.48 for the complete correlation matrix.





4
Field edge alignment and checking

The shape of the field edge for each beam direction is defined by the physician
during the planning step. For the treatment, this field edge shape is approximated
by either lead blocks or by a multi-leaf collimator device (see also section 2.2). One
goal of this project is to automatically check the therapy setup for errors in the field
edge shape, which currently must be done visually by the operator.

Moreover, the exact position of the EPID is not known in general, which leads to
different coordinate systems between images. Thus, each field edge must be aligned
to a reference field edge in a first step of the matching procedure in order to establish
a common coordinate system. This reference shape can either be extracted from the
reference image or better directly taken from the planning data. Within this work,
the former approach was chosen merely because of missing software integration.
Thus, the alignment step must be preceded by a field edge extraction.

The following sections describe first the method for extracting the region of the
field edge and for computing an approximated field edge contour. Secondly, the
approach taken in this work to align the field edges is presented, which inherently
contains a reliable field edge check. For a detailed overview of previous work please
refer to section 2.6.

4.1 Field edge extraction

The edge of the physical field is usually defined as the 50 % isodose curve at the
depth of maximum dose or at the isocenter [ICRU 1976]. However, this definition is
not useful for the analysis of portal images, since it is not possible to obtain this kind
of information. Instead, the criterion of maximum gradient is chosen as in existing
approaches. Due to this necessary assumption and due to the wide variety of field
shapes in portal images, it is difficult to design a reliable and accurate extraction
method for the field edge.

However, an automatic field edge extraction with subsequent accurate alignment
is still an important prerequisite for patient displacement measurements. Manual
extraction of the field edge contour is not only time-consuming, but simply not
suitable, since the human observer depends on the chosen gray scale characteristics.
That is, the position of field edge can not be visually extracted or checked in a
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a. γ = 0.8 b. γ = 2.2 c. γ = 3.0

Figure 4.1: A section of the same portal image with different gamma values for the
gray scale mapping. The position of the field edge contour is identical in all images.
A human observer is mislead by the different gray scale characteristics.

reliable way, as illustrated in figure 4.1. Although the field edge contour is at the
same position in all three images, it appears to be too far inside in the dark image
and too far outside in the lighter image.

Automatic extraction based on the criterion of maximum gradient performs bet-
ter although not perfect. The location of the maximum gradient changes as well with
different gray scale characteristics. This shift is smaller than the expected error for
a human observer but still about one to two pixels for the above range of different
gamma values (figure 4.2). Thus, the exact location of the field edge contour can
not be reliably extracted from portal images. The remaining uncertainty will be the
limiting factor for the precision of feature-based alignment methods which rely on
the binary contour feature.

Figure 4.2: Location of maximum gradient depending on the gamma value. The
shift from γ=0.8 to γ=3.0 is about one pixel.

At the same time, this is a substantial argument to employ an area-based method
like LSM for the alignment of field edges. Within an area-based approach, the field
edge extraction is only necessary to build up an area-based model. The precise
position of the field edge contour is not needed, as the subsequent measuring step
takes into account the whole region flanking the field edge. Furthermore, even this
model building step will become obsolete as soon as the field edge model can be
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computed directly from the planning data (see also section 2.1). As this is merely
a problem of system and software integration, this should be feasible in the near
future.

Two approaches were compared: a simple threshold method based on the work
of [Bijhold et al. 1991a] and a novel approach based on image gradients. The first
method aims at selecting an optimum threshold by analyzing the smoothed his-
togram. Figure 4.3 shows three examples, one typical and two more complex cases.
In a typical portal image, the histogram is nearly bimodal. One peak represents
the blocked region, the other the significantly darker treatment region (figure 4.3a
and b). By selecting the rightmost local minimum as threshold value—that is, the
local minimum corresponding to the highest gray value—the treatment region can
be extracted. However, in more complex images, a third or forth mode appears in
the histogram. If these special cases are not taken into account, the method most
likely fails as shown in figure 4.3c through f. Moreover, in order to fulfill the cri-
terion of maximum gradient, an additional non-trivial processing step is required
which gradually moves each pixel of the thresholded field edge towards the nearest
location of the maximum gradient. Please refer to [Bijhold et al. 1991a] for an
example of such an algorithm.

In order to overcome these drawbacks, a novel approach based solely on the image
gradients was developed. Besides not being directly dependent on the histogram, it
has the further advantage of inherently yielding a field edge region in addition to
the contour. This is a requirement for the area-based alignment method using LSM,
in contrast to feature-based alignment methods.

Thus, the algorithm was designed to yield a reliable mask of this field edge
region, which is used to build an area-based model of the field edge. The location
of the field edge contour is computed in a second phase but only for the purpose of
visual checking since it is not needed within the alignment and automatic checking
procedure.

The following sections describe the details of my approach which is summarized
in figure 4.4. Example images of intermediate results are depicted in figure 4.5. It is
important to note that all parameters involved in the presented method were kept
at the same value for the complete dataset. Hence, no manual parameter tuning
is necessary and the success rate lies at 99 % as it only failed in 24 cases out of all
2200 portal images.

4.1.1 Preliminary steps

It is possible that the portal image does not contain the complete field edge. The
right column in figure 4.5 depicts such a case. Without special treatment, the
field edge would fall apart which makes a robust extraction difficult. Therefore, an
additional margin is defined to simulate a blocked field around the image. The exact
value of this margin is not crucial, as long as it lies near the value of other pixels
in a blocked region. The following heuristic but simple approach finds a suitable
background value in almost all portal images in the dataset:
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Figure 4.3: The histogram method for field edge extraction. The rightmost local
minimum is selected as threshold value. This method works well on typical portal
images as shown in (a, b). However, it is bound to fail in more difficult cases where
for instance an additional wedge is included (c, d) or where the blocked field is not
homogeneous (e, f).
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Figure 4.4: Flowchart of the field edge extraction algorithm.
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1. collect all border pixels (1020 pixels in the case of a 256×256 image)

2. sort them and pick the 75 % percentile.

4.1.2 Edge detection

The following steps are based on the Canny edge detection algorithm [Canny 1983].
After Gaussian smoothing using a fixed sigma of 2.0 pixel, the gradient magnitude
is computed without applying the non-maximum-suppression method described by
Canny. Using two relative threshold values based on the minimum and maximum
value of the smoothed image, hysteresis thresholding is performed as proposed by
[Canny 1983] (figure 4.5b and c). This double threshold operation leads to a binary
image where regions including high gradients are marked.

4.1.3 Region selection

If multiple regions are found, one plausible region is selected after labeling the
connected components (refer for instance to [Rosenfeld and Pfaltz 1966]). The
employed labeling algorithm returns the size and the number of holes for each object.
Thus, the final field edge region is picked under the assumption that large regions
with few holes are more plausible than others. This heuristic rule was true in more
than 99 % of all portal images in the clinical test data (over 2000 images). The final
region is then slightly smoothed by dilating the binary image using a 3×3 square
kernel.

4.1.4 Compute field edge contour

As last step, an approximate field edge contour is computed. The goal is to apply
a topological invariant thinning operation such that a connected field edge region
yields a connected contour. However, the field edge must also lie at the position
of the maximum gradient. These two requirements are fulfilled by combining the
thinning operation with the non-maximum-suppression: pixels with local maximum
gradient are marked as non-deletable. Thus, the thinning algorithm keeps Canny
edge pixels and connects them to preserve topology.

4.2 Field edge template generation

The subsequent alignment procedure relies on the definition of template regions of
significant structures. After the extraction of the field edge region, it is thus a simple
task to define such templates. First, the edge region is enlarged by applying another
dilation step with a larger kernel of 5×5 pixels. The size of this kernel is not crucial
and is chosen rather small for performance reasons.
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Figure 4.5: Intermediate steps of the field edge extraction algorithm.
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Secondly, the region is subdivided as long as it contains holes or the coefficient
‘area over bounding box area’ is smaller than one third. This is a heuristic strat-
egy to generate more or less rectangular shaped templates. The reason to aim for
rectangular templates lies in implementation details and is not a prerequisite for the
algorithm. In the current implementation, some computation parts as for instance
resampling are carried out within the full bounding box area and not only on the
template pixels. This lead to simplifications within the program code which justi-
fied the additional computational overhead. Similarly, the elimination of holes is
not necessary because of the algorithm but simply because the prototype version of
the user interface only handles templates defined by a single outline.

Further processing of these binary regions is required for the interaction with
the user interface. The operator outlines regions by defining polygons. Thus, the
representation of the field edge templates must be changed from a binary map to a
polygonal outline. This is achieved using a simple contour following algorithm with
subsequent point reduction as proposed by [Douglas and Peucker 1973]. Examples
of such generated template configurations are depicted in figure 4.6 for various types
of portal images.

