Contributions to the Automated
Segmentation of Brain Tumors in
Magnetic Resonance Images

Der Technischen Fakultat der
Universitat Erlangen-Niirnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Michael Kaus

Erlangen - 1999



Als Dissertation genehmigt von
der Technischen Fakultat der

Universitat Erlangen-Niirnberg

Tag der Einreichung:

Tag der Promotion:

Dekan: Prof. Dr.-Ing. habil. G. Herold

Berichterstatter: Prof. Dr.-Ing. Dieter Seitzer
Prof. Dr. Heinrich Niemann

Prof. Dr. med. Ron Kikinis



Abstract

This thesis studies the problem of the segmentation of magnetic resonance images
(MRI) in patients with meningiomas and low grade gliomas. The studies are mo-
tivated by the potential of computer assisted neurosurgery to improve treatment
outcome. To make such methods clinically practical, these techniques require the
development of automated segmentation methods.

First, the MR imaging characteristics of meningiomas and low grade gliomas
are analyzed to assess the possibilities of automated segmentation. The analysis
demonstrates that segmentation is not possible with a) statistical classification due
to overlapping intensity distributions of tissue classes, or b) the spatial alignment
(registration) of an anatomical normal brain atlas because such an atlas does not
describe pathology.

Subsequently, a segmentation framework that iterates statistical classification,
local segmentation techniques and registration of a brain atlas is described and
shown to allow complete segmentation of the skin surface, the brain, the ventricles
and the tumor. A validation study with clinical MRI data demonstrates that the
algorithm performs well despite the presence of overlapping intensity distributions
of tissue classes. The reduction of operator time from 3 hours to 5-10 minutes makes
it practical to consider the integration of computerized segmentation into clinical
routine.

The use of optical flow methods for the task of aligning an anatomical atlas to
individual patient datasets is analyzed. An existing 2D optical flow approach that
models discontinuous deformation fields is extended to 3D, and a novel N-channel
probabilistic (NP) similarity measure is proposed that separates labels of different
objects into different channels and incorporates classification probabilities as a con-
fidence measure. A validation study with clinical and simulated MRI demonstrates
that registration accuracy can be significantly improved for the alignment of mul-
tiple templates, and for the registration of templates to images with classification
errors.

The algorithms developed in this thesis are also used to project structural in-
formation (e.g. white matter tracts) from a normal brain atlas onto patients with
brain tumors. The method provides anatomical information, which is not available
from conventional MRI, for the planning of surgical approaches.

This thesis contains three major contributions: a robust, reproducible and accu-
rate method for the segmentation of brain tumors in MRI, a 3D adaptive regular-
ization optical flow method and an N-channel probabilistic similarity measure for
template matching.
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Chapter 1

Introduction

One of the principal problems in neurosurgical planning is the localization of criti-
cal brain structures with respect to the tumor to define the safest possible surgical
approach. The surgical intervention requires accurate cortical localization, the def-
inition of exact target trajectories, and the identification of anatomical and patho-
logical boundaries.

Medical imaging and computer assisted surgery techniques have become increas-
ingly utilized in neurosurgery [2, 9, 65, 69, 79, 97, 106, 145]. Some of the most
substantial reasons for this are:

e The availability of accurate anatomical three-dimensional (3D) models from
2D medical image data provides precise information about spatial relationships
between critical anatomical structures (e.g. eloquent cortical areas, vascular
structures) and pathology which are often indistinguishable by the naked eye
[65, 81, 97].

e Computer assisted surgical planning allows the surgeon to test and analyze
alternative navigational paths and movements through physical space using
an interactive 3D display. This facilitates the surgeons preoperative definition
of the safest possible approach that will result in the least possible damage to
normal tissue [18, 65, 80, 87, 97].

e “Neuronavigation” systems that are based on frameless stereotaxy devices
track surgical instruments relative to preoperative image information of the pa-
tient in real-time [40, 41, 79, 92, 106, 114, 144, 145]. Neuronavigation increases
the safety of pathologic tissue removal by improving localization and target-
ing, and enables accurate determination of the margins of the tumor within the
normal brain to avoid eloquent areas of brain [2, 9, 65, 69, 79, 97, 100, 106, 145].

Today commercially available neuronavigation systems only provide the surgeon
with 2D cross-sections of the intensity value images and a 3D model of the skin.
The main limiting factor for routine use of 3D models in daily clinical practice is
the amount of time that an operator has to spend in the preparation of the data
[97]. The availability of automated methods will significantly reduce the time and
is necessary to make such methods practical.
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Figure 1.1: Illustration of the segmentation of a brain tumor using different
methods. Classification (c) or model-based methods (d) alone cannot successfully
segment normal and pathologic tissue. The combination of both methods (e) allows
a segmentation similar to the manual segmentation of a clinical expert (b).

A prerequisite for image based modeling is segmentation. Segmentation is a
method of separating the data into anatomical objects by labeling intensity value
images according to the tissue type. Many medical image segmentation approaches
evolved from general image processing methods such as low level image operations
(thresholding, edge detection, mathematical morphology) [112], statistical classifi-
cation [25, 48, 133], active contours [94] or neural networks [25]. For tumor seg-
mentation, conventional segmentation methods work well in some cases but will
not differentiate between non-enhancing tumor and normal tissue [25, 50, 135, 136].
Clinical image analysis indicates that methods based on image information alone are
insufficient for successful differentiation between tissues (see Figure 1.1c¢) [70, 71].

A different aproach are template based segmentation methods [31, 139, 141]. The
information about the size, shape and location of anatomical structures is gained



directly from a digital anatomical atlas [81]. “Registration” methods allow to adapt
the anatomical atlas to the patient’s individual image data of the.

The majority of the prior template based segmentation work focuses on the
segmentation of normal brain or brains with multiple sclerosis (MS) lesions, which
are small in size and limited to a subset of the brain tissue, the white matter [38, 72,
140, 141]. Tumors, however, vary greatly in size, shape, location, tissue composition
and homogeneity [71, 152]. The lack of general a priori shape information in tumors
makes their standardisation in an atlas difficult, which is why this method cannot
be directly used to segment brain tumors (see Figure 1.1d).

For these reasons, this work has two goals: First, to demonstrate that accurate
and robust automated segmentation of MRI of normal and tumor tissue is possible
with the combination of anatomical knowledge, statistical classification and struc-
tural segmentation methods (see Figure 1.1e). Second, to investigate and improve
state of the art registration methods with the purpose of optimizing their use for
the adaptation of a digital brain atlas to individual patient image datasets.

After a review of the current state of the art (Chapter 2) a methologic overview
is given (Chapter 3), before the algorithms are described in detail. This includes
the specification of a method for the automated segmentation of normal and tumor
tissue of MRI in patients with meningiomas and low grade gliomas (Chapter 4),
and the comparison of several optical flow methods and the development of a new
method for improved registration of an atlas to individual patient datasets (Chapter
5). Finally, the methods developed in this thesis are validated in Chapter 6.

The segmentation methods presented in this work are currently used routinely

and for further clinical evaluation at the Brigham & Women’s Hospital, Harvard
Medical School, Boston, MA, USA.



Chapter 2

State of the Art

2.1 Medical Applications

Medical images are rich in information that can be used for diagnosis and subsequent
therapeutic interventions. While the increased availability of imaging modalities
such as MR, CT, MR-angiography and functional imaging is of considerable use
to the medical practitioner, these methods are still inherently limited because they
provide images with information content limited by the physical characteristics of the
imaging device. While visual inspection of the 2D images is often sufficient for the
practitioner, some situations require image post-processing (i.e. segmentation) for
the extraction and utilization of the structural and geometric information inherent
in the 3D medical imagery.

Applications in the area of treatment of patients with brain tumors range from
identification and characterization of a tumor [70, 71, 107, 109], quantitative volume-
measurement for the planning and evaluation of radiotherapy [50, 132, 131, 135],
to surgical planning and intra-operative guidance, where 3D visualization provides
improved insight into spatial relationships between brain structures and aids in the
task of localizing e.g. tumor-boundaries and critical areas (e.g. motory and sensory
cortex) [43, 69, 92, 97, 98, 114, 144]. Preliminary results demonstrate improvement
of existing treatment methods and new possibilities for therapy [9, 69, 97, 117, 130,
132, 135].

Significance of MRI

Magnetic resonance imaging (MRI) is the most frequently used imaging technique
in clinical neuroscience and neurosurgery for noninvasively establishing diagnosis,
quantitatively evaluating disease processes and guiding therapy [67]. This is because
of the absence of ionizing radiation, as opposed to other imaging methods such as
x-ray computer-tomography (CT), its capacity to produce images in planes with any
orientation, and superior contrast resolution of soft tissue, such as tumor and related
pathologic tissue (edema, necrotic and cystic parts) (see Appendix A) [52, 152].
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Surgical Planning

One of the principal problems in surgical planning is the precise localization of crit-
ical brain structures with respect to the tumor to define the safest possible surgical
approach with the least possible damage to normal tissue.

While 2D images accurately describe the size and location of anatomical objects,
3D views from 2D images highlight structural information and spatial relationships
of the anatomy. The process of generating 3D views, however, is a difficult task and
is traditionally carried out in the clinicians mind.

However, with image processing tools, the information in the orthogonal 2D
cross-sections can be enhanced and interactively displayed using 3D models (see
Figure 2.1). This considerably helps the surgeon in the trajectory optimization
process and the planning of the procedure by:

e allowing him to test and analyze alternative navigational paths and movements
through the physical space

e improving the spatial information about relationships of critical structures
(e.g. pre- and post-central gyri, vascular structures) and pathology

e providing an integrated display of information from different imaging modali-
ties such as CT, MR, MR-angiography or functional imaging

e presenting image information in a way that is more similar to the surgical view
of the patient during the operation, thus facilitating the comprehension of the
entire anatomy. For example, the (mental) 3D visualization of structures that
do not readily align with the planes of the image acquisition (e.g. the vascular
tree) is difficult based on 2D images alone but is essential to the surgical
procedure.

Image guided surgical planning methods have been successfully applied to choose the
optimal position of entry and trajectory of the approach, enable optimal craniotomy
(the “opening of the skull”), simulate the surgical opening and the tumor resection,
and enhance neuroanatomic and neurosurgical training [18, 65, 81, 87, 97].

Computer based Intraoperative Image Guidance

Cranial neurosurgery has been a major area of the application of image guidance
because even small damage to the brain during access to target areas can have very
serious consequences for the patient, and the human surgical visualization during
surgery is a complex task since:

e The neurosurgeon has a limited view of the operating field. For example,
conventional craniotomy restricts the surgeons view by the relatively small
area of exposed brain surface.

e The surgeon cannot visualize structures beyond the exposed surfaces, making
it difficult to comprehend all of the relevant anatomy.
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Figure 2.1: 3D rendering of anatomical model for surgical planning and
intra-operative visualization. The visualization software (“3D Slicer”, [49]) al-
lows for arbitrary reformatting of 2D cross-sections, and translation, rotation and
zooming of the scene. During surgery, the position of a surgical instrument is indi-
cated in the 3D-scene by display of a virtual pointer.

e Integration of the preoperatively acquired 2D imaging information has to be
done mentally, to treat disease processes that are manifest in 3D.

e It is difficult in some cases to assess the margins of a tumor. For example, the
margins of a low grade astrocytoma are often indistinguishable from surround-
ing brain on visual inspection. For a high grade tumor, gadolinium staining
demarcates tumor growth more clearly than visual inspection and the enhanc-
ing margin may not correspond to anything visually.

Such limitations of direct surgical visualization have several consequences. Cortical
localization is not accurate, the definition of exact trajectories of targeting is impos-
sible, and in order to ensure complete resection, normal tissue has to be removed if
the anatomical and pathological boundaries are not clear.
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Tumor surgery can be significantly improved by image guidance. Frameless
stereotaxy devices (or “Neuronavigation systmes”) track surgical or pointing in-
struments relative to preoperative image information of the patient in real-time. By
tracking the 3D pose (position) of surgical instruments, in conjunction with tracking
the 3D pose of the patient, the operator can be navigated through 3D coordinates
by showing the position of the instrument on 2D scans or 3D visualizations of the
anatomy of the patient [145, 144, 41, 114, 106, 79, 92] or by overlaying 3D renderings
of anatomical structures on the surgeons view of the patient [55, 54, 35]. Neuron-
avigation improves localization and targeting based on previously-acquired images,
enables accurate determination of the margins of the tumor within the normal brain
to avoid eloquent areas of brain [69, 9, 145, 106, 79, 97, 65, 2, 100].

MR-guided Intraoperative Image Guidance

During surgery, preoperatively acquired image information is no longer accurate.
This is due to patient movement and shifts or deformations of the anatomy resulting
from the surgical intervention. In this situation either partial correction of the 3D
models or full volumetric image update is necessary, which can be acquired from
intraoperative imaging. In this scenario, the entire operation takes place inside
MR scanning devices which provide the surgeon with continuous real-time imagery
during the surgical intervention [110, 56, 89, 9, 130, 90, 117]. Preliminary work has
been reported on the measurement of brain shift, updating of preoperative images
by warping and fusion to intraoperative image volumes and intraoperative image
segmentation for updating of the preoperative 3D models [59, 60, 142].

Radiation Treatment Monitoring

MRI is often used for monitoring tumor response to radiation therapy. By taking
multiple images of a subject over time a clinician can effectively track progress or
regress of a medical condition and quickly determine the impact of radiation treat-
ment of brain tumors. By using initial images as a baseline, subject tracking results
in interpretations that are specific to an individual. Computer-based segmentation
of MRI data improves the boundary definition of pathologic tissue and provide the
means for an objective and reproducible measurement of tumor response or relative
tumor volume measurement during therapy, which is important for clinical trials.
[8, 24, 135, 132, 131].

Motivation for Automated Segmentation

Image segmentation is an essential requirement for the applications described above,
and the automation of the segmentation process is a crucial task for several reasons
(e.g. [3, 48, 71, 95]):

e The complexity and variability of the brain can make the identification of
different structures difficult. The situation is even worse for brain tumors.

e Due to the sheer size of the datasets, manual segmentation is labor intensive
and thus not feasible in standard clinical settings.
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e Manual segmentation is subject to human error, resulting in unpredictable
inter- and intra- operator variability.

Requirements for the Clinical Application of Segmentation

To meet the requirements of clinical routine, the constraints on segmentation meth-
ods for medical image analysis are [48]:

e minimal user interaction
e efficient procedures running on standard computer hardware
e robustness (insensitivity to noise and to variations among patients)

e reliability (predictable results)

2.2 Magnetic Resonance Imaging (MRI): Basic
Principles and Properties

This section provides a brief introduction to magnetic resonance imaging, outlines
artifacts and limitations and gives an overview of considerations concerning the
application of MRI on the pathologic brain. Further readings on MRI physics and
application can be found in [85, 99, 101, 146].