Figure 4.6: Examples of the automatic definition of the field edge templates. The
black lines outline the template regions, the dotted line represents the estimated
field edge position.
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Figure 4.7: Example of a typical error surface (a) and its contour plot for the field
edge match in dependence of the translation parameters. Overlayed on the contour
plot are the optimization paths for three different starting points (b).

4.3 Measuring field edge displacement

Although the position of the EPID is not known exactly, the device is assumed to
be perpendicular to the beam axis. Simple geometric considerations lead to the con-
clusion that it is sufficient to estimate a two dimensional similarity transformation
between the projected field edges—that is, the four parameters defining translation,
rotation and scale—in order to establish a common coordinate system.

This field edge alignment is achieved by applying the LSM framework as de-
scribed in chapter 3. The template regions for the area-based match are given by
the result of the extraction of the field edge region. Although manual optimization
of these automatically generated templates is possible, it is only necessary in rare
special cases.

The field edge match itself is very robust, due to the restriction to four param-
eters in the transformation model and the fact that the field edge is a distinct and
unambiguous feature. Together with the least squares goal function, this leads to a
well behaved error surface during optimization. Thus, the risk that the optimization
stops in a local minimum away from the global minimum is very small. Figure 4.7
depicts an example of a two dimensional error surface and its contour plot in de-
pendence of the translation parameters. The optimization paths for three different
starting points are overlayed on the contour plot.

This robustness of the field edge match is an important step in checking the
patient position. Firstly, the resulting transformation can be safely used as initial
guess for the anatomy match. Secondly, a reliable detection of field edge shape
deviation is rendered possible. This is achieved by applying the statistical tests
outlined in section 3.11 to the field edge match. Especially the cross correlation
value gives a reliable feed back as will be demonstrated in section 4.6 below.
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4.4 Position of the projected isocenter

Since the position of the EPID is unknown, so are the coordinates of the projected
isocenter in standard portal images. Without further knowledge about the actual
field edge shape, it is not possible to directly estimate the isocenter coordinates.
However, the EPID was positioned approximately in central position in all portal
images within the dataset. That is, the projection of the isocenter—which is at the
same time the intersection of the beam axis with the EPID—lies near the center of
the portal image.

When correcting the patient position, the axis of rotation is the beam axis.
Hence, if this position is not known exactly, an additional translation error is in-
troduced. Simple geometric considerations lead to the following formula for this
translation error:

derr(‖∆x‖, α) = ‖∆x‖
√

2 (1− cosα) ,

where ‖∆x‖ is the distance between the assumed and the correct position of the
beam axis. Nevertheless, small errors in the position of the beam axis will only
lead to a minor translation error after the patient position correction. A qualitative
visualization of this error is shown in figure 4.8a, whereas figure 4.8b gives a closer
view on the relevant range of up to 10 degrees rotation. Even with such a large
rotation correction, the error stays below 2 pixel as long as ‖∆x‖ is less then 11 pixel.
In typical portal images this amounts to an additional error of less than 2 mm if the
image center is within 10 mm of the beam axis.

Similarly to the field edge extraction, this problem will become obsolete once it
is possible to gain knowledge about the field edge from the planning data or even
more accurate from the collimator device. This will be feasible in the near future
with increased integration of the multi-leaf collimator technique. Due to this fact
and to the above finding that the typical error is far below 2 mm, no attempt was
made to estimate the position of the isocenter within this work.
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Figure 4.8: Additional translation error introduced by incorrect position of the
isocenter. The error depends on the estimated rotation (x axis) and on the distance
between assumed and correct position of the isocenter (y axis). The complete range
up to 180 degrees is depicted in (a), a detailed view of the relevant range in (b).



4.5. Results of field edge alignment 57

t = 0 t = 1 t = 2

t = 3 t = 4 t = 13

patches template

Figure 4.9: Iteration series of an artificially rotated field edge of an anterior-
posterior pelvis image. The search image (t=0) is rotated by -15◦. The black lines
enclose the automatically extracted template placed on the search image. After
13 iterations, a perfect match to the template is found.

4.5 Results of field edge alignment

As expected, field edge alignment is very robust and LSM even finds larger displace-
ments and rotations as occur in radiotherapy treatment. The number of necessary
iterations typically lies between 5 and 15. The undersampling factor was set to 3,
that is every third pixel was picked as an observation.

The iterative nature of the LSM algorithm is illustrated in figure 4.9. Starting
from an initial guess—in this case an identity transformation— the optimum position
and orientation is iteratively estimated. In this example, the search image was
artificially rotated by -15◦ (clockwise), in order to demonstrate the robustness of
the field edge alignment and to better visualize the iteration. After 13 iterations,
the template matches perfectly the corresponding area in the search image.

Figure 4.10 visualizes the actual gray level information used by the LSM al-
gorithm. The single template from the last example was split into eight small
templates such that the reference image is visible between the resampled template
regions. Each iteration step of LSM includes the resampling of the search image
within the template regions.

4.5.1 Self consistency test

In order to estimate the overall accuracy of the field edge match, a self consistency
test was carried out. Its setup is described in figure 4.11. After estimating the field
edge displacement between two portal images (figure 4.11a), the search image was
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t = 0 t = 4 t = 6 t = 13

Figure 4.10: Resampled template regions overlayed on the reference image. The
gray level difference and the gradient within each template region serve as informa-
tion to the LSM algorithm.

artificially rotated by -15◦ and the displacement was estimated again. Table 4.1
shows a detailed comparison of the results. The rotation measurements of 0.047◦

for the original images and -14.954◦ after the artificial rotation demonstrate perfect
performance with respect to a ground truth.

4.5.2 Parameter precision

The parameter precision is given by the diagonal elements of the covariance matrix
Σζ̂ζ̂ as defined in equation (3.18). In contrast to the overall accuracy, the parameter
precision does not take into account external error sources.

Furthermore, they are only meaningful if the applied model was correct. In
particular, the weight matrix must have been designed according to the correlation
of the observations (see also section 3.10), that is the gray values. In this work, the
observations were always assumed to be independent, which is of course not true for
adjacent pixels. Therefore, only every n-th pixel is taken as an observation where n
is typically 3. Even with this subsampling, there are often remaining correlations,
which leads to a too optimistic estimate for the parameter precision.

Thus, the precision represents an upper bound of the overall accuracy. Table 4.2
summarizes the range of typical parameter precision for the field edge and also for
the anatomy match.

translation rotation
[pixel] [deg]

field edge match 0.005 – 0.02 0.005 – 0.02

anatomy match 0.09 – 0.12 0.1 – 0.3

Table 4.2: Typical range of parameter precision for the field edge and the anatomy
match. The parameter precision does not include external errors and thus represents
an upper bound of the overall accuracy.
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Figure 4.11: Setup of the self consistency test. In (a), the original relation of
two portal images (reference and search image) is shown. Diagram (b) depicts the
situation after rotating the search image by -15◦. The measurements on this rotated
image are then compared with the expected values (see table below).

dx [mm] dy [mm] rot [deg]
original (estimated) -0.072 ±0.0073 -6.883 ±0.0059 0.041 ±0.0057
rotated (estimated) -1.850 ±0.0080 -6.633 ±0.0064 -14.959 ±0.0062
rotated (ground truth) -1.851 -6.630 -14.959

Table 4.1: Results of the self consistency test, computed by estimating a similarity
transformation. The estimated parameters (second row) almost perfectly agree with
the expected values (third row). The cross correlation value for both measurements
was 0.9996.
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4.6 Results of field edge check

The normalized cross correlation value gives a reliable feedback on the result. A few
examples are given in figure 4.12, showing that a match of field edges with identical
shape results in a cross correlation value well above 0.99, whereas small differences
in the field edge shape already lower this value significantly.

reference ρ = 0.907 ρ = 0.976 ρ = 0.963 ρ = 0.991

reference ρ = 1.000 reference ρ = 0.996

Figure 4.12: Field edge alignment and its cross correlation values ρ for three typical
cases. The top row shows image series with slight variation of the field edge shape.
A match of field edges with identical shape results in a cross correlation value well
above 0.99 (bottom row).



5
Displacement measurements in
portal images

In the last chapter, the comparably easy task of matching the radiation field edge
was presented. The results showed the general suitability of the matching method
and its diagnostic measures. Yet to discuss is the application to the low-contrast
anatomy part of portal images.

As mentioned earlier, area-based methods have the potential of yielding very
precise results. This can be exploited when measuring the field edge displacement.
However, this precision is not the main reason to apply the method to the anatomy
regions, since the overall accuracy is governed by external errors. As we will see,
neglecting the projective and transparent nature of the imaging process already leads
to variations in the magnitude of one to three millimeter in a typical portal image.

The main reason is rather to avoid the difficult step of a robust feature extraction
in such low-contrast imagery. Thus, the emphasis in this chapter will be less on the
precision of the method itself, but on the reliability and on an acceptable overall
accuracy. As specified in section 2.5, high precision radiotherapy requires an overall
accuracy of 2 to 5 mm depending on the type of treatment. In the special case of
stereotactic radiosurgery, the desired accuracy is in the submillimeter range.

The first section deals with the kind of reference image to be employed. The
choice of an area-based matching method already poses constraints on this selec-
tion. Then, I discuss the problem of selecting suitable areas, templates, for robust
matching in the reference image. This is the stage where a minor amount of expert
knowledge is required. Section 5.3 explains the details on how the LSM algorithm
was applied to this matching problem. The further sections present results from
artificial test data, from phantom measurements and from real patient image series.
Also included at the end of this chapter is a feasibility test of a so-called multi-modal
match between a computed reference image and the corresponding portal images.

5.1 Choosing a reference image

In order to define an accurate reference image for checking patient position, there
are mainly three possible choices.
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1. The first or best portal image of a series validated by a physician.

Employing a portal image as reference image assures very similar gray value
characteristics, hence yields the best match using an area-based matching
algorithm. However, this portal image must be validated by other means, for
instance manually matched to the simulator image, in order to establish a
reference to the planning step.

2. The diagnostic X-ray image from the simulator.

When measuring patient motion visually using portal images, often the diag-
nostic X-ray image (see also figure 2.1b) is used as reference. Bony structures
are easier to identify in this imagery, since the contrast is much higher. Never-
theless, it is not suitable for an area-based algorithm, since the different gray
value characteristics strongly influence the quality of the measurements.

3. A digitally reconstructed radiograph.

As described in section 2.4, the most accurate reference is a megavoltage DRR
(see also figure 2.1a), which is directly computed from the planning CT. Thus,
additional sources of positioning errors are avoided, for instance the step of
therapy simulation. However, the remaining gray value differences pose ad-
ditional problems to an area-based algorithm like LSM compared to simply
match two portal images.

5.2 Selecting suitable anatomy templates

Suitable templates must consist of structures that are known to be stable over a
series of images. However, due to artifacts and the presence of distinct but unstable
features—for instance originating from air in the rectum—a fully automated tem-
plate selection is beyond the possibilities of computer vision. Thus, the strategy is
to implement an operator guided template selection.

Structures must meet two requirements to be considered stable, a global and
a local requirement. Global stability is given when any probable movement of the
selected structures can be described by the three dimensional rigid body transforma-
tion. This is easily achieved in an anterior-posterior (AP) pelvis image, for instance,
where all structures are selected from the pelvis bone. However, it is more difficult in
other situations, for example in a lateral pelvis image, where the distinct structure
of the hip bone can not be used.

The local stability criterion is somewhat more vague but equally important.
Since we are dealing with transparent objects, edges and in particular lines can
significantly change their relative position under a slightly different viewing angle,
or even disappear completely. A good example are the thin bone structures in the
pelvis region, which project onto a bright line when the beam axis lies exactly in the
bone plane, but are almost featureless for any other angle. Thus, the operator must
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choose structures that are known to change little in the expected patient movement
range and over a series of images.

Another important aspect is the unknown 3D position of the selected structures.
Since the patient motion is estimated based on the projected portal image, the
position along the beam axis of each structure is unknown and may introduce an
additional systematic error, which is explained in more detail in the result section 5.6.
This error can be reduced if mostly structures from one plane parallel to the image
plane are selected.

All requirements call for a certain amount of expert knowledge. Nevertheless,
this knowledge is already present, since a physician needs the same type of structures
when visually validating a patient’s position based on X-ray images. In the current
implementation, the physician has to define regions containing such stable significant
structures. These regions are considered templates for the subsequent matching
process. Figure 5.1 shows typical template configurations.

a. b. c.

Figure 5.1: Images (a) and (b) show two typical template selections for AP pelvis
fields. An example for a thorax image is given in (c).

In feature-based algorithms developed for this type of imagery, usually landmarks
or contours must be manually defined. This is not only time-consuming, but also
introduces a great variability between different operators. Since LSM is area-based,
these problems do not arise and the physician only has to outline several regions
where significant structures are found. This is accomplished with a few mouse clicks,
drawing several polygons onto the reference image. In order to further reduce the
workload, standard configurations can be stored in a template database.

Defining only small regions as templates has various advantages. Besides the
lower computational costs, problematic zones can be avoided. Including insignif-
icant structures or artifacts would impede a robust match. If one of the selected
regions causes gross errors during the matching procedures, this can be detected by a
posteriori self-diagnosis. Such templates are labeled unmatchable and are eliminated
from the estimation.
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5.3 Measuring anatomy displacement

In order to estimate the anatomy displacement, a few assumptions are made about
the patient movement. First of all, the movement is assumed to be a three dimen-
sional rigid body transformation. This is a necessary assumption, since a non-rigid
movement would make meaningful measurement virtually impossible. Nevertheless,
it is not a strong assumption if the templates were correctly selected as discussed in
the previous section.

Moreover, the patient’s displacement is assumed to be small: one to two centime-
ters translation and a few degrees rotation. This is a valid assumption in hospital
practice, since the patient has to be aligned by other means before each treatment
session, before a portal image is acquired. Existing methods for such prealignment
were discussed in section 2.1. Since the portal image is only available after the start
of the treatment, its main use is for checking and adjusting the patient’s position,
as opposed to ensuring a correct initial position.

Thus, the displacement of the projected anatomy is approximated by a two
dimensional affine transformation. This accounts for parts of the projective distor-
tion without introducing too many degrees of freedom. This approach leads to an
implementation of the multi template LSM using a single affine transformation as
described in section 3.6.1. One global transformation is hence used for all templates.

The radiometric scaling parameter β is also kept the same for all templates.
Only the constant parts of the radiometric transformation αK may differ between
templates. Therefore, the total number of parameters using an affine transformation
and N templates amounts to r = 6+N+1. This strategy allows for inherent bias
correction without adding too many degrees of freedom.

As initial guess for the anatomy alignment serves the similarity transformation
which resulted from the field edge match (see also figure 2.7). The diagnostic mea-
sures are applied as described in section 3.11.

The typical run time for the complete matching procedure including Gauss filter-
ing of the search image, matching the field edge and matching the anatomy templates
is about 3 seconds on a Sun Ultra 1 (167 MHz UltraSPARC CPU).

5.4 Results of headrest test series

A preliminary test to show the suitability of the method for stereotactic radiosurgery
was carried out measuring images of a displaced headrest. The repositioning accu-
racy of this fixation device is specified as 0.2 mm. In 11 different positions, 14 images
were acquired using the BeamView System. Figure 5.2 illustrates the image series
of this fixation device. The measured displacements were compared with the ground
truth and resulted in an overall point error of 0.2 mm (figure 5.3).

In this example, I will take a closer look at the validity of the estimated parameter
precision as presented in section 3.4.4. Please note that pixels are assumed to be
independent, which is mostly a wrong assumption and leads to an incorrect weight
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Figure 5.2: Headrest displacement test series. The first image was used as reference
image using the regions within the white polygons as templates.
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Figure 5.3: Error analysis of the headrest test series. The ground truth coordinates
lie on the grid and the error vectors are enlarged by a factor 10. The overall point
error of the measurement amounts to 0.2 mm (see also table 5.1).

point interval estimate remarks
estimate (α = 0.05)

x mean [mm] 0.039 −0.051 . . . 0.130 statistically equal to 0
std dev [mm] 0.158 0.114 . . . 0.254
std dev [mm] 0.157 0.115 . . . 0.247 assumption: mean = 0

y mean [mm] 0.022 −0.052 . . . 0.095 statistically equal to 0
std dev [mm] 0.128 0.093 . . . 0.206
std dev [mm] 0.125 0.092 . . . 0.198 assumption: mean = 0

√
x2+y2 std dev [mm] 0.20 0.16 . . . 0.27 assumption: mean = 0

rotation std dev [deg] 0.25 0.18 . . . 0.39 assumption: mean = 0

Table 5.1: Statistical analysis of the headrest test series. The standard deviation
in x and y was computed both using the computed mean and under the assumption
of zero mean. The significance level α was set to 0.05.
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matrix. Refer to section 3.10 for more details. As expected, the estimated parameter
precision is far to optimistic when introducing every pixel within the templates
as an independent observation, yielding a standard deviation between 0.005 and
0.01 mm. When picking every 25th pixel—evenly distributed in the templates—
this value goes up to around 0.04 mm. This seems to be a reasonable value for the
standard deviation. The remaining error is perfectly explained with the repositioning
uncertainty of the fixation device.

5.5 Results of two dimensional patient displace-

ment measurements

Due to much weaker contrast, the anatomy alignment is not as robust as the field
edge match. Moreover, an affine transformation model is usually used for the anat-
omy match, which introduces two additional degrees of freedom. The iterative
optimization scheme is illustrated in figure 5.4 and 5.5 with an AP pelvis image.
During the optimization, the resampled patch gradually rotates and translates to fit
the gray values in the template.