2.2.1 Conceptual Overview

In medical settings MRI is used to produce high quality images of the inside of
the human body. Clinical MR images are based on proton density and proton
relaxation dynamics. These vary according to the tissue under examination and
reflect its physical and biochemical properties. Different tissues are characterized
and discriminated according to the different properties of their constituents (water,
iron, fat, blood and its breakdown products).

The MR images are obtained by placing the patient or area of interest within
a powerful, highly uniform, static magnetic field. Magnetized protons (hydrogen
nuclei) within the patient align like small magnets in this field. Radiofrequency
pulses are then utilized to create an oscillating magnetic field perpendicular to the
main field, from which the nuclei absorb energy and move out of alignment with
the static field, in a state of excitation. As the nuclei return from excitation to
the equilibrium state, a signal induced in the receiver coil of the instrument by
the nuclear magnetization can then be transformed by a series of algorithms into
diagnostic, digital images.

During a single image acquisition, several components of the received signals
are recorded, the most common being the proton densities and the relaxation time
constants T1 and T2'. Hence, an image represents the spatial distribution of several

IT1 (spin-lattice relaxation time) describes the relaxation time of the nuclei as projected on
the longitudinal z-axis, z being the direction of the main constant magnetic field. T2 (spin-spin
relaxation time) describes the relaxation time as projected on the transverse xzy-plane
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distinct tissue-related parameters. Each pixel/voxel is a feature vector of these
properties.

2.2.2 Image Artifacts and Limitations

The quality of image processing is limited by the quality of the underlying imaging
technique. Thus, it is important to know and understand the characteristics and
limitations of MRI. This section provides a qualitative overview of common artifacts
seen in clinical magnetic resonance images and comments on its limitations with
respect to imagery of pathologic brain.

Dropouts and Shifts

Shift artifacts cause displacement of a reconstructed object from its true position
in the image and local image distortions. They are due to susceptibility artifacts
(change of magnetic susceptibility at tissue boundaries) or chemical shifts (shift of
frequency response due to the chemical environment) and occur where air/tissue,
tissue/bone, or tissue/metal form boundaries. A second effect of susceptibility ar-
tifacts is signal dropout, which appear near air-tissue and tissue-bone interfaces
[115].

Motion

Motion artifacts appear as repeating densities oriented in the scanning direction or
“ghost images”. These result from motion during the acquisition of a sequence. In
brain imagery, this artifact is most commonly caused by physical movement of the
subject during image acquisition [115].

Partial Volume Effect

The partial volume effect results from the finite spatial resolution of the MR image:
a pixel/voxel may represent more than one kind of tissue type. As a result, borders
between two different tissues types are blurred or misrepresented. In brain imagery,
this typically appears at the interfaces brain surface with cerebro-spinal fluid (CSF)
(see Appendix A for anatomical description), where CSF may appear as white matter
[48].

Noise

The signal-to-noise (SNR) ratio increases proportional to the pixel/voxel size (i.e.
the field of view (FOV) and the resolution), proportional to the square root of the
imaging time and is determined to a significant extent by the strength of the external
magnetic field [146]. The noise may be modeled as additive, rayleigh distributed
white noise [140].
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Geometric and Signal Distortions

Inhomogeneities in the static or gradient magnetic field cause systematic geometric
and intensity signal distortions. Gradient field inhomogeneities may distort an image
to a bow tie, barrel or potato chip shape. A nonlinear static magnetic field causes
the intensity signal of a tissue type to vary spatially [84, 118].

Contrast

Contrast between tissues is highly sensitive to the choice of parameters, e.g. the type
of sequence, T1-,T2-, PD-weighting, resolution and artifacts. For the characteriza-
tion of brain tumors, MR tissue parameters are not sufficient for distinction between
tumors (types, degree) or between tumor tissues (active tissue, edema, necrosis, cys-
tic parts), which is partly explained by the large variety of tumor types and varying
degrees in many tumors [70, 71].

2.2.3 Features of the Application to the Pathologic Brain

The main quality measures in MRI are high tissue contrast, resolution and SNR.
These are functions of numerous intrinsic and extrinsic parameters and thus subject
to a complex optimization process. The most important intrinsic parameters, which
are measured in the course of the MR examination, are the spin-lattice relaxation
time (T1), the spin-spin relaxation time (T2), and the proton density (PD), which
depend on the different tissue characteristics. The extrinsic parameters are those
chosen by the examining physician and include the echo time (TE), repetition time
(TR), field-of-view (FOV), slice thickness, and resolution. In addition, there is a
wide choice of pulse sequences [67]. For an explanation of the physics of these
parameters see [85, 99, 146].

Because each combination of extrinsic parameters represents a tradeoff between
the quality characteristics of an MR image, image acquisition protocols containing
a series of different MR sequences are specifically designed for the analysis task
at hand. In general, spin-echo (SE) sequences are used for good tissue contrast
properties: white and gray matter are represented by their T1 and PD values,
active tumor tissue with T1 images, and edema on T2 images. Gradient-recalled-
echo (GRE) T1 sequences are used for obtaining a large number of images with high
resolution from a volume as required for surgical planning and image processing,
however sacrificing the contrast for resolution [67].

The appearance of tumor tissue may be improved by the application of contrast-
enhancing agents. These drugs contain gadolinium, a paramagnetic metal ion that
shortens the T1 signal in regions of blood-brain barrier breakdown [67]. The degree
of enhancement is related to the level of the blood-brain barrier disruption and the
related transport of the agent. Thus, the degree of enhancement is patient, tumor
type and stage dependent [108].
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2.3 Segmentation of Magnetic Resonance Images
of the Brain

2.3.1 Introduction

Image segmentation has been defined as “the process that subdivides an image into
its constituent parts or objects” [53], or “the decomposition of an image into natural
units” [113].

For medical image analysis, the goal of segmentation is “to partition the original
set of image points into subsets corresponding to meaningful anatomic structures”,
which may be particular tissue types (e.g. bone, white matter, gray matter, tumor),
or functionally-identifiable structures (motor cortex, sensory cortex) [3]. This con-
version may be accomplished by labeling individual voxels as belonging to a tissue
class, by extracting volumes of connected voxels with common intensity responses,
by extracting surfaces separating voxels with common responses, or by combinations
of these steps.

Classification of Medical Image Segmentation Methods

For 2D image processing, several classifications of segmentation methods have been
proposed which apply to 3D with the specification that regions are volumes and
edges become surfaces [3]. Haralick and Shapiro state that “Image segmentation
techniques are basically ad hoc and differ precisely in the way they emphasize one
or more of the desired properties” [58]. Following Gonzalez and Wintz, “segmenta-
tion algorithms are generally based on two basic properties of gray-level values: dis-
continuity and similarity” [53]. Jdhne divides segmentation approaches into “three
basic concepts: pixel-based, edge-based and region-based” [68]. For medical image
processing, segmentation methods have been categorized as follows [38, 72]:

e manual or operator controlled
e automated

— data (i.e. intensity) driven

— model or template driven

Operator controlled segmentation methods are based on superior human pat-
tern recognition capabilities and prior clinical experience [38]. An interaction be-
tween an expert medical practitioner and the image analysis system is utilized. In
this approach, the operator uses a graphical interface to apply basic segmentation
methods such as thresholding (e.g. [88]), mathematical morphology operators [112],
seeded region growing [1], or combinations of these [17, 62] and to draw borders of
regions of interest, typically slice by slice through the 3D volume (e.g. [134]).
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Signal intensity driven segmentation differentiates tissue types or structures
based on their response to the medical imaging mechanism. Such methods are often
statistical in nature, and usually rely on the operator defining the characteristics of
each tissue class (e.g. the average response, represented by the intensity in the im-
age), either as a statistical model [25, 48, 74, 133, 147, 148] or by identifying a small
number of distinctive prototype voxels in the scan [25, 26]. These methods then
classify the remaining voxels using e.g. nearest neighbor or k-means style classifica-
tion [34, 42]. Alternative methods use edge detection (e.g. [113]) or other surface
extraction methods such as deformable models (e.g. [95]) to directly define volume
boundaries, by identifying transitions in intensity properties between neighboring
but different anatomical regions.

Template driven segmentation methods utilize anatomical knowledge to guide
the segmentation process. A common approach is to compare individual images to
an anatomical atlas to define volumes of interest. Identifying structures based upon
a priori knowledge and a presegmented anatomical map relies on the assumption
that the individual brain image and the atlas template are in the same frame of
reference. This can be achieved by non-linear spatial alignment procedures (com-
monly referred to as registration), that identify geometric differences and project the
template onto the individual. [20, 30, 31, 36, 72, 141].

The remainder of this section aims to provide a survey of relevant recent literature
concerning medical image segmentation of MRI and segmentation of brain tumors in
particular. The material presented is heavily condensed and papers before 1995 are
only referred to in “classic” cases. Later in this Chapter (Section 2.4) a description
of current non-linear registration techniques is presented.

2.3.2 Signal Intensity Driven Segmentation with Statistical
Classifiers

In the case of MR image data sets, statistical classification is the process of finding
rules to map voxels intensity values onto different tissue types. The decision to
classify a voxel as a certain tissue type is made in an n-dimensional feature space,
with n being the number of imaging modalities available. The decision is based
on prior knowledge of the combination of intensity values for different tissue types,
which may form clusters in feature space. Thus, “the problem of classification
is basically one of partitioning the feature space into regions, one region for each
category” [34].

Statistical classification methods have been extensively investigated in medical
image analysis literature. A thorough review of the theory of statistical classification
methods may be found in [34, 42|, a review of MR image segmentation techniques
using statistical pattern recognition in [8].

The use of multi-channel statistical intensity classifiers for medical image seg-
mentation was pioneered by Vannier et al. [133], describing the application of classi-
fication technology originally intended for the segmentation of remote sensing data
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on MR image data and later used and extended by others. The application of
both supervised and unsupervised methods have been described, which differ in that
supervised methods require training data sets to identify each tissue type while
unsupervised methods assign grey value response of tissues a general probability
function (e.g. a gaussian). Training is usually provided by manual selection of
prototype points in the image for each tissue type through a medical expert.

Vannier et al. conclude that supervised classification has a more important role
in MRI analysis than in satellite image analysis because the classifier training by
a radiologist is likely to provide more reliable prototypes as opposed to general
probability distribution models.

Clarke et al. [24] report a comparison between supervised and unsupervised
methods, highlighting that supervised methods are operator dependent and thus
subject to variability of results, which has been measured to be relatively large.
Unsupervised methods have the advantage of being operator-independent and clearly
desirable from a viewpoint of reproducibility. However these methods may not result
in meaningful segmentations and the quality of the results strongly depends upon
the initialization of the algorithm. In a report on the stability of three classification
techniques, the maximum likelihood (MLM), the k-nearest neighbor (kNN) classifier
and a backpropagation artificial neural net (ANN), Clarke et al. [25] find the kNN
method to be the most accurate and most stable, but also the slowest. Recently,
algorithmical improvements have made kNN computationally feasible [140)].

Common MR artifacts such as spatial inhomogeneities and partial volume effects
and noise (see section 2.2.2) cause the MR response of a tissue to vary spatially,
resulting in mis-classifications due to the global nature of the tissue model. Wells et
al. [148, 149] have addressed the issue of intensity inhomogeneities in MRI with an
Expectation-Maximization (EM) method which was later extended and refined by
others [13, 51|. This method iterates between estimation of tissue class labels and
estimation of the RF intensity inhomogeneity for tissue segmentation and correction
of slowly varying intensity variations.

The effect of noise on the EM method has been addressed recently by extend-
ing the measurement model with a prior statistical neighborhood model, a Markov
Random Field (MRF), which was introduced to image segmentation by Geman and
Geman [46]. This prior model allows to incorporate information about the spatial
homogeneity of tissue structure in a local neighborhood, so that the determination
of the class of a pixel depends on the class of neighboring pixels. The algorithms pre-
sented by Held et al. and Kapur et al. show improved robustness to noise [61, 74].
The main problem of statistical classification of MRI are misclassifications due to
overlapping intensity distributions of different tissue classes [140, 24].

2.3.3 Template Driven Segmentation

A different approach to segmenting medical images uses a priori anatomical knowl-
edge. In this context, an anatomic atlas may represent the name and location of
anatomic structures. By comparing the atlas with the individual data, volumes of
interest or explicit structures can be located in the patient.

Comparing two different brains requires a mechanism for their integration into
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the same spatial frame of reference, which is referred to as registration. The registra-
tion usually consists of two components, namely establishing a relationship between
the reference and the patient specific data, and the subsequent projection of the
atlas onto the patient data or vice versa.

Several groups have investigated the template based segmentation framework for
the application to MR images of the brain. They basically differ in:

e the representation of the template anatomy in the digital atlas
e the frame of reference where datasets are compared
e the method of integrating the template information to generate a segmentation

e the method of alignment

Digital Brain Atlases

Much research has been directed towards the development of 3D-atlases of the hu-
man brain for several applications, e.g. as a guide in neurosurgical planning, as a
template for segmentation, as a reference for quantitative comparison of brain ar-
chitecture across different subjects, to locate functionally important structures (e.g.
motory or sensory cortex) or for teaching purposes [37, 63, 81, 127]. The atlas from
the groups of Evans et al. , Thompson et al. and Kikinis et al. have been used for
the segmentation of patient brain images, which differ in the type of data source
(MRI or histological slices) and the information provided (volumetric, surfaces or
tissue probabilities).

Evans et al. [37] used MR images from 305 living normal subject to reach
an average representation of human brain anatomy. For the purpose of averaging
over different subjects, the 3D volumes were transformed into the Talairach sys-
tem, a standardized stereotactic coordinate system for the human brain based upon
common anatomical landmarks [119]. The (piecewise affine) transformation of 12
individual rectangular regions of brain aligns the anterior and posterior commis-
sures and overall extrema. Subsequently, the transformed images are normalized
and averaged on a voxel-by-voxel basis. The average intensity template provides a
probability map for the location of anatomic structures.

Thompson et al. [127] also developed an average atlas on the basis of six normal
subjects. However, they used digital images of thin histological slices of cadavers
(cryosectioning) instead of MRI, providing improved image quality of 10242-2048? at
a slice thickness of 20-50 pum, but, due to the sheer amount of image data, labeling
of structures has just started. The images where mapped into Talairach space, and
the brain boundaries outlined manually. This atlas holds a representation of the
sulcal surfaces, which was constructed by mapping regular meshes onto each sulci
and averaging over the six subjects, leading to a set of probabilistic measures for
the variability of the human brain [127]. This atlas was later combined with MRI
volumes of 10 normal subjects transformed into and averaged in Talairach space
[126].

The atlas of Kikinis et al. [81] is based on volumetric MR images of a single
normal living subject (256x256x124 resolution, 1.5 mm slice thickness). Instead of



2.3. SEGMENTATION OF MRI OF THE BRAIN 15

adopting the Talairach system, the atlas is deformed to fit the individual brain. Us-
ing manual and semi-automatic segmentation techniques, volumetric label maps of
currently app. 250 different structures of the brain were generated. This atlas is the
most detailed in terms of the number of structures, and, because the imaging method
is noninvasive and nondestructive, the subject may be reimaged for extension of the
atlas (e.g. to add functional data).

Spatial Frame of Reference for the Comparison of Individuals

There are two ways of comparing different subjects:
e the individual is transformed into the Talairach stereotactic space
e the atlas is transformed to map the individual’s anatomy

As for template based segmentation, the choice for a strategy depends on the
choice of the atlas. Comparing to a population-based atlas in Talairach space has
been used for the identification of otherwise not differentiable structures in MR
images such as different sulci and gyri [28, 31|, while a deformable atlas has been used
to define volumes of interest such as white and gray matter to restrict a statistical
classification scheme for MS lesions [140, 141].

While it is argued that population-based atlases better express the differences
among individuals, the choice of the Talairach system as the “standard brain space”
is considered problematic since the piecewise affine transformation may not be suf-
ficient to describe inter-individual anatomic variability [129].

Spatial Alignment of a Brain Atlas

With a segmented digital atlas of the brain at hand, the question then becomes how
the atlas and the patient are projected into the same frame of reference in order to
compare the two. This presents a challenge, because wide inter-subject anatomical
variations have been reported even among normals, such that neural structures differ
in shape, size, orientation, topology and spatial relation to each other [124, 125]. In
case of pathology, such as tumors, these variations are even more substantial, and
above all, these structures do not exist in an anatomical atlas of a normal brain.

Due to the complex variability between individual brains, a linear transforma-
tion will fail to describe the differences appropriately. Instead, the transformation
is better characterized as non-linear with a high degree of freedom, allowing for
structures to deform in a non-linear fashion (i.e. shrink, grow, and twist), and to
move or rotate locally and independently (e.g. [21, 28]).

The alignment of atlas and patient usually involves two steps, namely to establish
the correspondence between two data sets, and subsequently to warp one dataset
onto the other. To the present date, many different approaches for the task of
non-linear registration have been proposed, varying in the coupling between data,
the level of automation and the tissue deformation model. For illustrative purposes
we shall remain in the context of atlas based segmentation framework and refer
to Section 2.4 for a detailed review of relevant literature in the field of non-linear
registration techniques.
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Integration of Anatomical Models and Segmentation Processes

Once the match between the atlas data and the patient is established, different ways
have been reported to use the anatomical information for the segmentation process.

e The matched atlas is used directly. Segmentation is achieved by looking up the
corresponding tissue label in the atlas on a voxel-by-voxel basis [31, 36, 44].

e The matched atlas represents a probability map of structures in a standardized

stereotactic space, incorporated as priors in a bayesian classification method
[72, 155].

e The atlas is used as a mask to restrict a subsequent segmentation or classifi-
cation scheme to regions of interest [66, 140, 141].

e The atlas is used as an additional feature channel with statistical classification,
and classification and registration are iterated [139].

The direct use of an anatomic atlas accounts for the anatomic variability of
human brains by deforming the atlas onto the patient. An atlas probability map
collected in a standardized space accounts for anatomic variability by combining
several subjects into one atlas. In the following, recent approaches with the template
based framework are reviewed.

Application of Template Driven Segmentation to MR Images of the Brain

Initial work on the methodology of atlas based brain segmentation by Evans et al.
[36] and later Collins et al. [31] used an atlas of 20 normal brains, averaged in
Talairach space and manually outlined for 60 different structures. For registration,
they use a combination of a linear and a non-linear matching step based on volumet-
ric gray-value data and the gradient amplitudes and directions. The segmentation
is reduced to a registration problem.

Kamber et al. [72] from the same group used an averaged probabilistic atlas
in Talairach space, derived from 12 patients and segmented into white and gray
matter, ventricle and external liquor (csf)? for the segmentation of multiple sclerosis
(MS) lesions. In this illness, 95% of the lesions appear in white matter. This
property is used by thresholding the probability of white matter to restrict a bayesian
classification to a region of interest. They manage to reduce the false positive lesion
by 56%-82%. Recently, Zijdenbos et al. [155] reported the use of a probabilistic atlas
based on 300 patients in combination with a Talairach space registration method and
a back-propagation artificial network (ANN), that uses three different MR modalities
in conjunction with three probability maps of an anatomic atlas as input channels
for the segmentation of MS lesions.

Gee et al. [44] have used a volumetric non-linear registration method based on
Bajcsy et al. [4] for anatomical localization. Segmentation consisted of matching a
one subject volumetric atlas containing 109 different structures. For the segmenta-
tion, the brain in CT, MRI or PET was manually outlined and contours matched to

2See appendix A for anatomical description
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contours with an optical flow based approach. The outlines of anatomic structures
in the matched atlas where directly transferred to delineate regions of interest.

Haller et al. [57] have used a single subject atlas in combination with an non-
linear matching scheme based on fluid dynamics (Christensen et al. [21]) to segment
the hippocampus.

Warfield et al. have reported the application of template based segmentation
in patients with multiple sclerosis [140, 141]. In this approach, an optical flow
scheme to match a single subject atlas to the patient was used to segment the
brain from the head and subsequently gray matter from white matter. Then, the
white matter area is masked out and a statistical classifier in combination with
mathematical morphological operations is used to segment white matter lesions.
This procedure has also been used to identify basal ganglia structures in the brain
[66]. Recent work by this group has described an adaptive template based approach,
where classification and registration are iterated [139]. The matched atlas is used as
an additional feature channel to the statistical classification, and the segmentation
is used for the registration of the atlas. This approach can segment normal and
abnormal structures of different regions in the body.

2.3.4 Segmentation of Brain Tumors

Preliminary work applying conventional segmentation methods for tumor segmenta-
tion report limited success, often indicated by the lack of clinical validation studies.
Approaches that operate on single MR acquisitions using thresholding and morpho-
logical operators [50], active contours [153] or neural networks [33, 154] work well
in some cases but may not differentiate between active tumor, associated pathology
and normal tissue, which requires the acquisition of several tissue parameters [70].
Especially active contour approaches need initialization close to the final bound-
ary, which is difficult to automate due to the variability of shape and thus requires
tedious manual interactions [123].

Clark et al. and later Velthuizen and Vaidyanathan from the same group apply
multispectral classification methods to glioblastomas and astrocytomas [23, 103, 131,
132, 135]. Their validation work is notable, but at the same time reveals problems
with overlapping intensity distributions, although these methods show improved re-
sults over the single channel methods. In a recent study, a classification method
guided by anatomical knowledge was required for the automatic detection and seg-
mentation of glioblastoma multiforme from a combination of T1-, T2- and proton
density (PD) MRI with promising results [22]. However, anatomical knowledge is
not individualised by using e.g. registration techniques.

2.4 Non-linear Registration of Medical Images

2.4.1 Introduction

The process of bringing two images into spatial alignment is referred to as regis-
tration. It usually consists of two steps, namely a) to establish the correspondence
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between a (fixed) reference data set (e.g. the patient) and a template data set (e.g.
an atlas), and b) the subsequent projection of the template onto the reference.

The representation of the correspondence between two images depends on the
number of degrees of freedom (DOF) the correspondence model allows. Linear
registration methods can be described using a constant matrix equation to express
the spatial relationship between the coordinates of two volumes. They allow only a
global translation and rotation in the rigid case, and additional global scaling and
sheers in the affine case. The term non-linear registration applies to those methods
that allow more than 9 DOF. In these cases, the geometric transform consists of a
transform map, with either a linear transform for several independent compartments
of the image or a translation vector for every voxel.

Registration methods are also characterized by the subjects that need to be al-
ligned. Intra-subject registration aims at the alignment of e.g. several image modal-
ities (e.g. CT and MR) taken from a single patient. Applications may be integrated
visualization, follow-up studies over a longer period of time to evaluate therapy or
disease process, or intraoperative registration, where anatomy has changed due to
the surgical intervention. Inter-subject registration aligns data sets from different
patients, for the characterization of shape differences between patients or with re-
spect to an atlas of a normal brain, or for the definition of anatomical structures or
segmentation. It has been found that a linear transformation is not sufficient neither
for inter-subject registration nor to describe the changes seen in patients undergoing
surgical procedures [28].

Approaches to non-linear registration of medical images may be characterized by
the level of detail at which similarity is measured, i.e. comparison of corresponding

e points (point-based),
e surfaces (surface-based),
e the entire volume (volume-based)

Point-based methods rely on the information of corresponding anatomical land-
marks (fiducials). Such approaches consist of a) identification of two sets of corre-
sponding landmarks, which is usually done manually, and b) establishing the trans-
formation between the data sets with an interpolating transformation model. The
deformation is usually modeled by thin-plate splines, using the fiducials as control
points. The landmarks form the search space of a minimization problem, where the
energy function is a point-wise distance measure or similarity measure.

Surface-based methods establish correspondence through boundaries of objects,
usually extracted manually or semi-automatically. The deformation is modeled
by smoothly connected shapes originating from 3D-snakes. Approaches vary in
the parametrization of the shape (e.g. Fourier-modes or Chen-surfaces) and the
shape/elasticity constraints.

Volume-based methods work on a voxel-to-voxel basis. The deformation is mod-
eled either as a rubber membrane (or ball/sponge in 3D) using optical-flow type
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formulations, or as elastic/viscous-fluid objects using continuum-mechanics formu-
lations. These methods differ in the feature domain (e.g. gray values, texture, edges,
segmented object regions), the employed similarity measures (e.g. sum-of-squared-
differences, cross-correlation, joint intensity distribution) and the way the model
reflects actual physical properties of the image medium.

In the following, recent publications in each of these three groups will be il-
lustrated. Global rigid and affine registration methods are not covered here. For

extensive review and comparison of such techniques the reader is referred to e.g.
[93, 151].

2.4.2 Point based Similarity Measure Methods

These methods use a set of corresponding anatomical markers (fiducials), which are
usually placed interactively, to guide the registration process. In this framework, the
fiducials are used as control points of thin-plate splines, that regularize or interpolate
the deformation over the entire data set. Originally employed by Bookstein et al. for
biological shape analysis [11], Kim et al. [82] combined this method with Mutual
Information (MI), a statistical similarity measure based on joint entropy of two
gray value data set. MI has been used and validated for the rigid registration
of medical images from different modalities by Wells et al. and Collignon et al.
[27, 137, 150]. Point-based methods are attractive for statistical description of shape
differences. However, they require intensive operator interaction in order to properly
select corresponding landmarks and have limited deformation capabilities, which are
directly coupled to the number of control points.

2.4.3 Surface based Similarity Measure Methods

Several approaches have been published that use surfaces of objects to establish the
correspondence between datasets. The basis of these methods is the deformable
shape or snake method of Kass et al. [75] to model the deformation. A survey
of these methods is presented in [94]. These approaches essentially use smooth
connected data structures (contours in 2D and surfaces in 3D) coupled to an energy
functional, which is a weighted sum of various terms to tradeoff faithfulness to the
data and stretching and smoothing of the shape. The shape is deformed until a
minimum state of energy is reached.

As to non-linear registration techniques, these methods usually involve several
steps: The extraction of corresponding surfaces of interest, the derivation of a para-
metric representation of these surfaces, the establishment of the transformation that
matches the surfaces, and, in case a volumetric match is desired, an interpolation of
the surface transformation over the volume.

MacDonald et al. [91] used a polygonal model to represent the presegmented
template surface. The transformation was estimated by minimizing a cost function
in the domain of the vertex coordinates describing the polyhedra to be deformed.
The objective function was a weighted sum of a data constraint, attracting the
template to boundaries in the patient image, and several model terms to avoid
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inter- and intra- surface intersection. Their method was used for template driven
segmentation of the cortical brain surface.

Thompson et al. [124, 125, 126] include several surfaces (ventricles and cortex
structures) to determine a match. The shapes were represented by a Chen-surface
(loosely, a superquadric with spherical harmonics modulated onto it [125]). For
extraction of the surfaces in the template and patient dataset, the shapes were
initialized by manually identifying landmarks on the structures of interest, and sub-
sequently refined by minimizing an energy formulation of a 3D-snake, which was
attracted by a thresholded 1st order derivative edge image. Subsequently, surface
displacement functions were established on parametric mesh representations of the
surfaces, mapping points from the same grid location within their respective surface.
These surfaces warps were then interpolated to form a displacement field over the
whole volume. The method was applied mono- and multimodal (MRI to MRI and
MRI to cryosection volumes).

The use of corresponding geometric features binds the mapping process closely to
the underlying anatomy. Impressive results are achieved, especially in the mapping
of cortical structures. However, these methods require significant manual interaction
for the initialization of shapes, which is crucial to the performance of the algorithm.
Another drawback is that some image information is partially neglected to the favor
of surface descriptions.

2.4.4 Volume based Similarity Measure Methods

There are two main approaches to volumetric non-linear registration of medical
images that have been pursued over the last 10 years: Optical flow based and
continuum-mechanics based approaches. Both approaches may be integrated into
the concept of regularization. The minimization of an energy formulation consisting
of a local similarity measure between the data and constraints on the deformation
field leads to the solution of the registration problem. Approaches in this domain
essentially differ in

e the similarity measure: sum-of-squared-differences (SSD), normalized cross-
correlation or joint-entropy measures

e data domain: gray values, derived features such as image gradients or distance
maps of structures, or segmented images

e the regularization: none, 1st or 2nd order derivatives of the deformation field
or both

e method of solution: jacobi relaxation or multi-grid methods with conjugate
gradient relaxation of finite element discretizations

To use optical flow (“the distribution of apparent velocities of movement of
brightness patterns in an image” [64]) for image registration, the template image
can be seen as the second instance of the scene represented in the target image. The
optical flow field then represents the shape differences between objects. The optical
flow is then applied to the image, where the flow vectors are used as translation
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vectors. Optical flow estimation and subsequent deformation of the template image
is iterated until a match with the target is achieved.

Many different formulations appeared and continue to appear. From the sev-
eral optical flow paradigms (see Barron et al. [7, 6] for an overview) the matching
techniques have been investigated for medical image registration [28, 31, 141]. The
advantages of these approaches are i) that they do not require temporal derivatives,
which is numerically problematic with only two image instances, and ii) the gen-
erality of the correlation type similarity measure, which allows the use of image
features.