A first test series consisted of roughly 100 clinical portal images in 17 series,
mostly from the pelvis region. The templates were defined by myself with the
advice of a physician. In all measurements, an affine transformation was used for
matching and the initial position was set to the field edge position.

The algorithm performed best on AP pelvis images, where it found a correct
match in all but one image. A match result was defined correct when there were no
visually noticeable errors. The overall success rate of LSM was over 90 %. That is, in
less then 10 % of the displacement measurements, the result was either automatically
or manually rejected, by diagnostic measures or after visual validation.

The overall accuracy is difficult to estimate, since no ground truth is available for
real portal images. Various external errors add to the parameter precision presented
in table 4.2, in particular the projective nature of the imagery. However, visual
validation and comparison with a few manual measurements indicate an accuracy
of about 1 or 2 pixel for translation and below 1◦ for rotation measurements. A
more detailed comparison of manual and automatic measurements was carried out
in a second test series, described in section 5.8. In the following, various tests are
presented in order to assess the reliability of the measurements.

5.5.1 Sensitivity to template selection

In order to estimate the accuracy of the patient displacement measurements, the
same images are matched using slightly varying set of templates. Figure 5.6 sum-
marizes the results using 10 different sets of templates on a series of 6 images. The
standard deviations of the x and y position are both about 0.3 pixel and of the
orientation 0.3◦.
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reference image search image

Figure 5.4: Anatomy match example of an AP pelvis image. The search image is
additionally rotated by 8◦ to test the iterative matching procedure (see the iteration
series below). White polygons outline the template regions and the patches found,
respectively. The black line represents the field edge of the reference image and is
overlayed onto the search image to visualize the patient displacement.

t = 0 t = 2 t = 3 t = 4

t = 5 t = 7 t = 9 t = 17

patches template

Figure 5.5: Iteration series of the middle template in the above pelvis image.
Notice that the contrast of these images is manually enhanced for printing purpose.
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σx = 0.30 pixel = 0.26 mm
σy = 0.24 pixel = 0.20 mm

σ√x2+y2 = 0.38 pixel = 0.33 mm
σrot = 0.314 deg

a. b.

Figure 5.6: The sensitivity to slight variation of the template regions is tested
using 10 different template configurations. They are all overlayed onto the reference
image in (a). The resulting standard deviations of the measurements are shown on
the right and represent an estimate of the overall accuracy (b).

5.5.2 Convergence radius

An important aspect in optimization schemes is the radius of convergence. The
initial guess or starting point of the iterative optimization must be within this con-
vergence area. The LSM algorithm starts to fail when the difference between the
initial guess and the correct position amounts to more than half the template size.

For a typical template configuration in an AP pelvis image, this corresponds to
about 20 mm shift (22 pixels) or 10◦ rotation. However, these are at the same time
reasonable upper limits for alignment errors in daily hospital routine.

5.6 Results on artificially generated data

In real datasets of portal images, the ground truth is always unknown. In order to
test the algorithm on datasets with known ground truth, two artificial portal image
series are generated by computing various megavoltage DRRs from the same CT
volume.

5.6.1 In-plane translation and rotations

The following test series consisted of 35 simulated portal images with a maximum
patient displacement of 20 mm in x and z direction and a maximum rotation of 10◦

(figure 5.7). The results are summarized in table 5.2 and figure 5.9a. The standard
deviations of the translation measurements are 0.25 pixel (0.23 mm) in x direction
and 0.37 pixel (0.33 mm) in z direction. These systematic errors are caused by
the unknown y position in the CT coordinate system of the template features (see
figure 2.3 for an illustration of the CT coordinate system). Within the rotation
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a. reference image b. translated image c. rotated image

Figure 5.7: In-plane test series computed from CT volume. The CT is translated
and rotated in the image plane yielding a test series of 24 translated and 10 rotated
images. The top row depicts diagnostic, the bottom row megavoltage DRRs.

measurement, these systematic error do not occur and the standard deviations are
below 0.01◦.

5.6.2 Including out-of-plane rotation

In order to test under more realistic conditions, a test series with small out-of-plane
rotations is generated (figure 5.8). The area-based match still finds the correspond-
ing regions with a correlation well above 0.9. The systematic errors already en-
countered in the example above, which are an inherent problem of using projected
images, are of course higher in this example. But the total point errors of 1.24 mm
for 2◦ rotation and 3 mm for 5◦ still are promising results (see figure 5.9b).

5.7 Results of multi-modal match

Matching portal images directly with a megavoltage DRR computed from the plan-
ning CT provides an accurate link between planning and treatment (cf. section 2.4
and figure 2.1a). Additional sources of positioning errors are avoided, thus it is a
very interesting approach for increasing the accuracy of radiotherapy treatment.

Figure 5.10a shows a DRR and one set of templates including four validation
lines, which are not used for matching. The DRR was computed from a CT volume
with a voxel size of 2×2×3 mm3. The corresponding portal image series contained
22 images, two of which are depicted in 5.10b and c. All images were matched
three times using different sets of templates. Of these 66 measurements, only one
optimization failed, that is, did not find a minimum after 100 iterations. This
was due to a rather large patient displacement (over 10 mm), for which one of the
template sets was unsuitable. The remaining results were visually validated and all
were accepted to be correct, which indicates a success rate of over 95 %.
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a. reference image b. rotated image c. rotated image
around x axis around z axis

Figure 5.8: Out-of-plane rotation test series computed from CT volume with a
total of 200 images rotated around the x and z axis, respectively. The top row
depicts diagnostic, the bottom row megavoltage DRRs.

standard deviations point
σx σz σrot error

in-plane translation 0.23 mm 0.33 mm 0.19◦ 0.29 mm
in-plane rotation 0.05 mm 0.05 mm 0.01◦ 0.05 mm
out-of-plane rotation (2◦) 1.4 mm 1.1 mm 0.28◦ 1.2 mm
out-of-plane rotation (5◦) 3.3 mm 3.0 mm 0.59◦ 3.2 mm

Table 5.2: Standard deviations of the displacement measurements in the artificially
generated test series.
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Figure 5.9: Displacement measurement errors in test series without (a) and includ-
ing out-of-plane rotations of 2◦ (b). In (a) the error vectors are enlarged by a factor
10. The total point error amounts to 0.3 pixel (0.28 mm) without and 1.4 pixel
(1.2 mm) with out-of-plane rotations.
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a. reference image (DRR) b. translation (0,-4) mm c. translation (3,-3) mm
rotation 1.5◦ rotation 2.6◦

Figure 5.10: Multi-modal match between a DRR image computed from CT data
(a) and a portal image series (b,c). The match is based on an affine transformation
model. White polygons outline the template regions and patches respectively, black
lines represent validation lines which are not used for matching.

5.8 Clinical validation

In order to clinically validate the suitability of the LSM method, a large test series
of 500 portal images and 41 patients have been analyzed both manually and using
LSM. This study has been carried out in the course of a medical dissertation in
collaboration with this project. More details on the medically relevant outcomes
can be found in [Adam 1999]. In the following section, I will summarize the most
important findings concerning the performance of the LSM method.

Numerous other medical studies on the use of portal images have been published.
The following references are thus merely starting points into this field of work and is
not a representative selection. An analysis of the reproducibility of patient position-
ing was carried out by [Gildersleve et al. 1995]. They manually measured translation
and rotation of over 200 pelvis fields. The results indicate a 95 % confidence limit
in the range of ± 4 mm to ± 8 mm. Recent papers on the application of the feature-
based chamfer matching method have been presented by [Leszczynski et al. 1998,
Cai et al. 1998].

[Bijhold et al. 1991b] describe a mostly manual method for quantification of
patient set-up errors. They claim that displacements can be determined with a
variance of 2 mm within one minute using their method, provided that out-of-plane
rotations are smaller than 2◦. Also, they presented a preliminary study concerning
the inter-observer variability. Two observers were asked to measure 15 lateral pelvis
images, which resulted in a systematic difference of 4 mm.

An analysis of the prostate motion during during radiotherapy treatment has
been presented by [Vigneault et al. 1997]. Since the position of the prostate itself
can not be determined from portal images, radio-opaque markers were implanted
under ultrasound guidance. They found a standard deviation 2.9 mm for the position
in lateral and anterior-posterior direction (along x and y axis), as well as 4.6 mm in
cephalo-caudal direction (along z axis of the CT coordinate system).
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5.8.1 Datasets

In 500 images, patient translation and rotation has been manually measured at least
once by an experienced radio-oncologist. Figure 5.11 depicts a few samples, including
the line drawings defined for the manual measurements and the template regions
used for the automated match. Of this complete dataset, 106 AP pelvis images in
16 series have been measured three times by the same physician, in order to obtain
a rough estimate of the variability. The analysis of these manual measurements is
presented in the following section.