In optical-flow methods, displacement vectors are assumed to be small, which is
not correct in medical images. This results from linear approximations made to reach
a formulation that is faster to solve. These shortcomings have been addressed by
solving the registration in two steps: i) solving for global translations and rotations
prior to the non-linear registration and ii) embedding optical flow into a multi-
resolution pyramid with a coarse-to-fine strategy.

A different approach is the application of methods originated in continuum-
mechanics modeling [5, 15, 19, 21]. Here, the template is given properties of an elastic
or viscous-fluid material. External and internal forces compete in a deformation
process until a state of equilibrium is reached. External forces are measured with
local similarity functions between patient and template images. Internal forces such
as shear and viscous stress are expressed through 1st and 2nd order derivatives of the
deformation field. Unlike optical flow methods, the constraints on the deformation
field are based on actual physical properties. However, these methods substantially
increase the computation time due to the increased complexity of the model.

Optical Flow Methods

Region-based methods define velocity/displacement as the set of regional transla-
tions that achieve the best image match [7]. Solutions are computed by maximizing
an integrated similarity measure locally over the subdivided images, which is regu-
larized with constraints on the deformation field.

Collins et al. [31] applied a multi-resolution matching technique in combina-
tion with a rigid alignment step to account for global translational and rotational
offsets prior to non-linear registration. The normalized cross-correlation gradient
magnitude and direction of the grey values over a local neighborhood was chosen
to measure similarity. The best match was found by optimizing three translation
parameters for each node of a regularly meshed grid. No global regularization was
used, instead a threshold was applied to prevent unrealistically large deformations.
Validation was carried out in a similar fashion to Gee et al. . A phantom was
artificially deformed and the algorithm applied to fit the original to the deformed
version. Performance was measured with the root-mean-squared distance between
296 landmarks, resulting in an average mismatch of 6.41 mm. In a later evaluation
study based on MRI of real brains with simulated deformations [28], reasonable
overlap between deep brain structures were reported, but sulci and gyri matched
insufficiently. In a recent publication, Collins et al. [29] improved his method by
adding cortical constraints to the model. Different sulci and gyri were identified
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semi-automatically to partially solve the correspondence problem prior to the reg-
istration and represented as Chamfer distance functions.

Warfield et al. [140, 141] used a technique developed by Dengler et al. [32] to reg-
ister an atlas to patients. The method is essentially a multi-resolution region-based
optical flow scheme using an SSD similarity measure and a global regularization of
the deformation field with 1st order derivatives. Instead of applying the method
directly to the gray value data, corresponding structures were segmented, which
significantly improved the robustness of the match. More recent work of this group
[66, 77, 139] used a more rigorous approximation by calculating the deformation field
in small image patches instead of using a regularization for improved computational
performance.

Continuum Mechanics Methods

The continuum mechanics approach differs from optical flow methods in its mo-
tivation. Some investigators have described methods of brain registration across
individuals where the template is embedded in a deformable medium with elastic
[4, 5, 15, 96] or viscous-fluid [19, 21| properties. The template medium is subject to
external an internal forces, which deform the template until the involved forces reach
a state of equilibrium. The deformation field is described by a simplified version of
the Navier-Stokes equations.

The idea of using an elastic model for the registration of C'T images was pioneered
by Broit et al. [15]. A normalized cross-correlation similarity measure with a global
1st order regularization was chosen, leading to the model of the simple membrane.
Bajcsy and Kovacic [5, 4] from the same group refined this method by implementing
a multiresolution version in a coarse-to-fine strategy, that allows to capture larger
shape disparities on coarse levels. In order to discretize the model equations, lin-
ear Taylor approximations were made and finite difference approximation led to a
large system of linear equations which was solved with Jacobi iterations. Bajcsy et
al. applied their method to manually outlined CT, MR and PET data, using the
boundaries of structures as features. In a validation study of this technique, Gee
and Bajcsy [44, 45] derived an atlas of 109 structures by manually outlining 135
sections from a postmortem young normal brain. To assess the performance of the
algorithm, the atlas was matched to several artificially deformed versions of itself.
The resulting volumetric percent difference was 6 %, and the mean overlap error
was 22%.

In Christensen et al. [19], the external forces are derived from a local normalized
cross-correlation function applied to the gray values. The internal forces express
viscous shear and stress, and increase with the deformation. The non-linear de-
formation force is evaluated without approximation, thus allowing large, non-linear
deformations. This leads to impressive results in the registration of brain data sets
across individuals. However, the solution on a finite spatial grid using successive
over-relaxation leads to extensive computation times (9 hours on a massively parallel
supercomputer for the registration of two 128x128x148 volumes).

Some work has been conducted to improve the computational performance of
Christensen’s approach. Bro-Nielsen et al. [14] present a fast algorithm for the
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solution of the Navier-Stokes equations based entirely on convolutions, achieving a
speed improvement of an order of magnitude.

Until now, volume based methods are the only type of non-linear registration
techniques that do not require manual interaction. However, the establishment of
correspondence is often based either i) on intensity data alone and thus subject to
imaging artifacts or differences in the representation of tissue types across images,
or ii) on segmented data and thus subject to segmentation errors.

Discontinuities in the Deformation Field

At the present time, non-linear registration methods assume a smooth deformation
field and one-to-one correspondence. The assumption of a smooth deformation field
is violated at the boundary of objects which move and deform independently. The
assumption of one-to-one correspondence is violated if template and target are not
topologically equivalent.

The problem of accommodating discontinuities in a deformation field has been
studied in the field of reconstructing 3D surfaces from 2D images. When a 3D
surface is to be estimated from an image of multiple objects, discontinuities must
be present between the different objects. Terzopolous et al. [120] reported a sur-
face reconstruction method based on the membrane model that is able to generate
smooth surface representations between discontinuities, and at known depth dis-
continuities, the smoothness functional is deactivated, allowing the reconstructed
surface to “fracture” locally.

However, the introduction of such energies makes the computation of flow field
difficult, because the minimization problem is now non-convex, i.e. has several local
energy minima [10]. Stochastic relaxation methods (e.g. simulated annealing) that
are suitable for the solution of non-convex problems are known to be slow [10, 105].
Thus, several attempts have been made to speed up the computation; finite ele-
ment modeling and the use of multi-grid techniques [121, 122], approximation of the
non-convex functional with a convex functional [10]. Schmidt and Dengler propose
a decoupling of the discontinuity detection from the deformation field estimation,
leading to a significant improvement of the computational performance [32, 111].
In this approach, an optical flow criterion was regularized with a controlled conti-
nuity function to allow local control of the degree of regularization applied by the
membrane through the use of a scaling of the membrane deformation energy. This
approach was successful in tracking moving objects with a continuity controlled
regularization of optical flow estimates.

2.5 Conclusion

Significance of Automatic Segmentation Methods Many applications of
computer assisted surgery and radiology require the segmentation of normal and
abnormal tissue in MRI images of patients with brain tumors. Manual segmentation
is usually not clinically practical, and the accurate, robust and reliable automated
segmentation of MRI of brain tumors is still an unsolved problem.
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Choice of a Segmentation Framework Correct segmentation of MRI of brain
tumors based on intensity values alone is not possible due to overlapping grey value
distributions of different tissue classes. Similarly, segmentation based on the reg-
istration of a normal atlas is capable of identifying structures despite ambiguous
intensity distributions, but is limited to the segmentation of normal structures. In
these aspects, these two techniques are complementary. Their combination is a
promising approach to exploit the advantages of both methods.

Non-linear Registration for Template based Segmentation Automated tem-
plate based segmentation requires automatic non-linear registration. Currently, only
the volumetric approaches are fully automatic.

The problems of segmentation and registration are strongly related:

e Structures with similar or identical (grey value) image characteristics can be
segmented with the registration of an anatomical atlas. For example, informa-
tion such as “there is no skin inside the brain” can be utilized to prevent brain
tissue being segmented as skin and vice versa, despite considerable overlap of
intensity distribution.

e Registration cannot rely exclusively on the raw MRI data. State of the art
surface based registration methods require the identification and description
of surfaces. Volumetric techniques interpret any change in intensity as defor-
mation or movement. This results in registration errors, if intensity differences
resulting from different modality, noise, or imaging artifacts, do not relate to
object diffferences. Registration based on segmented images conserves bright-
ness, and is more robust to noise.

e Registration errors result in segmentation errors and vice versa.
Some of the limitations of current sate of the art registration methods are

e Current non-linear registration methods assume one-to-one correspondence,
i.e. topological equivalence. This is not true for large intrinsic tumors.

e The deformation field is assumed to be smooth. However, registration of
multiple objects moving or deforming independently may cause discontinuities.

e Current registration methods assume correct segmentations, such that seg-
mentation errors lead to registration errors.

This review of the current state of the art shows, that several methods for the
segmentation and registration of medical images exist, each of them with some
limitations. The next chapter proposes our strategy to overcome some of these
problems.



Chapter 3

Outline and Original
Contributions

Goals of this work

The goal of this work is to develop algorithms for the automated segmentation of
normal and pathological tissue of MRI of patients with brain tumors. The specific
objectives of this work are a) to develop a method based on the integration of
statistical classification and nonlinear registration, in which context from a digital
brain atlas is used to moderate classification, and b) to extend the range of conditions
under which nonlinear registration methods can operate successfully to improve the
performance of template moderated segmentation methods.

Methological Overview

Statistical classification technology is based on the intensity information in an image
and has been used for the segmentation into global tissue classes. Because normal
and tumor tissue classes have the same or overlapping grey value distributions (Sec-
tion 4.1), such methods fail. Similarly, segmentation by registration of explicit
anatomical templates has been successfully applied to identify normal anatomical
structures, but may fail in the presence of highly variable brain tumors (Section
4.1).

The segmentation paradigm chosen in this work is called adaptive template
moderated classification (ATMC), which integrates these two separarate approaches
to segmentation [139]. Figure 3.1 illustrates the concept of the framework. The al-
gorithm involves the iteration of a) classification of the patient data set to assign
labels to tissue types, and b) nonlinear registration to spatially adapt (align, regis-
ter) the anatomical templates of a digital atlas to match the individual. The tissue
labels are computed with a statistical classification algorithm which is moderated
by the aligned anatomical template. As the computation progresses, the align-
ment is refined by iteration of nonlinear registration and tissue classification. The
tissue classification makes the nonlinear registration more robust, and the aligned
templates improves the ability of the tissue classification to discriminate different
structures with similar image acquisition characteristics. In Chapter 4, the details
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Figure 3.1: Schematic description of the adaptive template moderated
classification (ATMC) paradigm. Statistical classification and registration of
an anatomical atlas are iterated to resolve ambiguities resulting from overlapping
intensity distributions of tissue classes.

of the method and the design for the specific task of brain tumor segmentation is
discussed in detail.

The nonlinear registration technique used in the context of the brain tumor
segmentation method developed in this work is based on an existing optical flow
algorithm. This method works under a set of assumptions that does not model well
the image data and the deformation of the structures to which they apply. These
assumptions include the correctness of the underlying segmentation and the continu-
ity of nonlinear deformations. In Chapter 5, the performance of several approaches
to nonlinear registration are compared in terms of accuracy, robustness and com-
putational requirements. An extension to existing methods is developed, that a)
takes into account the probability of the segmentation, and b) allows discontinuous
deformation fields commonly found in images where several objects deform or move
independently.

In Chapter 6, the methods developed in this thesis are investigated and validated
based on synthetic images and databases of clinical image data.

Original Contributions

e Implementation of an optical flow approach with adaptive regularization in
3D. The method aims at the estimation of discontinuous deformation fields
resulting from the movement or deformation of multiple independent objects.
The algorithm extends an existing 2D optical flow approach. A multigrid algo-
rithm for the numerical solution of the 3D optical flow equations is designed.

e Comparison of the developed adaptive regularization method with a fast state
of the art template matching approach. Identification of the difficulties of both
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methods regarding the registration of segmented images of multiple objects.

e Development of a multi-channel probabilistic similarity measure to improve
the registration of multiple objects in segmented images.

e Comparison and validation of a sum-of-squared difference and the new multi-
channel probabilistic similarity measure to match a digital brain atlas to indi-
vidual MRI datasets, demonstrating a higher accuracy using the probabilistic
similarity measure.

o Identification of spatial and signal intensity characteristics of meningiomas and
low grade gliomas in spin-echo MRI relevant to the design of automated image
segmentation methods.

e Design and application of a method for the automated segmentation of the
skin surface, the brain, the ventricles and the tumor in gradient echo MRI
images of patients with brain tumors. The algorithm extends an existing
template based segmentation framework that combines statistical classification
and anatomical knowledge.

e Validation of the segmentation method for the tumor types meningiomas
and low grade gliomas based on comparison with manual segmentations from
trained medical experts, showing comparable accuracy and higher reproducibil-
ity of the automated method.

e Development of a method for the automated projection of functional structures
from an anatomical normal brain atlas onto patients with brain tumors.

In the following chapters, the methods outlined here will be discussed in detail.
While the methods presented here operate in 3D, in some cases, the performance
of an algorithm was better illustrated by showing 2D cross-sections through the 3D
MRI volume rather than a pseudo-3D representation.



Chapter 4

Segmentation of MRI of Brain
Tumors

In this chapter, the development of a method for the automated segmentation of
normal and pathologic tissue in patients with brain tumors is described. After an
analysis of meningiomas and low grade gliomas in MRI (Section 4.1) with respect
to the task of designing an automated image segmentation method, the general
segmentation framework is presented in detail (Section 4.2), the specific design of
the framework for brain tumor segmentation [77, 78] is derived (Section 4.3), and
illustrative results from the application of the method to clinical MRI datasets are
presented (Section 4.4).

Although non-linear registration is an important element of the segmentation
method developed in this chapter, the registration algorithm used is treated as a
black box. The analysis and development of registration methods is discussed in
Chapter 5.

4.1 Appearance of Brain Tumors in MRI

4.1.1 Brain Tumors in MRI

Medical imaging as well as object specific properties make segmentation of brain
tumors difficult. Image intrinsic factors (Section 2.2.2) cause segmentation errors,
because the MR characteristics of a tissue type are mis-represented. Examples are
fuzzy or blurred boundaries, or tissue appearance changing with the location. These
artifacts pose a general problem to any kind of segmentation.

For tumor segmentation, additional object related issues arise from the nature
and the appearance of brain tumors in MRI. A tumor is a complex object with
virtually arbitrary

e histology (e.g. meningioma, low grade glioma)
e size, shape, location

e tumor composition (e.g. enhancing and non-enhancing tumor tissue, edema,
necrosis, cystic parts)

28
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(a) MRI Cross-section of a Meningioma (b) MRI Cross-section of a Meningioma

(¢) MRI Cross-section of a Low grade (d) MRI Cross-section of a Low grade
glioma glioma

Figure 4.1: Examples for some of the most common brain tumors. Tumors
(white outline) may appear in virtually arbitrary shape, size, and location. They
show large variation in terms of MRI intensity, tissue composition and degree of
homogeneity [152].

e degree of tissue composition (homogeneity, texture)

Figure 4.1 shows typical examples of meningiomas and low grade gliomas im-
aged with a T1-weighted SPGR sequence (see below). These tumors are relatively
homogeneous and have well defined imaging characteristics [152]. Meningiomas are
high in intensity because they enhance well with the application of contrast agent,
and have well defined boundaries. Low grade gliomas, in contrast, are low in in-
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tensity because they do not enhance well with the application of contrast agent,
and boundaries to the brain are difficult to detect. In the presence of edema, it is
usually difficult to separate tumor from edema with T1 images only, and additional
T2 images are necessary to distinguish between edema and tumor.

In an in vivo study of 160 tumor patients on tissue characterization with calcu-
lated T1, T2 and Proton Density values, Just et al. report large variations in the
gray value distribution across patients with the same tumor type and considerable
overlap of gray value distribution both among different tumor types and with normal
tissue [70, 71]. They conclude that MR tissue parameters have only limited value in
characterizing and discriminating brain tumor tissue. However, they acknowledge
that limiting their measurements to single-exponential T1 and T2 decay due to time
constraints in a clinical setting results in a measuring error of 6%-12% and reduces
the specificity.

Schad et al. analyze 12 tumor patients with glioblastoma multiforme or metas-
tasis on the basis of first- and second- order image texture parameters [109]. They
state, that quantitative measures of brightness, micro- and macrotexture may im-
prove the discrimination accuracy over the use of MR parameters only, however
neither discrimination between the different tumor types nor between the tumor
tissues (e.g. edema and active tumor tissue) is reliable. In a similar but more ex-
tensive study on 88 tumor cases, Kjaer et al. [83] report satisfactory discrimination
by means of texture analysis. However, mean values over regions have to be used,
as discrimination power is not satisfactory on a voxel level.

The high variability of brain tumors and their appearance is demonstrated in
a report by Rofimanith et al. [107]. For the purpose of characterization and clas-
sification of (manually segmented) brain tumors for diagnostic aid, they find that
the combination of several features is necessary, including shape description, fractal
features of the contours and texture analysis.

4.1.2 Brain Tumors in MRI for 3D Model Generation

Image Acquisition Optimization of the image acquisition protocol is usually
necessary for automated image segmentation. The better the design of an imaging
protocol for a specific image analysis task, the simpler the task of segmentation, and
the better the results.

For surgical planning, high image resolution is necessary for the generation of
accurate 3D models. The MRI sequence used in this work optimizes the tradeoff
between resolution, contrast to noise and scanning time. Heads where imaged in the
sagittal and axial plane with a 1.5 T system (Signa, GE Medical Systems, Milwaukee,
WI).

e A 3D sagittal spoiled gradient recalled (SPGR) acquisition with contiguous

slices after gadolinium-enhancement (flip angle, 45°; repetition time (TR), 35

msec; echo time (TE), 7 msec; field of view, 240 mm; slice-thickness, 1.5 mm;
256 256 x 124 matrix).

Image Intensity Distribution In order to illustrate the spectral properties of
normal and abnormal tissue in the human head, examples of SPGR images of a
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Figure 4.2: Histogram of MRI intensity distributions of a meningioma
(a,c) and a low grade glioma (b,d). Histograms were assessed by masking the
MR images in Figure 4.1 (a), (¢) with manual segmentations. The tissue classes
cannot be separated based on intensity values alone, due to overlapping intensity
distributions.

meningioma (Figure 4.1 (a)) and a low grade (Figure 4.1 (c)) glioma were manually
segmented into the structures brain, ventricles, tumor, and skin. Skin comprises all
voxels of the head that do not belong to brain, ventricles, or tumor. This means
the skin class also contains e.g. fat, bone and bone marrow, and muscles. The
segmentation was used to mask out each structure in the SPGR image, and the
frequencies of the occurring intensity values were recorded (Figure 4.2).

The skin class is evenly distributed over the higher range of intensities, overlap-
ping with all classes except the ventricles. The peak in the skin distribution (glioma
case (b)) results from a larger part of muscle in the neck. The sudden drop of the
ventricle and skin class distributions ((a), (b)) reflect the definition of the skin class.
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Both images demonstrate the problem of intensity overlap between different tis-
sue classes. No tissue class is free of intensity distribution overlap. As for the tumor
tissue, the meningioma class overlaps with the skin class, while the low grade glioma
class overlaps with the skin and the brain class (mainly the outer cortex).

4.2 ATMC - Adaptive Template Moderated Clas-
sification

The core of the method is a closed loop of two algorithms that are carried out itera-
tively: A traditional multi-channel statistical classifier and a non-linear registration
method (see Figure 3.1).

The global separation of tissue classes is achieved with a statistical multi-channel
classification algorithm. To improve separation and clustering of the feature space,
knowledge about the location of structures derived from an anatomical atlas is in-
tegrated into the classification process. This is achieved by embedding the clas-
sification problem into a higher dimensionality feature space, where additional di-
mensionality is derived from anatomical templates, i.e. structures from a digital
atlas. By adding anatomical knowledge to the classification process, the spectral
information in the image is augmented with spatial information. In the common
case involving some spectral overlap between tissue classes, the ATMC resolves the
ambiguity of the feature space with anatomical context, i.e. with additional feature
channels derived from the atlas.

To use anatomical templates in a statistical classification context, two steps are
necessary: the atlas and the individual need to be spatially aligned, and anatomical
knowledge needs to be represented in a statistical context.

The spatial relationship is usually non-linear in nature. In this work, the regis-
tration is established with an optical-flow based approach. The spatial relationship
is computed based on labeled images classified during the iteration rather than on
the original grey value images. This makes the optical flow algorithm more robust
to image noise and intensity artifacts. Several issues arising from the use of labeled
images with an optical flow approach are discussed in detail in Chapter 5.

Anatomical knowledge is represented by converting the anatomical templates
into distance maps. Qualitatively, the ordering of the feature space is altered ac-
cording to the certainty of membership to a template structure. This means, that
two voxels move closer together in feature space if they are located in the same
structure according to the atlas, and move further apart in feature space if they are
located in different structures. The certainty about the correctness of anatomical
localization derived from the atlas is modeled with the distance to a template. This
is motivated by the fact that the registration result is usually more prone to error
at the boundaries of a structure.

Classification and registration are repeated in several iterations. Ideally, the
aligned templates improve the classification result, and improved classification re-
sults improve the alignment, until no further change of the segmentation result be-
tween iterations is reached or the registered atlas templates match the classification
results.
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4.2.1 The k-Nearest Neighbor Algorithm

The task of statistical classification is to subdivide the feature space into regions,
one region for every tissue class. In multispectral MRI, the feature space represents
the distribution of the intensity responses. The k-nearest neighbor (kNN) rule is a
supervised, non-parametric pattern classification method. The mapping of a voxel
onto one of different tissue classes is made according to the voxels location in feature
space. Let the D-dimensional volumetric image

V(x) ={v(xi1), ..., v(xn§)} , (4.1)
N being the number of voxels, with patterns

P17 with ol = I'(x) (4.2)

v(x;) =v; = [v; ;

PR §

D being the number of image channels and v! representing the grey value of the
I-th image volume I' of the multispectral MRI at location x; = [z,y, 2]7, and 7 =
Z * Ymax * Tmax + Y * Tmax + © the indexing according to row-major ordering. Given
a set, of training prototype vectors

W = {wy, Wy, ..., Wy} (4.3)

and the correct classification for each prototype in one of the C classes ¢y, ¢y, ..., cc.
According to the kNN rule, a voxel x; with the pattern v; of unknown class is
classified as class ¢;, if most of the k closest prototypes are from class ¢; [34]. The
distance metric used here is euclidian, i.e.

d(vi,w,) = [l[vi—wjll
= = W) (v - w))

= | D (v —wh)? (4.4)

=1

describes the distance between the pattern feature vector v; and the prototype
feature vector w;.

As for the probabilistic view, let W C W be the subset of the k nearest proto-
types. An estimate of the joint probability is

ki
NV 7
with k; being the number of prototypes p; belonging to class ¢; and V the volume

that encloses all k£ prototypes. Then an estimate for the a posteriori probabilities
P(CZ'|VZ') is

p(vi,¢i) = (4.5)

Plefv) = POua) ko (4.6)

Z?:l p(vi7 Cj) k

and the decision is made according to max{P(¢;|v;)}.
1
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4.2.2 Integration of Anatomical Knowledge and Statistical
Classification

Statistical classification leads to erroneous decisions if tissue classes overlap in grey
value distribution. To resolve such ambiguities, a presegmented anatomical brain
atlas can be used as a template to interact with the classification process. Since
brains differ considerably across individuals in size, shape and location, a non-linear
alignment method is required to establish a one-to-one mapping of the template
onto the individual

T(x) : Va(x) = Vi(x) (4.7)

with V, being the atlas image and V; the image of the individual (see chapter 5 for
details).

If the template were perfectly aligned with the atlas, it could be used directly,
and no further classification would be necessary. However, correct alignment cant be
assumed, since the transform 7 is subject to error too. Thus, anatomical knowledge
of a approximately registered template should be expressed with some degree of con-
fidence in the spatial correctness of anatomical knowledge, suggesting a formulation
in a statistical context. Essentially, the computation of the distance to prototypes
is modified in a way that reflects the confidence in its spatial location.

The kNN classifier from the previous section may be used with an arbitrary num-
ber of feature channels. Provided a representation for a certainty map of anatomical
localization from aligned templates, anatomical knowledge can be expressed in terms
of additional feature channels. Equation (4.4) becomes

D

d(vi,wj) = Z vh— wh)? + Z , (4.8)

=1

where A is the number of anatomical channels added, one channel per anatomi-
cal structure, and (vj" — w}") represents the difference in anatomical localization
between the voxel to be classified and the prototype. The classification problem
is transformed into a higher dimensional space, leading to a new ordering of the
feature space.

Figure 4.3 shows an example in case of a single aligned template (note that any
number of templates may be used). Given an approximately aligned anatomical
brain template, the distance measure in Equation (4.8) becomes

D
d= Z U - w (d12) brain ~ d%u,brain) ) (49)

1=1
where dv Jw,brain TEPTESENE the certainty of membership to the brain at the location

of the voxel and prototype in the image.
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(a) Cross-section of 3D MRI of a tumor
patient
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Figure 4.3: Illustration of the change in feature space with the integration
of anatomical knowledge. The feature space was recorded from a 3D MRI volume
of a head with a meningioma (a). The intensity distributions of skin, brain and
tumor overlap (b). An additional anatomical feature channel extracted from the
registered atlas ((c), 2D slice from same plane as in (a)) increases the separability
between the tissue classes in the 2D feature space (d).
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Three basic cases may be distinguished:

o (w; xor v;) ¢ brain — (d7 . — do prain) = 00, making w; a very distant
neighbor

e (w; and v;) € brain — (d7 y,.in — @ prain) = 0, classification relying on the D
image features only

e (wj and v;) ¢ brain — (d2, i, — @2 i) = 0, classification relying on the D

image features only

Thus, if voxel and prototype are located in the same anatomical structure suggested
by the aligned atlas, the classification relies on the spectral information alone. If
they are located in different structures, the distance between the feature vectors is
large.

4.2.3 Model of Anatomical Localization

The alignment of the anatomical templates usually requires several iterations, espe-
cially in the case of large shape differences between atlas and patient due to patho-
logic tissue. This means, that the accuracy of anatomical localization changes in the
course of the segmentation process. Thus, a range of confidence in the anatomical
localization should be considered, which is directly related to the spatial alignment
€rror.

The alignment error of anatomical templates is usually low inside the structure
and higher at the boundaries. A straightforward model of error is to use a penalty
of dy/w,prain = 0 where labels for the matched template are present, and increase
the penalty with distance from the anatomical template. The certainty values can
be efficiently estimated by computing distance transforms which approximate the
euclidian distance (here: 3D-Chamfer (3,4,5), see [12]) for each of the structures in
the aligned atlas.

The distance transform volumes can be used as additional feature channels for
the kNN classifier. Let dist() be the distance function operation on an image, then
the overall feature space distance metric Equation (4.8) becomes

D A
d(vi,wj) = | > (f—wh)> + Y (dist(T —dist(T(w)))> ,  (4.10)
=1 m=1

where T is the transform that maps the atlas onto the template (see Equation (4.7)).

To model uncertainty in anatomical localization approaching the boundary of a
structure from the inside as well as from the outside the boundary of the templates,
anatomical localization for each template is represented with two distance transform
maps. One describes the distance to the structure, with the effect of increasing the
penalty away from the structure. The other describes the distance to the background
of the structure, with the effect of increasing the penalty towards the inside of the
structure.

Two parameters define the anatomical localization, a saturation value and the
function operating on the distance maps to derive the classification penalty:
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Figure 4.4: User interface for the selection of tissue class prototypes. The
automated segmentation method requires the physician to select 5—10 voxels for every
tissue class using the mouse.

e The largest penalty is limited by clamping the distance function. A saturation
distax is applied to the distance maps since distant structures should not
dominate the classification distance computation.

e The derivation of the penalty from the distance values is arbitrary, e.g. the
penalty may increase linearly, quadratically or logarithmically with the dis-
tance.

When the accuracy of the anatomical localization is known to be high, a quadratic
distance function in conjunction with a high clamp value is applied. If the segmen-
tation process is at an early stage, a lower clamp value and a linear increase can be
chosen to reduce the effect of the anatomical localization and increase the area of
uncertainty at the boundaries.

4.2.4 Dynamic Prototypes

The kNN rule is a supervised classification method, i.e. it requires training. The pro-
totypes are example voxels of tissue classes selected by a trained technician (see Fig-
ure 4.4), used to model the probability density function of particular tissue classes.
The prototypes store the spatial location of the voxel in the volume and the spec-
tral values in each of the feature channels. The spatial location is used to update
the spectral information in the anatomical localization channels, which are dynamic
since they change during the iterations. The location is also directly used as a
starting point for a connected component analysis (Section 4.3.3).
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Figure 4.5: Schematic description of the brain tumor segmentation scheme.
The modules in the dashed box are iterated. Because the anatomical atlas does not
contain tumor templates, the i-th tumor segmentation is used as a template for the
(i+1)-th tumor segmentation for all i > 0.