The same 500 images were then matched using the LSM tool developed during
this project. The template regions were defined by a medical student already hav-
ing some experience with the matching algorithm. To ensure the comparability to
the manual measurements, a congruent transformation model was applied. Opti-
mization was aborted after 50 iterations. The evaluation of these LSM results are
summarized in section 5.8.3.

5.8.2 Manual measurement results

The AP pelvis image series was manually measured three times. Although the
measurements were all carried out by the same physician, an estimate of the re-
producibility can be estimated. It is important to note however, that these results
should not be interpreted as an estimate of accuracy.

The standard deviations lie in the range of 1 mm for translation and less than
1◦ for rotation. Table 5.3 gives a detailed overview of the point and 95 % interval
estimates of these standard deviations.

point interval estimate
estimate (α = 0.05)

x std dev [mm] 0.8 0.69 . . . 0.83

y std dev [mm] 0.8 0.75 . . . 0.91
√
x2+y2 std dev [mm] 1.1 1.05 . . . 1.20

rotation std dev [deg] 0.7 0.68 . . . 0.82

Table 5.3: Evaluation of multiple manual measurements on AP pelvis fields. A
total of 106 images were matched three times by the same physician. These standard
deviations describe the level of reproducibility of the measurements rather than the
measurement precision.

5.8.3 Evaluation of automatic measurements

In the following, the match result of the pelvis subset from the test data is presented.
Both AP and lateral pelvis fields were included in the evaluation. Whereas AP pelvis



5.8. Clinical validation 73

a. b. c.

Figure 5.11: Sample of the complete dataset containing 500 images. Column (a)
includes the line drawings defined for the manual measurements, whereas column
(b) illustrates the choice of template regions for the LSM method. A few additional
examples of varying quality are displayed in column (c).
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images generally pose the least problems to matching, lateral pelvis images represent
the most difficult type of images, since only little useful structure is visible. Thus,
both the most suited and the most challenging images were evaluated.

Table 5.4 lists the standard deviations within the 16 image series. The match
results were compared to the mean of the manual measurements. No outliers were
removed, which is the reason for the relatively large error in series 69337, for instance.
Nonetheless, an excellent result was achieved with a point error of 1 mm. The overall
errors are summarized in table 5.5, including the 95 % interval estimates of the
standard deviations.

standard deviation
ID images samples x y

√
x2+y2 rot

[mm] [mm] [mm] [deg]

63922 5 10 0.5 0.6 0.8 0.3
69337 5 10 1.6 0.7 1.7 1.1
70160 8 16 0.5 0.3 0.6 0.3
70257 7 14 0.6 0.4 0.8 0.5
70298 5 10 0.5 0.5 0.8 0.3
70306 6 12 0.5 0.6 0.8 0.3
70391 7 14 0.3 0.4 0.5 0.6
70439 9 18 0.5 0.9 1.0 0.6
70475 13 26 0.6 0.8 1.0 0.6
70506 7 14 1.1 0.4 1.1 0.7
72340 4 8 0.3 0.2 0.4 0.4
74258 9 18 0.5 0.5 0.7 0.6
74394 13 26 0.6 1.1 1.3 0.8
74426 8 16 0.6 1.0 1.2 1.0

overall 106 212 0.67 0.72 0.98 0.65

Table 5.4: Standard deviations between manual and automatic measurements of
all AP pelvis image series. (See table 5.5 for more details on overall statistics.)

As expected, the errors were large in lateral pelvis images. One reason is the
little structural information present in such imagery, another are the higher number
of outliers. Table 5.6 summarizes the overall errors without any outliers removed,
which lead to a point error of 3.5 mm and a standard deviation of 2◦ for rotation.

By applying an automatic removal of outliers based on the normalized cross
correlation, the results improved to 2.9 mm for the point error and 1.7◦ for rotation.
Excluded were only obvious outliers with correlation values below 0.8, which applied
to 10 out of 105 match results).
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point interval estimate
estimate (α = 0.05)

x std dev [mm] 0.67 0.59 . . . 0.77

y std dev [mm] 0.72 0.63 . . . 0.83
√
x2+y2 std dev [mm] 0.98 0.89 . . . 1.08

rotation std dev [deg] 0.65 0.57 . . . 0.75

Table 5.5: Statistical comparison of the mean manual measurement with the au-
tomatic displacement measurement in an AP pelvis field.

point interval estimate
estimate (α = 0.05)

x std dev [mm] 2.1 1.83 . . . 2.40

y std dev [mm] 2.8 2.47 . . . 3.25
√
x2+y2 std dev [mm] 3.5 3.19 . . . 3.86

rotation std dev [deg] 2.0 1.74 . . . 2.28

Table 5.6: Statistical comparison of the manual with the automatic displacement
measurement in lateral pelvis fields. The significance level α for the interval estimate
was set to 0.05.

point interval estimate
estimate (α = 0.05)

x std dev [mm] 1.5 1.30 . . . 1.76

y std dev [mm] 2.4 2.13 . . . 2.88
√
x2+y2 std dev [mm] 2.9 2.59 . . . 3.21

rotation std dev [deg] 1.7 1.45 . . . 1.96

Table 5.7: The same statistical comparison as above after exclusion of outliers. 20
out of 105 automatic match results were excluded because of a correlation values
below 0.8.





6
Conclusion

The method of LSM has been investigated with regard to its application to low
contrast imagery. The main goal was to improve the precision and reliability of
patient position during high precision radiotherapy. In order to attain this higher
accuracy, electronic portal images are the most promising source of information,
though they inherently suffer from low contrast.

6.1 Analysis of low contrast imagery

The main advantage of LSM, applied to low contrast images, is that no feature
extraction step is necessary. The design of a robust and reliable feature extractor
for such images is a very challenging task. The difficulty is to find a method that
reliably transforms the image information into a more useful form, in particular into
a set of features. In images with sufficient contrast to noise ratio, this is usually
feasible if the requirements on accuracy is rather low, within a few pixels. This is
the case in many typical computer vision applications and hence the popularity of,
for instance, edge detectors.

However, to find a suitable extraction scheme for low contrast imagery is by
far more difficult. Since only little information is available, the robustness of a
feature extractor becomes crucial. Simple approaches such as applying standard
edge detectors are bound to fail. Thus, instead of searching for an optimal feature
extractor, I have chosen the area-based LSM method, circumventing this difficult
preprocessing step.

In this work, I have shown that the application of LSM to this type of imagery
is a suitable approach. Being an area-based method, LSM takes into account the
full image information, which is an important aspect for analyzing portal images.
Furthermore, in contrast to most correlation methods, it allows for the estimation
of, for instance, an affine transformation or more complex transformation models.

Compared to previous applications, I thoroughly investigated the diagnostic ca-
pabilities within the LSM framework. Self-diagnosis is an important concept and
the cornerstone of robust and reliable image analysis. Within LSM, correct error
propagation is possible due to the least squares approach. Hence, many standard
statistical measures can be computed, leading to the field of parameter estimation

77
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theory. It is, however, not always straightforward to apply general methods from
parameter estimation theory to LSM. I have discussed that one problem is the es-
timation of the a priori errors present in images. Without precise knowledge about
this a priori noise level, a comparison of the a priori with the a posteriori noise
is usually not reasonable. Nevertheless, this measure can often be replaced by the
normalized cross correlation.

Another problem is the unknown gray value dependency of adjacent pixels. Such
covariances have to be known up to a constant factor to correctly formulate the LSM
problem. A common assumption is that pixel values are independent, neglecting any
covariances. I took the same approach, mainly due to computational constraints,
but not before analyzing the effects of Gaussian filtering and bilinear interpolation
onto the gray value covariance. Neglected covariances of adjacent pixels mainly
influence the computation of parameter precision, yielding too optimistic estimates.

Since LSM is based on an optimization scheme, the determinability of a parame-
ter set is an important aspect. An existing determinability measure has been slightly
modified to render it useful for LSM. This measure is a sum of local, pixel-wise de-
terminability, neglecting their respective locations. In particular, it is not a global
measure, which might lead to unexpected results in certain cases as discussed in
section 3.4. I also discussed that this measure is best applied in combination with
an analysis of the parameter correlation. Correlated parameters strongly influence
this determinability measure and should be detected beforehand.

In case of a weakly determinable parameter set, additional constraints are in-
troduced within the LSM framework. This is straightforward for linear constraints,
however nonlinear constraints must be linearized first. The linearization of a two
dimensional distance constraint has been investigated in more detail in section 3.9.
I found that the simple linearization by Taylor expansion may lead to oscillation
and can be improved based on geometric considerations.