4.3 Design of ATMC for the Segmentation of Brain
Tumors in MRI

The application of ATMC to a specific segmentation task requires several specifi-
cations and modifications. The goal of this section is the design of an automated
method for the segmentation of MRI of the head of brain tumor patients into the
tissue classes skin, brain, ventricles and tumor. In the following, the skin comprises
all tissues that is not part of brain, ventricles or tumor, i.e. skin, fat, bone, bone
marrow, muscle etc.

In the following, the necessary modifications and extensions of the ATMC con-
cept for the task of tumor segmentation will be addressed qualitatively. Figure 4.5
is a schematic representation of the segmentation process, describing the modules
of the system.

4.3.1 Segmentation Strategy

The segmentation strategy defines the order in which different structures are sepa-
rated from each other, and follows a simple, hierarchical model of anatomy (illus-
trated in Figure 4.10. By proceeding hierarchically from the outside to the inside,
each segmented structure refines the volume of interest for the next structure to be
segmented.

The choice of strategy is motivated by several reasons:

e By defining volumes of interest, structures can be successfully classified which
otherwise show spectral overlap with classes outside the volume of interest
and therefore cannot be segmented (e.g. the tumor cannot be successfully
segmented without a restriction to the ICC).
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e The registration of atlas to patient is based on segmented images, i.e. seg-
mented structures are registered to each other. The idea of the ATMC is that
the accuracy of registration is improved by improving the accuracy of the seg-
mentation. Because it is easy to separate the head from the background, but
impossible to correctly segment the ICC without anatomical knowledge, an
initial registration can only be achieved based on the heads of atlas and pa-
tient. The pre-aligned atlas then provides a template for the ICC, leading to a
more accurate segmentation. This template in turn improves the registration
of the ICC template, since a registration based on the head does not provide
an exact registration of the ICC.

e An atlas of normal anatomy provides information about the location and shape
of normal structures, but does not provide templates for pathologic structures.
This means the atlas can be used only for the segmentation of normal anatomy,
i.e. skin/fat/bone, brain and ventricles. Because it is “easier” to segment
structures where anatomical information is available, these structures should
be segmented first. Consequently, it is natural to segment pathologic tissue
last.

e The registration paradigm assumes correspondence between every structure in
atlas and patient. Because there is no tumor in the atlas, a correspondence is
not available. This has two consequences. First, during ICC segmentation, a
compound class of the normal and pathologic brain structures is formed. The
atlas is registered to the brain and pathology. Second, for the segmentation of
the tumor, only the atlas brain template is used. A tumor template is derived
during the iteration of segmentation and registration.

4.3.2 Initialization

The initialization of the segmentation process involves two pre-processing steps:
1. Noise reduction of the MR data to improve the SNR (Figure 4.6)

2. Initial spatial alignment of a digital 3D anatomical atlas to the patient images
with an affine transform. The alignment is established based on the atlas and
patient head, which is segmented using thresholding followed by a combination
of local segmentation strategies (Figure 4.7)

which will be briefly discussed in the following.

Noise Reduction

MRI data is usually noisy. When using fast, high resolution imaging sequences,
tradeoffs are made regarding image contrast and signal-to-noise ratio (SNR). These
properties reduce the quality of any segmentation process. Thus, noise reduction is
an essential step prior to segmentation.

Linear spatial filters (e.g. low pass filtering) reduce the amplitude of noise at the
cost of blurring high frequency details such as lines and edges and diffusing small
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(a) Cross-section of the original 3D MRI (b) MRI after noise reduction

Figure 4.6: Noise reduction with non-linear anisotropic diffusion filtering.
The parameters of the filter are set to make skin, brain, ventricles and tumor more
homogeneous without blurring the boundaries of these structures.

structures. Nonlinear filtering methods (commonly median filtering) reduce these
effects, but result in a loss of resolution by suppressing fine details.

The filtering technique used in this work is known as “non-linear anisotropic
diffusion filtering” developed by Perona and Malik [102] and first applied to MR
images by Gerig et al. [47]. It is capable of noise reduction whilst preserving
and enhancing object boundaries and detailed structures. In principle, the filtering
is modeled as an anisotropic diffusion process of heat. Assuming the image to
be piecewise constant or slowly varying inside objects, the strength of smoothing
(diffusion) may be locally adapted according to the image gradient, thus encouraging
smoothing inside regions (low image gradient) and stopping smoothing at object
boundaries (high image gradient). The diffusion process is executed iteratively by
solving

or _ V- (c(k) - VI) (4.11)
ot

iteratively, where I is the image, ¢ is time (iteration number) and ¢(k) is the spatially
adaptive diffusion strength function. The parameter k acts as a threshold for valid
edges. Figure 4.6 shows an example of the improvement through this technique with
k = 5.2 and t = 2 (see [47], Section 3.5).

Initial Alignment of the Atlas to the Patient

The goal of the linear registration is an initial global alignment between the anatom-
ical brain atlas and the patient. This is a necessary pre-requisite for the following
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non-linear registration steps, which are restricted to the detection of local deforma-
tions. In order to align the atlas with the patient an affine transformation (9 degrees
of freedom, translation, rotation, scaling) is estimated. The algorithm utilized here
is described below and is based on a method described in [138].

(a) Atlas head and patient MRI cross- (b) Cross-section of 3D MRI and overlay
sections before affine registration of atlas brain contour before registration

(c) Atlas head and patient MRI cross- (d) Cross-section of 3D MRI and overlay
sections after affine registration of atlas brain contour after registration

Figure 4.7: Affine initial alignment of the atlas to the patient. The atlas
head (3D-model in (a), (c)) is aligned to a preliminary segmentation of the patient
head (MRI cross-sections in (a), (c). The transform resulting from the registration
of the atlas head is applied to the atlas brain (d), improving the alignment of atlas
and patient brain (b).
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Given two labeled images, the fixed image I;(x) and the moving image I,(x)
with x = [z,y, 2|7, then the linear affine transformation

T: I(x)— Ii(x) (4.12)

that registers image I, (x) to I¢(x) is computed by minimizing the similarity measure

N

S=Y " fF (L), (T (%)) (4.13)

i=1
where NN is the total number of voxels and

0 for Ii(x) = I,(T7'(x)) }

F(Te(x:), I (T (1)) = { 1 for Ii(x) # In(T~(x)) (4.14)

For the minimization process a direct descent method based on Powell’s algo-
rithm and described in [105] is adopted. To decrease conversion time, a multireso-
lution pyramid is formed by subsampling by a factor of 2 in each dimension. The
minimization is carried out in a coarse-to-fine manner, minimizing on each level and
taking the tentative transform to the next higher resolution. Algorithm 4.1 shows
the scheme of the algorithm.

from coarse to fine resolution do
repeat until convergence
compute T;1: Sip1(Ip, I,) < Si(If, 1)
apply Ti41 to I,

Algorithm 4.1: Global affine registration. A similarity measure S; is mini-
mized with a direct descent method. S; counts the number of vozels of mismatch
between the segmented fized image Iy and the segmented moving L,. The transform
T; is computed on a coarse-to-fine image resolution hierarchy.

Initialization of the algorithm is crucial to the convergence, since Powell’s method
is a local optimization procedure prone to remain in a local instead of the desired
global minimum. In this work, this is achieved in the following way:

e Segmentation of the head in the patient dataset using thresholding and local
segmentation strategies.

e Find the initial pose according to the acquisition order of the atlas and the
patient dataset. Align the top and the back of the bounding boxes of the atlas
and the patient head.
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4.3.3 Local Strategies for the Refinement of Segmented
Structures

The global nature of statistical classification results in gross separation of tissue types
based on grey value intensities. As a result, image artifacts lead to segmentation
artifacts, typically small holes in the structures of interest, clusters of non-object
pixels, and thin connections between different objects.

Local low level segmentation operations allow to divide an image based on struc-
tural and shape assumptions. Here, two assumptions are made. First, all voxels
of an object may be joined by one path, which may be accomplished by a region
growing algorithm [1]. Second, thin structures are not allowed. Objects connected
by thin structures are separated through binary morphological operations to prevent
the region growing algorithm from joining two different objects [112].

The remainder of this section explains in principle how these operations work
and how they may be combined. For further reading refer to e.g. [1, 112].

Mathematical Morphological Operations

Structural analysis of binary images can be done efficiently with mathematical mor-
phological operations. The two basic operations are erosion and dilation. In princi-
ple, applying a morphological operation to a binary images (foreground and back-
ground) involves the translation of a structuring element (kernel) to all foreground
points in the input image, and examining the intersection between the translated
kernel coordinates and the input image coordinates. The structuring element con-
sists of a pattern specified as the coordinates of a number of discrete points relative
to some origin.

The mathematical definition of erosion and dilation of binary images are as
follows: Suppose that I is the set of euclidian coordinates corresponding to the input
binary image, and that K is the set of coordinates for the structuring element. Let
Kz denote the translation of K so that its origin is at x. The erosion of I by K is
the set of all points x such that Kz is a subset of X. The dilation of I by K is the
set of all points x such that the intersection of Kx with [ is non-empty.

If the structural element is a small sphere shape, erosion “shrinks” an object and
removes thin connections to other structures, while dilation “grows” back boundary
pixels that have previously been eroded.

Seeded Region Growing

Region growing is a procedure that groups pixels or subregions into larger regions
based on the connectivity of pixels with similar or identical properties (here, identical
label values, since the region growing is executed on classified image data). In the
case of seeded region growing (SRG), region growing is performed with respect to one
or more seeds as starting points. This method is efficient and easily implemented.
Algorithm 4.2 shows the scheme for SRG.

The selection of seeds is crucial to the performance of the region growing al-
gorithm, since seed locations outside the structure of interest could lead to the
segmentation of an object other than the object of interest. In the context of the
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repeat until S = {0}
take and remove leading seed s from S
for all voxels 7 € R of s
if [(i) = I(s) then
append v to S
set l(o) = ()

Algorithm 4.2: Seeded region growing (SRG). Let S = {s1,..., sy} the ini-
tial set of seedpoints, I = {i1,...,in} the set of input image vozel locations, O =
{01, ...,0m} the set of output image vozel locations, 1(i;) the label value at location
i; and R the local neighborhood of i;.

segmentation system however, seed locations need not be selected and controlled al-
gorithmically (as is done e.g. in [140]), but can be derived from the kNN-prototypes
selected by the user.

Application of Local Refinement Methods

For each structure of interest, the following local low level operations are applied to
the presegmented image:

1. Erosion to remove thin connections between the object of interest and other
objects or clusters of voxels.

2. Seeded region growing to identify all voxels that belong to the structures of
interest, fill small holes inside the structures and remove non-connected pixels.
The tissue prototypes from the classification step (Section 4.2.4) serve as seed-
points.

3. Dilation to recover the boundary that was eroded in the first step

All procedures in the refinement step operate in 3D. This is necessary since in
2D parts of an object may appear non-connected although they are connected in
3D. For the morphological operations a spherical structuring element with a window
size of 7 x 7 x 7 was found to be a good choice, and the region growing algorithm
uses the 18-connectivity model.

4.3.4 Segmentation of Structures present in the Atlas

For the segmentation of structures present in the atlas, three compound classes are
differentiated: skin/fat/bone, brain/pathology and ventricles. The segmentation
system proceeds hierarchically, each segmentation step providing a volume of interest
for the next structure to segment:
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1. Using the initially aligned atlas structures skin/fat/bone and brain/ventricles
(ICC) (Figure 4.8(a)) as anatomical constraints, the kNN classification sub-
divides the patient image volume into the classes background, skin/fat/bone
and ICC (consisting of brain, ventricles and pathology). The ICC is assumed
to be a single, connected objects, so classification artifacts can be removed
using morphological operations combined with region growing (Figure 4.8(b)).

2. To improve the alignment of the atlas, the ICC template is now re-aligned to
the first patient ICC segmentation. Because the template has already been
registered linearly, the remaining residual mis-alignment can be considered
local, and is typically non-linear. The atlas ICC is re-aligned using the non-
linear registration method described in Section 5.1.4 (Figure 4.8(c)).

3. With the re-aligned atlas template, a second kNN-classification and local seg-
mentation step is carried out (Figure 4.8(d)). 4 iterations of registration,
kNN-classification and local segmentation were found to be optimal in terms
of robustness, accuracy and computation time.

4. Next, the ventricle is classified using the ICC template as anatomical constraint
and local segmentation strategies are applied (Figure 4.9). No template of the
atlas is used, because the registration does not produce sufficiently accurate
registration results (see Section ?7). However, restriction to the ICC is suffi-
cient.

The segmentations of the brain/pathology and the ventricles define a volume of
interest for pathological tissue.

4.3.5 Segmentation of Pathology: Meningiomas and Low
Grade Gliomas

Meningiomas and low grade gliomas show homogeneous tissue composition, such
that they can be modeled with a single tissue class. Another important aspect
is the spectral overlap of pathologic with normal tissue. The meningioma tissue
class partially overlaps with parts of the skin, fat in the neck, parts of the vessels
and the dura. Low grade gliomas partially overlap with the skin and parts of the
outer cortex. In both cases, classification constrained with the brain template does
captures the tumor, but details on the boundary or parts of the tumor can be lost
due to the application of mathematical erosion and dilation (Figure 4.10(c)). To
capture the whole tumor, a template is derived from the first tumor segmentation
by applying a distance transform to it (Figure 4.10(e)). The second classification is
constrained with the brain and the tumor template, to prevent cortex voxels from
being segmented as tumor (Figure 4.10(e)), and no local segmentation strategies are
applied to prevent the undesired smoothing effect.

Note that the atlas is also re-registered and the patient’s skin, brain and ventricles
are re-classified. Registration of the atlas to the patient brain is achieved in the
following way: a) the patients tumor is relabeled with the patient’s brain label, b)
the ventricles are relabeled to background, c¢) the atlas brain is registered to the
relabeled brain (which contains brain and pathology).
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(a) Cross-section of 3D MRI (brain has (b) Outline of ICC segmentation after 1st
been masked out for illustrative purpose) template based segmentation cycle

with outline of atlas template of intra-

cranial cavity (ICC) after linear registra-

tion

(c¢) Outline of atlas ICC template after (d) Outline of ICC segmentaion after 2nd
nonlinear re-registration template based segmentation cycle

Figure 4.8: Improvement of the intra-cranial cavity (ICC) segmentation
during the classification-registration iteration. Linear registration of the at-
las template results in a rough alignment to the patient ICC (a). Template based
segmentation with the linearly aligned atlas template improves the segmentation (b).
Re-registration of the atlas (c) result in improved alignment and a 2nd segmentation
cycle results in an improved ICC segmentation (d).
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(a) Cross-section of 3D MRI and out- (b) Cross-section of 3D MRI and outline
line of ventricles after template moder- of ventricles after artifact removal using
ated classification local segmentation strategies

(c) 3D rendering and axial MRI cross-
section of ventricles

Figure 4.9: Improvement of the ventricle segmentation during the
classification-registration iteration. Segmentation the ventricles (a) using tem-
plate moderated classification (ICC template) results in artifacts (CSF surrounding

the brain). The CSF surrounding the brain can be removed with the application of
local segmentation strategies (b).
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(a) MRI cross-sections and 3D model of (b) MRI cross-section and manual outline
skin and tumor of tumor

(¢) Tumor after first seg- (d) Tumor template (dis- (e) Tumor after second

mentation cycle (with tance map from segmen- segmentation cycle (with

brain template) tation in (c) brain and tumor tem-
plate)

Figure 4.10: Improvement of the tumor segmentation during the
classification-registration iteration. Classification constrained with ICC and
ventricle templates results in artifacts (a). The application of local segmentation
strategies (b) removes distant artifacts, but cannot capture the whole tumor. A dis-
tance transform of the preliminary tumor segmentation is used as a template for
re-classification of the tumor (d).
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4.4 Tllustrative Results

Table 4.1 lists the parameter settings used throughout this work. Furthermore,
every iterational process requires a stop criteria. Ideally, the segmentation process
converges when the aligned templates of the atlas match the classified structures in
the anatomy. However, this criteria is not applicable since there are no pathologic
structures in the atlas. Instead, a fixed number of iteration cycles were derived
experimentally: 4 iterations for the ICC segmentation, 1 iteration for the ventricle
segmentation, and 2 iterations for the tumor segmentation. The brain and the
ventricle are also re-segmented during tumor segmentation.

‘ Segmentation Module H Parameters ‘
Anisotropic Diffusion Iterations ¢ = 2, timestep dt = 0.2, kK = 5.2
kNN Classification k = 5, number of classes C' =5
Affine Registration 9 degrees of freedom, 4 resolution levels
Distance Transform Square of euclidian distance, saturation disty,, = 100
Non-linear Registration || 3 resolution levels, min. window size w = 9x9x9
Morphology spherical structuring element, w = 7X7x7
Region Growing 18-connectivity

Table 4.1: Parameter settings for each module. The parameter settings are
also used for the validation in Section 6.1.

For the segmentation of normal structures (i.e. skin/fat/bone, brain, ventricles),
the pattern used in this work is v; = [v},...,v?]7, i being the index to a spatial
location x; according to Section 4.2.1. In order to provide a concise overview of
the elements v}, the image processing steps described in the previous sections are

represented by Operators 7, i.e.

v; = Ty(I(x;)), Ti: Anisotropic Diffusion Filtering

v? = Ty(A(x;)), Ty: Distance transform of skin/fat/bone

v} = T3(A(x;)), Ts: Distance transform of skin/fat/bone background
vi = Ty(A(x;)), Ty: Distance transform of brain

v? = Ts(A(x;)), Ts: Distance transform of brain background

which are applied to the MRI I(x) and the image of the registered anatomical
atlas A(x) respectively. While T is carried out only during the preprocessing
stage, the operators T,...,T5 are applied to the re-registered atlas in every seg-
mentation iteration cycle. For the first tumor segmentation cycle, the patterns are
also v; = [v},...,v?]T. For the second tumor segmentation cycle, the patterns are
v; = [v},...,v8]T, where the v}, i = 1..5 are defined as above, but with the additional
element

v? = Ty(Iy(x;)), Ts: Distance transform of initial tumor segmentation

where [, is the result image of the first tumor segmentation.
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| Segmentation Module | Processing Time [min.sec] |
Anisotropic Diffusion 0.15
kNN Classification 0.52
Affine Registration + Reformatting 5.58
Euclidian Distance Transform 3.30
Elastic Registration + Warping 2.30
Morphology + Region Growing 1.36

Table 4.2: Mean processing times for each of the segmentation modules.
The algorithms were implemented in parallel and benchmarked in a high performance
computing environment on a full 8D dataset consisting of 256X 256x 124 vozels.
The overall mean computing time for a complete segmentation was approxrimately
75 minutes. Qverall operator time was approrimately 5-10 minutes, while overall
manual segmentation time was reported to be in the range of 180 minutes.

In Table 4.2 the processing times of each module for a volume containing 256 x
256x 124 voxels are listed.

All algorithms were multi-threaded implementations. K-NN classification (im-
plemented based on the k-DT method [140]), distance transform, non-linear match-
ing and local refinement operations were executed on a Sun Enterprise Server (ES)
6000 (20 233 Mhz UltraSPARC-II CPUs and 5 GB of RAM). Execution of the affine
registration was carried out on a compute cluster consisting of two Sun Enterprise
Server 5000 (ES 5000, 8 167 Mhz UltraSPARC-I CPUs and 2 GB of RAM) and an
ES 6000. The three machines were interconnected via a hybrid network: The main
network was Fast Ethernet. The two ES 5000s were also connected via a private
SCI network. The ES 6000 was also connected to the 5000s via a 1Gbps Ethernet.

The overall computation time amounted to approximately 75 minutes on the
HPC cluster described above. The overall operator time was approximately 5-10
minutes for the selection of prototypes for each of the relevant tissue classes. Overall
manual segmentation time has been reported to be in the range of 180 minutes
[98]. Thus, the automated method achieves a reduction of the operator time for a
segmentation of around 95%.

Figure 4.11 and Figure 4.12 show the segmentation of a meningioma and a low
grade glioma with the kNN-rule alone and the ATMC-method. Complete segmen-
tation of the structures is possible with the developed segmentation method, while
the kKNN-method results in several misclassifications, and the registered atlas cannot
identify pathology at all. A quantitative validation study is presented in Chapter 6.

4.5 Conclusion

The spectral and anatomical properties of some of the most common brain tumors,
i.e. meningiomas and low grade gliomas were analyzed. A new method for the
segmentation of meningiomas and low grade gliomas was developed. The method,
based on a combination of statistical classification, anatomical knowledge derived
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(a) Cross-section of 3D MRI with a (b) Result of kNN-rule classification
Meningioma

(c) Result of ATMC segmentation

Figure 4.11: Example for kNN and ATMC segmentation of a meningioma.
The ATMC correctly segments each of the structures, while kNN alone suffers from
signal intensity distribution overlap.

from the registration of a digital atlas, and structural segmentation techniques, is
capable of resolving the ambiguities caused by overlapping tissue class distributions,
and enables to segment pathology not represented by the anatomical brain atlas.
The iteration of a) statistical classification and b) registration of an anatomical
brain atlas allows for the automated segmentation of the skin surface, the brain, the
ventricles and the brain tumor.
The application and validation results of the new segmentation method are pre-
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(a) Cross-section of 3D MRI with a low (b) Result of kNN-rule classification
grade glioma

(c) Result of ATMC segmentation

Figure 4.12: Example for kNN and ATMC segmentation of a low grade
glioma. The ATMC correctly segments each of the structures, while kNN alone
suffers from signal intensity distribution overlap.

sented in Chapter 6.



Chapter 5

Non-linear Registration of Medical
Images for ATMC

The adaptive template moderated segmentation (ATMC) approach developed in
the preceding chapter makes use of an optical flow method to align a digital atlas
to individual patient datasets. In this chapter, the performance of several optical
flow methods for the purpose of aligning segmented images is compared and the
adaptive template approach is found to be the most efficient. However, this method
leads to mis-registrations, if several objects that move or deform independently need
to be aligned, and if the underlying data has not been segmented correctly. The
analysis of an adaptive regularization approach suggested for this situation leads to
the development of a new, computationally efficient method for the alignment of
multiple objects in images with segmentation errors.

In Section 5.1 the mathematical model of two optical flow approaches, i.e. a
regularization method and an adaptive template matching method, are briefly re-
viewed.

In Section ?7, a 2D adaptive regularization approach that models discontinuities
resulting from the movement of independent objects is extended to 3D. A represen-
tation for discontinuities in 3D is derived, and a multigrid method is designed for
the numerical solution of the resulting partial differental equations (PDEs).

The analysis and comparison of adaptive regularization and adaptive template
matching in Section ?? shows i) significant computational disadvantages of the adap-
tive regularization method, ii) the limitations of both methods regarding the regis-
tration of multiple templates, and iii) the limitations of both methods regarding the
registration of images with segmentation errors.

This analysis leads to the formulation of a probabilistic, multi-channel adaptive
template matching method in Section 77, which performs well in the presence of
multiple objects and achieves better results with segmented data, while maintaining
the computational advantages of template matching.

33
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5.1 Optical Flow

5.1.1 Optical Flow for 3D Medical Image Registration

Optical flow has traditionally been used to determine the movement (translation) of
objects in images of a scene over time. In medical image registration, however, the
goal is to align two images (and the objects represented by them), i.e. to deform a
template image I; to optimally fit a target image 5. In the optical flow paradigm,
the template image can be interpreted as the second instance of a scene represented
in the target image, and the optical flow represents the shape differences between
two objects. The optical flow field is usually represented by a vector field u(x) =
[u(x),v(x), w(x)]T that stores a translation for every location x = [z,v,2]T in I;.
To construct the deformed template image I] < I, u is used to translate the value
at each location in I; according to I{(x) = I (x") = I;(x —u(x)). Since x’ in general
will not be a point on the regular grid, I{(x) is assigned the value I;(x"), x” being
the closest point to x’ (nearest neighbor interpolation).

In medical image registration, differences between anatomical objects are often
large [129]. To estimate large motion, or rather deformations, it is common to
use a coarse-to-fine approach [4]. A resolution pyramid of both images is formed
by subsampling. On every resolution level starting at the coarsest resolution, the
optical flow is determined and interpolated to the next finer grid, where the deformed
template image is constructed. The match is repeated on the next finer grid, until
the finest resolution is reached. This coarse-to-fine strategy is adopted throughout
the work presented in this chapter.

5.1.2 Estimation of Optical Flow

Region-based matching defines the relative displacement u(x) = [u(x),v(x), w(x)]?,
x = [r,y,2]" between image regions W (x) of a target image I(x) and a template
image I;(x) [7]. The best match can be found by minimizing a similarity measure
S(u(x)) (e.g. the sum-of-squared differences, SSD) that describes the image intensity
difference between I; and I, depending on their relative displacement u(x):

S(u(x)) = /W(x) (I(x) — Ii(x — u(x)))de . (5.1)

W controls the size of the image patches that are compared. Thus, deformations
are assumed to be constant in this region and only estimated locally, such that S is
effectively a function of x. If the similarity between I;(x) and I,(x) increases, then
S(u(x)) decreases. To solve Equation (5.1), I; is approximated with a first order
Taylor expansion

L(x—u(x)) =L(x)—ukx)VL(x) , (5.2)
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assuming small u, and the substitution of Equation (5.2) into Equation (5.1) leads
to

S(u) = / W, — I + uVI)? dx
= /W[(I2 — L)’ +2(, — [)uVL + (uVLH)*] dx . (5.3)

For clarity, the dependence on x has been omitted. The derivative of S(u) with
respect to u leads to

S 0
% = /Wﬁ ((IQ — 11)2 + 2([2 — Il)llVIl + (llVIl)?) dx
I
= 2 / WVI(I, — 1)) dx + 2u / wvnLvIldx . (5.4)
Iz 12

With the definition of the abbreviations

I I

Equation (5.4) becomes

Js
By 2(Qu+f) (5.6)

and the optical flow estimator becomes

Qu=—f . (5.7)

5.1.3 Regularization

Optical flow can only be estimated in structured regions of the images, i.e. regions
with a gradient VI different from 0 (this is also known as the aperture problem in
optical flow). When VI = 0, Q in Equation (5.5) is not invertible and Equation
(5.7) has no solution. Thus, the determination of the full vector field is an under-
constrained problem.

This situation can be resolved by constraining Equation (5.7). The constraints
express prior knowledge about the behaviour of the deformation field. In the litera-
ture, a simplified model of the elastic medium has been widely used [15]. Image I
can be though of as being pinned to an elastic medium and locally deformed until
an optimal fit with the image I, which is in a fixed frame, is achieved. By adding
an elasticity or smoothness functional

E(u) = AVu(Vu)"
= A(ul+ul+ul+vl+v) +ul +wl ) +wl) (5.8)
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the energy potential now becomes the sum of S(u) + E(u). The similarity measure
S(u) describes the goodness of fit between the two images, and the elasticity func-
tional E(u) interpolates the deformation estimated in regions of high structure into
regions of no or little structure. This approach is also known as regularization [128].

The Euler-Lagrange formalism (e.g. [16]) can be used for the minimization of
functionals of the type

z«mm>:/kﬂmyux%uwdx (5.9)

by solving the partial differential equation (PDE)

d
Fy=—F.=0 . (5.10)

Then, the minimization of S(u) +E(u) is equivalent to solving the system of partial
differential equations

0S 0 OE 0 OE 0 JOE

ou dwou,  oyou, 0zouw, _ °

08 _00B_0OB_00E _

ov oz 0v, 0y Ovy 0z 0ov,

0S 0 OE 0 OE 0 OE _ 0 . (5.11)

dw " Grdw,  dydw,  9: 0w,

Using Equation (5.8) leads to

0B 00 00B (0, 9,4 Dy
0x 0uy 0y Ou, 0z 0u, ox~ " oy Y 09z~
= =2 (Ugg + Uyy + Uy,)

= —2\Au (5.12)
and substitution of equations (5.6) and (5.12) into Equation (5.11) leads to
Qu-—- ) \u=-f . (5.13)

The parameter A controls the influence of the smoothness constraint on the solution
for a flow field u.

5.1.4 Adaptive Template Matching

Regularization of the optical flow estimation transports or interpolates the defor-
mation vectors estimated in structured regions to regions where there is insufficient
structure [32]. However, numerical solution of this method is computationally in-
tensive (see Section ?7). A significant simplification of the numerical problem can
be achieved by estimating the deformation field for each voxel locally and indepen-
dently from other locations in the image, leading to a set of linear equations that
can be solved directly [143]. The algorithm is briefly outlined:
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Consider Equation (5.7) for a fixed value x

Qu=—f | (5.14)

where u = u(x), @ = Q(x) and f = f(x) (see Equation (5.5) in Section 5.1). Recall
that with this approach u is modeled to be constant in the region of W, i.e. the
width of W (which is fixed for the whole volume) determines how fast u can vary.
This means, if u needs to vary rapidly, a small window is required. However, if this
image patch does not provide sufficient structure (i.e. VI; =~ 0), a larger window
size becomes necessary. The solution to this problem proposed by Dengler [32, 143]
is the use of a spatially adaptive window function W

Tmax

W=Wx)=> wW, (5.15)

that takes into account several window functions W; of size s;,

Si+1 = 28, Smax < min (axislength) (5.16)

z’y’z
and weighs the contribution of each of the windows with

1
e SXTTICeN) det(Q:) | (5.17)

where @); corresponds to the matrices calculated at different window sizes s;. The
weights can be seen as a measure of “topological uniqueness” or “structural informa-
tion” contained in the image patch. Qualitatively, the weight tends to be large when
the image patch contains large gradients in a variety of directions. If the structure of
a small image patch is sufficient, u can be estimated, otherwise larger image patches
dominate the estimation. With equations (5.15, 5.17), Equation (5.14) for arbitrary
x becomes

(mz‘”‘ w; (x)Q; (X)> u(x) = — (mza" w,(x)fz(x)> : (5.18)

which can be efficiently solved according to Cramers rule [16]. If a solution is not
possible, i.e. det @Q;(x) = 0, Vi, u(x) is set to zero.