Besides detailed insight into the self-diagnostic measures, another contribution of
this work is the extension of LSM to multiple templates. This allows local geometric
distortions to be accounted for without losing the global context. However, the
large increase in degrees of freedom is difficult to cope with in low contrast imagery.
Therefore, this extension was not used within the application to portal images.

The generic LSM tool developed during this project is hopefully not only useful
for portal imaging, but applicable to other types of imagery as well. It allows the
precise estimation of two dimensional affine transformations using a selection of
template regions, with the option of applying various diagnostic measures.

6.2 Patient positioning in radiotherapy

Electronic portal images are a valuable source of information for improving the
reliability and accuracy of patient positioning. Since portal images are acquired
during the actual radiotherapy treatment, they are an ideal basis for checking the
treatment setup. However, this basis can only be fully exploited when other sources
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of information are included in the analysis:

• Multi-leaf collimator settings

In order to calibrate a portal image, the distinct structure of the field edge
serves as calibration standard. The optimum reference for this field edge shape
is a simulated edge based on the settings of the multi-leaf collimator (MLC).
Hence, possible setup errors do not influence the image calibration.

• Planning data

One goal of the portal image analysis is checking the field setup. Since the
planning data prescribes the beam directions and field shapes, it would be
optimal to directly employ this data as reference data. In contrast to the
calibration step, the reference field edge is therefore not simulated based on
the MLC settings but on the prescribed field shape.

• CT volume

When a medium to high resolution CT volume is available, optimum refer-
ence images can be computed, megavoltage DRRs. The requirement is a slice
thickness of less than 5 mm.

Alas, these three sources have not been readily accessible within this project, due
to missing system integration of the various devices. Nonetheless, suitable interim
solutions have been found as I will present in the following. It is important to note
that these interim solutions only differ in the choice of the reference data and not
of the method. Once the optimum reference data is available, it will be possible to
apply the same algorithm.

The first step in portal image analysis is the calibration of the input image. As
mentioned above, the MLC settings are often not available, and an interim solution
had to be chosen. That is, the reference edge is extracted from a validated portal
image. For both, the optimum and the interim reference data, the area along the
reference edge is used as template region and matched onto this distinct structure in
the newly acquired treatment image. This match using LSM proved to be a robust
and accurate calibration method.

The second step is to check the shape of the field edge, comparing it to the
prescribed field shape. If the planning data is not accessible, as in this project, the
field edge of a validated portal image must be used instead. As similarity measure
served the normalized cross correlation of the gray values. Experiments have shown
that this measure robustly detects even minor shape deviations given that the portal
image has been accurately calibrated. Due to the close relation of calibration based
on the field edge and checking the field shape, these two steps have often been
combined, rendering reliable checking impossible. By separating these steps and
by employing LSM for precise calibration, I am able to provide a reliable checking
procedure.

The last and crucial step is the displacement measurement of bony structures.
The goal is to estimate parts of the rigid, three dimensional patient movement. The
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results obtained within this project indicate that the contrast to noise ratio of portal
images is still too low to allow for an estimation of the complete patient motion.
Even in portal images of relatively good quality, it occurred that a two dimensional
affine transformation model was not determinable. Therefore, the problem had to
be reduced to only measuring the patient displacement parallel to the image plane.

The systematic error, introduced by this problem reduction to two dimensions,
has been investigated using a computed test series. This series consisted of over
200 megavoltage DRRs (AP pelvis) with varying out-of-plane rotations. The er-
ror analysis yielded systematic point errors of 1.2 mm for 2◦, and 3.2 mm for 5◦

out-of-plane rotation. This is a satisfactory result, considering that rather large
displacements of up to ± 20 mm had to be measured in this test series.

An important aspect is the choice of template regions for the anatomy match.
At this point, knowledge about the anatomy can help to improve the match re-
sults. Choosing structures, for instance, which are instable under small out-of-plane
rotations, will have a negative effect on the measurements.

The influence of minor variation in position of the template regions was inves-
tigated in another experiment. One portal image series was matched several times,
each time moving the templates by a few pixels. The resulting point error of 0.3 pixel
or 0.25 mm indicates robustness against slight template variations and represents at
the same time an estimate of the measurement precision. Thus, the operator de-
pendence of the algorithm could be kept to a minimum.

The drawback in using LSM as matching algorithm is that the reference image
must contain similar gray value characteristics. In particular, the diagnostic X-ray
image acquired during treatment simulation is not a suitable reference image. Such
simulator images are used in most conventional procedures. Nevertheless, there are
two possible choices of reference images: a megavoltage DRR or a validated portal
image. The former is the optimum reference in terms of providing an accurate link
between the planning step and the actual treatment. However, a high resolution
CT, necessary to compute such a DRR, was mostly not available within this project.
Thus, a validated portal image has been used as reference image. Still, the feasibility
of matching a portal image to a DRR has been shown in the case of an AP pelvis
series, yielding promising results.

High precision is required in the field of stereotactic radiosurgery, dealing with
the treatment of brain tumors. A test series with known displacements of the fixation
device, the headrest, lead to an estimate of the overall point error of 0.2 mm, which
is in the same range as the repositioning accuracy of the headrest itself. Although
a rather simple setup, this is an important finding since LSM thusly proves to have
potential for high precision measurements in X-ray imagery.

6.3 Clinical validation and application

The predominant existing technique for analyzing portal images remains the manual,
two dimensional measurement of patient displacement. Thus, the performance of



6.4. Outlook 81

LSM was compared to manual measurements in a large test series of over 500 portal
images. All images were measured at least once by an experienced radio-oncologist.
In order to estimate the measurement variability, about 100 AP pelvis images were
matched three times by the same physician. The resulting standard deviation of
1.1 mm represents an estimate for the reproducibility, and hence an upper bound
for the accuracy of manual methods.

The comparison of these results with the outcome of the LSM match showed
varying agreement. In AP pelvis images, for instance, the total point error is about
1 mm, which is almost perfect performance, considering the aforementioned stan-
dard deviation of the manual measurements. In lateral pelvis images however, this
point error reaches 3.5 mm. Nonetheless, this is in direct correspondence to the low
information content of lateral pelvis images. It has been shown in earlier work that
the inter-observer variability on such imagery amounts to 4 mm.

Importantly, the algorithm found a reasonable match in over 90 % of all tested
portal images, without supplying an initial guess. Moreover, the examination of
the test results indicates that the normalized cross correlation coefficient together
with plausibility checks are a suitable measure to detect the remaining mismatches.
Hence, LSM is definitely an improvement compared to existing semi-automated
methods, which attain about 70 % success rate and yield less precise measurements.

This leads to the conclusion that the LSM method applied to portal images has
the potential of improving patient positioning and thus quality assurance in radio-
therapy. In order to introduce the novel method into the daily hospital routine, the
LSM tool has been installed at the department of radio-oncology at the University
Hospital of Zürich, with further installations planned for the near future.

6.4 Outlook

A first improvement relates to the remaining manual part of the matching algorithm,
the definition of the template regions. This operator interaction could be further
reduced by offering computer assistance. For instance by automatically suggesting
a set of templates, out of which the operator may select and possibly modify the
relevant regions.

In order to fully exploit the potential of electronic portal images, the next step
is to integrate the various parts of radiotherapy treatment to a complete system.
Planning data, CT volume, simulation images, and treatment settings should all
be accessible when analyzing portal images. This will render it possible to use the
optimum instead of interim solutions, as outlined in the previous sections. Thus,
several additional sources of errors can be avoided, increasing the overall reliability
of the treatment.

Furthermore, this integration is a prerequisite for solving the complete three di-
mensional problem. However, another requirement are improvements in the quality
of portal images. Significant enhancements in terms of contrast are promised by
the relatively new technology of amorphous silicon panels. Once this technology



82 Chapter 6. Conclusion

is readily available, it should be feasible to measure more complex transformations
and thus to estimate the complete patient movement.

The most promising approach is the comparison of the current portal image to
a series of DRRs, optimizing the pose of the CT volume until the most similar
DRR is found. Again, the area-based LSM method could be employed to help the
optimization and ensure highly accurate results. Thus, tight system integration
together with an improvement of contrast in portal images will lead the way to
accurate, three dimensional patient positioning.
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Zürich, March 1986.

[Hager and Belhumeur 1998] G. D. Hager and P. N. Belhumeur. Efficient region
tracking with parametric models of geometry and illumination. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 20(10):1025–1039, October 1998.
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A
Algorithmic Details

A.1 Comparison of least squares error

and normalized cross correlation

This section deals with the comparison between finding the minimum least squares
error and finding the maximum correlation of two signals f and g, depending on an
arbitrary set of parameters. The least squares error is defined as

e2 =
∑

(f − g)2

=
∑

f 2 +
∑

g2 − 2
∑

f · g ,

opposed to the normalized cross correlation

ρ =

∑
f · g

(
∑
f 2 ·∑ g2)

1
2

,

where we assumed without loss of generality that f and g have zero mean.
For large enough samples, it is usually safe to assume the terms v̂f =

∑
f 2 and

v̂g =
∑
g2 to be constant over the parameter search space. Under this assumption,

the equations can be rewritten as

e2 ≈ c1 − 2
∑

f · g
ρ ≈ c2 ·

∑
f · g ,

where c1 = v̂f+v̂g and c2 =(v̂f v̂g)
− 1

2 represent constant values. Thus minimizing e2 is
equivalent to maximizing ρ. Furthermore, if the two estimated variances are equal,
that is v̂f = v̂g= v̂, the following simple linear expression is found for the correlation
coefficient in dependence of the least squares error

ρ = 1− e2

2v̂
,

where e2 ∈ [0..2
√
v̂ ].
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A.2 Comparison of Levenberg–Marquardt

and Gauss–Newton methods

The unconstrained NLS problem defined by equation (3.11) is usually solved either
by the Gauss–Newton [Gill et al. 1981, Dennis et al. 1981, Gill and Murray 1978]

or Levenberg–Marquardt method [Press et al. 1994, Marquardt 1963]. The Gauss–
Newton method is based on the linearization of the observation equation, which was
outlined in the previous section. The Levenberg–Marquardt method on the other
hand is often described as taking into account the first and second derivatives of
the goal function eTPe. In the following, the two approaches are compared and it is
shown that they are very similar in most implementations.

The goal function of problem (3.11) is given by

eTPe =
(
F ∗1 (ζ, l1) + F ∗2 (l2)

)T
P
(
F ∗1 (ζ, l1) + F ∗2 (l2)

)
.

The first derivatives with respect to the parameters ζ at the current estimate ζ̂◦ can
thus be written as

∂

∂ζi

(
eTPe

)
= 2

∂

∂ζi

(
F ∗1 (ζ, l1) + F ∗2 (l2)

)T
P
(
F ∗1 (ζ, l1) + F ∗2 (l2)

)
∂

∂ζi

(
eTPe

) ∣∣∣
ζ=ζ̂◦

= 2
∂

∂ζi
F ∗1 (ζ, l1)T

∣∣∣
ζ=ζ̂◦

P
(
F ∗1 (ζ̂◦, l1) + F ∗2 (l2)

)
= 2 ATi P w , (A.1)

where Ai is column i of the Jacobian ∇ζ F ∗1 and w=−F ∗1 (ζ̂◦, l1)−F ∗2 (l2) as defined
in the previous section. The second derivatives are defined analogous by

∂2

∂ζi∂ζj

(
eTPe

)
= 2

∂

∂ζi

(
F ∗1 (ζ, l1) + F ∗2 (l2)

)T
P

∂

∂ζj

(
F ∗1 (ζ, l1) + F ∗2 (l2)

)
+ 2

∂2

∂ζi∂ζj

(
F ∗1 (ζ, l1) + F ∗2 (l2)

)T
P
(
F ∗1 (ζ, l1) + F ∗2 (l2)

)
∂2

∂ζi∂ζj

(
eTPe

) ∣∣∣
ζ=ζ̂◦

= 2 ATi PAj + 2
∂2

∂ζi∂ζj
F ∗1 (ζ, l1)T

∣∣∣
ζ=ζ̂◦

P w .

However, the term including the second derivatives is neglected in the Levenberg–
Marquardt method. This is justified by the fact that for a successful model and in
the neighborhood of the solution, ‖w‖ is often small compared to ‖ATiAj‖. Please
refer to [Gill et al. 1981, section 4.7] or [Press et al. 1994, p. 683] for more details.
This assumption leads to the approximation

∂2

∂ζi∂ζj

(
eTPe

) ∣∣∣
ζ=ζ̂◦
≈ 2 ATi PAj . (A.2)

These expressions for the first (A.1) and second derivatives (A.2) are used to
form the Gauss–Newton part of the Levenberg–Marquardt approach

ATPA∆ζ = −ATP w , (A.3)
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which is identical to the equation (3.14).
Hence, the only difference between the Gauss–Newton and the Levenberg–Mar-

quardt method lies in the additional steepest-descent part within the latter, which
is introduced in the following way(

ATPA+ λI
)

∆ζ = −ATP w . (A.4)

The factor λ defines the dominant method. If λ = 0, this equation is identical to
equation (A.3) and and ∆ζ is the Gauss–Newton direction. As λ → ∞, ‖∆ζ‖ and
∆ζ becomes parallel to the steepest-descent direction.

A.3 Variance and covariance after Gaussian fil-

tering

The design of the weight matrix was outlined in section 3.10. In the following,
several aspects are described in more detail. Please note that all pixel values are
assumed to be independent and normally distributed with an identical variance σ2

0

as defined by equation (3.43).
It is common practice to filter the original image signal with a Gaussian kernel to

reduce noise. A two dimensional and isotropic Gaussian filter is given by sampling
the continuous form

G(σG, x) =
1

2π σ2
G

e
−
x21+x22
2σ2
G

at integer coordinates. Please note the continuous form is normalized such that the
definite integral ∫ ∞

−∞

∫ ∞
−∞

G(σG, x) dx1 dx2 = 1 (A.5)

equals to one. However, this is not true in general for the infinite sum of a sampled
Gaussian. The filter coefficients have to be corrected such that the sum of the
coefficients still yields unity, in order to avoid amplification of the image signal.
Including this correction factor, the following expression is found for the discrete
Gaussian filter:

G[σG, u] =
e
−
u2
1+u2

2
2σ2
G

∑
u1

∑
u2
e
−
u2
1
+u2

2
2σ2
G

. (A.6)

The reduction of the signal variance depends on the chosen filter width σG and on
the filter support. Exploiting assumption (3.43), we derive the following expression
for the variance reduction of a discrete Gaussian filter with the limited support
(2m+1)× (2m+1):

σ∗0
2(σG,m) = σ2

0

∑m
i=−m

∑m
j=−m e

− i
2+j2

σ2
G(∑m

i=−m
∑m
j=−m e

− i
2+j2

2σ2
G

)2 . (A.7)
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For the typical filter support sizes 5×5 and 7×7, equation (A.7) is further simplified
to:

σ∗0
2(σG,m=2) = σ2

0

(
2 + 2e

3

σ2
G + e

4

σ2
G

)2

(
2 + 2e

3

2σ2
G + e

4

2σ2
G

)4

σ∗0
2(σG,m=3) = σ2

0

(
2 + 2e

5

σ2
G + 2e

8

σ2
G + e

8

σ2
G

)2

(
2 + 2e

5

2σ2
G + 2e

8

2σ2
G + e

9

2σ2
G

)4 .

When we further choose σG=1 the resulting pixel variance amounts to

σ∗0
2(1.0, 2) ≈ 0.0825 σ0

σ∗0
2(1.0, 3) ≈ 0.0797 σ0 .

An approximation for equation (A.7) can be given for σG>0.6 and for sufficiently
large m (about 2σG). Under these circumstances, the sums are approximated by an
integration from minus infinity to infinity:

σ∗0
2(σG,m) ≈ σ2

0

4π2σ4
G

∫ ∞
−∞

∫ ∞
−∞

e
−
x21+x22
σ2
G dx1 dx2 .

Using relation (A.5), we solve the definite integral and find

σ∗0
2(σG,m) ≈ σ2

0

4πσ2
G

for σG ≥ 0.6

Figure A.1 illustrates the validity of this approximation. The condition σG>0.6 was
estimated by solving the equation

e
− 0.52

σ2
G = 0.5 ,

which is the situation where the continuous Gaussian intersects the central rectangle
at half its height (figure A.1b). Below this limit, the sampling is too coarse. However,
the limit σG → 0 is the trivial case of filtering with a Dirac peak, which is the identity
filter:

lim
σG→0

σ∗0
2(σG,m) = σ0 .

Another interesting limit is σG →∞ for a given support size m:

lim
σG→∞

σ∗0
2(σG,m) =

σ0

(2m+1)2
,

corresponding to a box filter of the same size.



A.4. Variance and covariance after bilinear interpolation 93

4 2 0 2 4

0.25

0.5

0.75

1

1.25

1.5

1.75

4 2 0 2 4

0.1

0.2

0.3

0.4

4 2 0 2 4

0.01

0.02

0.03

0.04

a. σG = 0.3 b. σG = 0.6 c. σG = 2.0

Figure A.1: Approximation of the sum of Gaussian filter coefficients by the definite
integral from minus infinity to infinity.

The covariance between two filtered values after applying a discrete Gaussian
filter is given by an expression similar to (A.7), but is omitted here for simplicity.
Analogous to the variance, the covariance is well approximated for σG>0.6 by the
equation

σ∗ 2
xy (σG, d) ≈ σ2

0

4π2σ4
G

∫ ∞
−∞

∫ ∞
−∞

e
−(x21+x22)

2σ2
G e

−((x1−d1)2+(x2−d2)2)

2σ2
G dx1 dx2 . (A.8)

where d is the distance between the two pixels. This definite integral can be simpli-
fied to a Gaussian distribution with a standard deviation of

√
2σG, leading to

σ∗ 2
xy (σG, d) ≈ σ2

0

4πσ2
G

e
−
d21+d22
4σ2
G for σG ≥ 0.6 .

A.4 Variance and covariance after bilinear inter-

polation

Bilinear interpolation is described by equation (A.9). The interpolated value is
computed by a weighted sum of the four neighboring pixels. The weights depend
on the fractional part d=x−bxc of the coordinate x:

f(x) =


1− d1 − d2 + d1d2

d2 − d1d2

d1 − d1d2

d1d2

 •

f(bxc)
f(bxc+ [0, 1]T)
f(bxc+ [1, 0]T)
f(bxc+ [1, 1]T)

 . (A.9)

In order to derive an expression for the variance reduction, we will assume that
all pixel values are independent and normally distributed with an identical variance
σ2

0 as defined by equation (3.43). Exploiting this assumption, simple expressions
are found for the actual standard deviation σ∗0 of an interpolated value f(bxc+d)
and also for the actual covariances between two interpolated pixels. The formula
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for the variance σ∗0
2 was already given in equation (3.46) but is repeated here for

completeness:

σ∗0
2(d) = σ2

0

(
1− 2 d1 + 2 d1

2
) (

1− 2 d2 + 2 d2
2
)
.

1

4

5

3 6

2

Figure A.2: Six different cases are distinguished for the analysis of the covariances.
Case 6 is the trivial case of zero covariance. The expressions for the covariance in
each case are summarized in equation (A.10).

In order to compute the covariances, six different cases were distinguished de-
pending on relative position of the two coordinates (figure A.2). One of these cases
is the trivial case of zero covariance, which is numbered case 6 in figure A.2. The
five remaining expressions for the covariances are summarized in equation (A.10).

σ∗ 2
xy (d1, d2) = σ2

0 ·
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(A.10)

A.4.1 Bilinear interpolation of Gaussian filtered signal

When the bilinear interpolation is applied to a Gaussian filtered signal, the as-
sumption (3.43) does not hold anymore. However, it is possible to approximate
the covariance matrix of the filtered image as we have seen in section A.3. The
covariances of two neighboring pixels amount to

σ̄2
xy

∣∣∣
d2=1
≈ σ2

0

4πσ2
G

e
−1

4σ2
G and σ̄2

xy

∣∣∣
d2=2
≈ σ2

0

4πσ2
G

e
−2

4σ2
G

depending if the squared distance between the pixels is 1 or 2. Using these covari-
ances, the following expression results for the variance of a filtered and interpolated
pixel:

σ∗0
2(σG, d) =

σ2
0

4πσ2
G

e
− 1

2σ2
G

2∏
i=1

(
e

1

4σ2
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1

4σ2
G −1) + 2d2

i (e
1

4σ2
G −1)

)
(A.11)
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We are now interested in the additional change in pixel variance. The maximum
reduction will be at d=(1

2
, 1

2
) and amounts to

σ∗0
2(σG, d)

∣∣∣
d=( 1

2
, 1
2

)
=

σ2
0

16πσ2
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1 + e

− 1
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G + 2 e

− 1

4σ2
G

)
. (A.12)

Figure A.3 depicts the relative change (σ∗0 − σ̄0)/σ̄0 at its maximum d = (1
2
, 1

2
)

depending on the filter width σG. Choosing the common filter width σG = 1, this
maximum additional reduction equals to

σ∗0 − σ̄0

σ̄0

∣∣∣∣
σG=1

≈ 0.209 .
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Figure A.3: Maximum additional variance reduction of bilinear interpolation of a
Gaussian filtered signal.

A.5 Available software for solving NLS problems

Many software packages for finding the minimum of a sum of squares of nonlinear
functions are available. The following section describes a few of these algorithms.
A more complete list can be obtained through using the Guide to Available Mathe-
matical Software (GAMS) at http://gams.nist.gov. The corresponding problem
class is K1b1a.

A.5.1 DNL2S1 in CMLIB library

Minimizes a nonlinear sum of squares using both residual and gradient values
supplied by the user. (Double precision version of NL2S1.)

Classes: K1b1a2. Unconstrained nonlinear least squares approximation by
smooth functions, user provides first derivatives

L8e1b2. Parameter estimation in nonlinear least squares
regression using unweighted data, user provides
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derivatives
L8e1b4. Parameter estimation in nonlinear least squares

regression using weighted data, user provides
derivatives

Type: Fortran subroutine in CMLIB library (DNL2SN sublibrary).
Access: Public domain. Portable.
Precision: Double.

Usage: CALL DNL2S1(N,P,X,CALCR,CALCJ,IV,LIV,LV,V,UIPARM,URPARM,UFPARM)

A.5.2 DUNLSJ in IMSLM library

Solve a nonlinear least squares problem using a modified Levenberg-Marquardt
algorithm and a user-supplied Jacobian.

Classes: G1b1b. Unconstrained optimization of a smooth multivariate
function, user provides first derivatives

K1b1a2. Unconstrained nonlinear least squares approximation by
smooth functions, user provides first derivatives

Type: Fortran subroutine in IMSLM library.
Access: Proprietary. Many implementations available.
Precision: Double.

Usage: CALL DUNLSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVEC, FJAC, LDFJAC)

A.5.3 E04GBF in NAG library

A comprehensive quasi-Newton algorithm for finding an unconstrained minimum of
a sum of squares of M non-linear functions in N variables (m .ge. n). First
derivatives are required.

Classes: K1b1a2. Unconstrained nonlinear least squares approximation by
smooth functions, user provides first derivatives

L8e1b2. Parameter estimation in nonlinear least squares
regression using unweighted data, user provides
derivatives

Type: Fortran subroutine in NAG library (E04 sublibrary).
Access: Proprietary. Many implementations available.
Precision: Double.

Usage: CALL E04GBF (M, N, LSQLIN, LSQFUN, LSQMON, IPRINT, MAXCAL, ETA,
XTOL, STEPMX, X, FSUMSQ, FVEC, FJAC, LJ, S, V, LV, NITER, NF,
IW, LIW, W, LW, IFAIL)

See also: E04YCF



A.5. Available software for solving NLS problems 97

A.5.4 E04GDF in NAG library

A comprehensive modified Gauss-Newton algorithm for finding an unconstrained
minimum of a sum of squares of M non-linear functions in N variables
(m .ge. n). First derivatives are required. The routine is intended for
functions which have continuous first and second derivatives (although it will
usually work even if the derivatives have occasional discontinuities).

Classes: K1b1a2. Unconstrained nonlinear least squares approximation by
smooth functions, user provides first derivatives

L8e1b2. Parameter estimation in nonlinear least squares
regression using unweighted data, user provides
derivatives

Type: Fortran subroutine in NAG library (E04 sublibrary).
Access: Proprietary. Many implementations available.
Precision: Double.

Usage: CALL E04GDF (M, N, LSQMON, IPRINT, MAXCAL, ETA, XTOL, STEPMX, X,
FSUMSQ, FVEC, FJAC, LJ, S, V, LV, NITER, NF, IW, LIW, W, LW, IFAIL)

See also: E04YCF

A.5.5 E04HEF in NAG library

A comprehensive modified Gauss-Newton algorithm for finding an unconstrained
minimum of a sum of squares of M non-linear functions in N variables
(m .ge. n). First and second derivatives are required.

Classes: K1b1a3. Unconstrained nonlinear least squares approximation by
smooth functions, user provides first and second
derivatives

Type: Fortran subroutine in NAG library (E04 sublibrary).
Access: Proprietary. Many implementations available.
Precision: Double.

Usage: CALL E04HEF (M, N, LSQFUN, LSQHES, LSQMON, IPRINT, MAXCAL, ETA,
XTOL, STEPMS, X, FSUMSQ, FVEC, FJAC, LJ, S, V, LV, NITER, NF,
IW, LIW, W, LW, IFAIL)

See also: E04YCF

A.5.6 LMDER in MINPACK package

Finds a minimum of the sum of the squares of m nonlinear functions in n
variables by a modification of the Levenberg-Marquardt algorithm. The user
must provide a subroutine which calculates the functions and the Jacobian.

Classes: K1b1a2. Unconstrained nonlinear least squares approximation by
smooth functions, user provides first derivatives
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Type: Fortran subroutine in MINPACK package.
Access: Public domain. Portable.
Precision: Double.
Note: Single precision version available in NETLIB package SMINPACK.

Usage: CALL LMDER(FCN, M, N, X, FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
MAXFEV, DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV, IPVT, QTF,
WA1, WA2, WA3, WA4)

See also: CHKDER checks user-supplied Jacobian
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