Template matching results in a smooth deformation field, although no explicit
smoothing of the deformation vectors takes place. This is due to the approximations
made to achieve a rapidly solvable system of equations. Qualitatively, for every
voxel, the deformation is estimated by integrating image information over several
window patches. To do so, the deformation is assumed to be constant in these
regions. Since neighboring voxels have similar neighborhoods, the similarity measure
(integrated in the window patches) at neighboring voxels is also similar, resulting in
a slowly varying or smooth deformation field.



Chapter 6

Applications

In this chapter, the algorithms developed in this thesis are applied to different prob-
lems in the domain of medical image analysis, more specifically a) the segmentation
of brain tumors, b) the registration of a digital atlas to individual MR datasets, and
c) the segmentation of anatomical structures in brain tumor patients which so far
cannot be imaged in a clinical environment. Strategies for the validation of medical
image processing methods are developed to characterize the performance of the new
methods, including quantitative measures and experiments based on synthetic and
clinical MRI data.

6.1 Segmentation of Brain Tumors in MRI:
Meningiomas and Low Grade Gliomas

The question of how valid image segmentations are is difficult to answer, since there
is no ground truth or a “gold standard” to compare with. Realistic simulation of MRI
data that covers all aspects of clinical data is not yet possible [25], and dissection of
actual tissue does not preserve shape nor location of structures of interest.
However, a goal of automated segmentation is to replace manual outlining with-
out a measurable effect on the results. Therefore, a validation study was designed
to determine how closely trained experts agree within a single method (automated
and manual) and how closely the two methods are in segmenting the structures of
interest. The consistent estimation of the structures of interest achieved with the
automated and the manual method legitimates the use of the automated technique.

Brain Tumor Patients 20 patients with brain tumors of different size, shape and
location were selected for this study. The pathological diagnoses included 6 menin-
giomas (cases No. 1-3, 11, 12, 16), and 14 low grade gliomas (cases No. 4-10, 13-15,
17-20). These two types were selected because they are relatively homogeneous and
have well defined imaging characteristics. In this study, 6 out of 6 meningiomas
enhanced well, and 14 out of 14 low grade gliomas were non-enhancing. Cases No.
1-10 formed the development database used for the design and validation of the
automated segmentation method. The cases were extracted from a neurosurgical
image database of app. 100 brain tumor patients that had been post-processed for

o8



6.1. SEGMENTATION OF BRAIN TUMORS 29

image-guided neurosurgery by using a combination of semiautomated techniques
and manual outlining of the skin-surface, brain, ventricles, vessels and tumor. The
development database provided a representative selection of meningioma and low
grade glioma cases as a basis for the development of the automated segmentation
tool. To ensure that the method produced correct results when applied to cases
other than those of the development database, additional validation was carried out
on the datasets of 10 patients that had been selected from the neurosurgery database
after completion of the algorithm development.

Definition of Ground Truth The definition of a segmentation gold standard
is based upon the opinion of medical experts, manifested in manual segmentations
using interactive computer segmentation tools.

Manual segmentation is subject to interobserver variability and human error. To
minimize the influence of these factors whilst maintaining the means of measuring
the segmentation accuracy and reproducibility of the individual raters, the standard
was defined based on the segmentations of 4 independent human observers.

A single 2D slice was randomly selected from the subset of MRI that showed
the tumor. On this slice, the brain and the tumor was then manually outlined by 4
human observers independently. The standard segmentation for each structure and
each patient dataset was defined as the area of those voxels where at least 3 out of 4
raters agreed upon the identification. All other voxels were labeled as background.

Manual segmentation of the brain and the brain tumor For manual seg-
mentation of the brain and the tumor an interactive segmentation tool was used
(MRX, GE Medical Systems, Schenectady, NY). The structures were outlined slice-
by-slice by pointing and clicking with a mouse. The program connects consecutive
points with lines. An anatomical object is defined by a closed contour, and the
program labels every voxel of the enclosed volume.

6.1.1 Accuracy Analysis

Aim: To assess and compare the accuracy of the automated and the manual seg-
mentation method.

Method: The automated segmentation tool was trained once on a single 2D MRI
containing all tissue types of interest and executed on the full 3D dataset. This re-
sulted in a segmentation of the entire dataset. For each dataset, the structures skin,
brain, ventricles and tumor were segmented using the parameter settings described
in Section 4.4.

The analysis was carried out on the basis of volume of overlap comparison in the
2D slice selected. Accuracy was defined as the overall number of correctly segmented
voxels with respect to the standard segmentation

_ Vrp + VN

A
Vr

% (6.1)
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relative to the total number of voxels Vg = 256x256 of the 2D MRI. Vpp (true
positive volume or sensitivity) denotes the number of voxels correctly segmented
as the structure of interest and Vry (true negative volume specificity) denotes the
number of voxels correctly segmented as background.

Results Examples of the manual and the automated segmentation of a menin-
gioma and a low grade glioma (Figures 6.1 and 6.2) indicate the similarity between
the results with the two methods.

The segmentation accuracy with the automated method was high and within
the range of the accuracy of the manual method. The overall mean accuracy for
the tumor segmentation was 99.68 + 0.29% (mean + standard deviation) with the
automated and 99.68 + 0.44% with the manual method (Figure 6.4), while the
mean accuracy for the brain segmentation was 98.40 + 0.57% and 98.81 + 0.88%
respectively (Figure 6.3).
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(a) Cross-section of MRI showing a
Meningioma

(b) Manual Segmentation (c) Automated Segmentation

Figure 6.1: Example of manual and automated segmentations. Manual
and automated segmentation are consistent. It is a matter of definition that the
automated skin segmentation (no cerebro-spinal fluid and air) is not equivalent to
the manual skin segmentation (every vozel of the head that is not brain, ventricle or
tumor).
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(a) Cross-section of MRI showing a Low
Grade Glioma

(b) Manual Segmentation (c) Automated Segmentation

Figure 6.2: Example of manual and automated segmentations. Manual
and automated segmentation are consistent. It is a matter of definition that the
automated skin segmentation (no cerebro-spinal fluid and air) is not equivalent to
the manual skin segmentation (every vozxel of the head that is not brain, ventricle or
tumor).
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Figure 6.3: Brain segmentation accuracy of the manual (mean, minimum
and maximum) and the automated method for each of the 20 brain tumor
cases. Meningiomas: 1-3, 11, 12, 16; low grade gliomas: 4-10, 13-15, 17-20. The
bars represent the minimum, mazximum and mean accuracy achieved by the four
manual segmentations. The automated method is within or close to the range of the
manual method.
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Figure 6.4: Tumor segmentation accuracy of the manual (mean, minimum
and maximum) and the automated method for each of the 20 brain tumor
cases. Meningiomas: 1-3, 11, 12, 16; low grade gliomas: 4-10, 13-15, 17-20. The
bars represent the minimum, mazimum and mean accuracy achieved by the four
manual segmentations. The automated method is within or close to the range of the
manual method.
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Discussion The segmentation accuracy with the automated method was high,
and within or close (maximum difference 0.6 %) to the range of the minimum and
maximum of the accuracy with the manual method. The errors of the automated
brain segmentation are in part due to the over- and under-segmentation in the area
of the tentorium cerebelli and the area of the lateral sulcus with abundant vessels.
The algorithm tends to oversegment these areas, if voxels e.g. of the neck close to
the cerebellum are misclassified as brain and the template intra-cranial cavity (ICC)
derived from the atlas is misregistered.

The size of the structure affects the segmentation accuracy. Since the compar-
ison is based on counting the number of voxels agreed on (fore- and background),
large objects tend to have a lower accuracy since there are more surface voxels to
misclassify.

6.1.2 Reproducibility Analysis

Aim: To assess and compare the reproducibility of the automated and the manual
segmentation method.

Method: To assess the interrater variability error of the automated method, train-
ing and execution of the algorithm was carried out as describe above by 4 indepen-
dent operators. The variability error of the manual segmentation was measured
based on the 4 manual segmentations executed for the derivation of the gold stan-
dard.

The analysis was carried out on the basis of volume of overlap comparison in the
2D slice selected. For the measurement of the intraobserver variability error, a fifth
medical expert manually segmented each selected 2D slice 4 times over a period of
one week, and training of the automated method was carried out 4 times over a
period of one week.

The inter- and intrarater variability error was defined as the coefficient of varia-
tion

SD[Vy]
M[Vr]

CV =100 * % (6.2)

where V7 is the total number of voxels of the segmented structure and SD and M
are the mean and the standard deviation.

Results: Intraobserver variability of the automated and manual method were both
low. For brain and tumor segmentation, the intraobserver variability with the auto-
mated method was 0.10-3.57% and 0.14-4.70%, while the manual method achieved
CVs of 0.24-4.11% and 0.80-3.28% (Table 6.3, 6.4).

Interobserver variability was lower with the automated than with the man-
ual method. The interobserver variability with the automated method was 0.33—
4.72% and 0.99-6.11% for brain and tumor segmentation, while the manual method
achieved CVs of 2.62-10.51% and 3.58-14.42% (Table 6.1, 6.2).
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Table 6.1: Interobserver variability of the brain volume segmented with the
manual and the automated method. Listed are the mean (M) and the standard
deviation (SD) of the coefficient of variation (CV) over all 138 cases. Interobserver
variability is significantly reduced with the automated method.

CV Manual | CV Automated
M [%] SD | M [%] SD
Meningioma 3.92 052 1.84 0.65
Low Grade Glioma | 6.18 3.24 | 2.71 1.68

Tumor Histology

Table 6.2: Interobserver variability of the tumor volume segmented with
the manual and the automated method. Interobserver variability is signifi-
cantly reduced with the automated method.

CV Manual | CV Automated
M [%] SD | M [%] SD
Meningioma 5.13 0.46 | 2.66 0.38
Low Grade Glioma | 8.05 3.79 | 2.97 1.58

Tumor Histology

Table 6.3: Intraobserver variability of the brain volume segmented with
the manual and the automated method. Intraobserver variability is consistent
with both methods.

CV Manual | CV Automated
M [%] SD | M [%] SD
Meningioma 0.42 0.03| 0.36 0.45
Low Grade Glioma || 1.79 1.53 | 1.44 1.33

Tumor Histology

Table 6.4: Intraobserver variability of the tumor volume segmented with

the manual and the automated method. Intraobserver variability is consistent
with both methods.

CV Manual | CV Automated
M %] SD [ M[%] SD
Meningioma 1.58 0.98 | 0.66 0.72
Low Grade Glioma || 2.08 0.78 | 2.06 1.73

Tumor Histology
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Discussion: The reproducibility of the segmentations for brain and tumor was
high. Nevertheless, the inter- and intraobserver reproducibility of both methods are
higher for the brain than for the tumor. This again may be explained with the
size of the object and the nature of the segmentation error. Since the surface-to-
volume-ratio is smaller for the brain than for the tumor, the disagreement on the
brain surface with respect to the overall brain volume is less significant than for the
tumor.

Reproducibility is higher with the automated than with the manual method,
because manual segmentation involves a human decision on every voxel while our
automated segmentation method only requires the selection of a few example points
for every tissue class. It has been previously shown by others that the statistical
classification method used in our work (kNN rule) is robust with respect to the
selection of tissue prototypes [25].

However, while interobserver variability is significantly reduced with the auto-
mated method for all cases, the intraobserver variability is lower only for the tumor
segmentation of the meningioma cases. This can be explained with the different
gray value distributions of the meningioma and the low grade gliomas with respect
to the brain.

The meningioma tissue class partially overlaps with parts of the skin, fat in
the neck and the straight and superior sagittal sinus, and is well distinguishable
from brain tissue with the application of contrast enhancing agent. Restricting the
region of interest (ROI) for the meningioma to the ICC, the tissues that show signal
intensity overlap with the meningioma are excluded and the meningioma can be
successfully segmented.

Low grade gliomas, however, are less distinguishable from brain tissue and ordi-
narily there is no contrast enhancement, making segmentation a more difficult task.
This is indicated by the higher reproducibility of both methods for meningioma
cases than for low grade gliomas cases.

In some cases, the choice of the ICC as ROI for the tumor segmentation may
not be sufficient for an accurate segmentation. If signal intensity overlap between
the tumor and the brain (usually gray matter) occurs, the automated segmentation
may result in over- or under-segmentation depending on the spatial location of the
voxels of the brain that were erroneously classified as tumor or vice versa.

The local refinement operations cannot correct false classifications, resulting in
an over-segmentation of the low grade glioma if a) brain misclassified as tumor
tissue is adjacent to the tumor boundary (over-segmentation), or b) tumor tissue
on the boundary of the tumor is misclassified as brain (under-segmentation). The
incorporation of T2 weighted images, which clearly distinguishes the tumor as hy-
perintense tissue, may enable the precise definition of the tumor boundaries. The
local segmentation strategies correct classification artifacts if a) the voxels of the
brain misclassified as tumor are distant to the tumor boundary or connected to the
tumor only with thin structures, or b) tumor voxels “inside” the tumor are falsely
classified as brain.
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6.1.3 Conclusion

A new algorithm was developed for the automated segmentation of meningiomas and
low grade gliomas. The method combines anatomical knowledge with statistical
classification and low level segmentation techniques. The study shows that the
brain and meningiomas and low grade gliomas can be accurately and reproducibly
segmented by means of automated processing of gradient echo MRI. It is shown
that the new algorithm allows complete segmentation of the brain and the tumor
requiring only the manual selection of a small sample of example voxels (21-28).

6.2 Segmentation of White Matter Tract in Mag-
netic Resonance Images of Brain Tumor Pa-
tients

Introduction

One of the principal goals of neurosurgical planning is the localization of critical
brain structures (e.g. eloquent areas, motor and sensory cortex) with respect to the
tumor to define the safest possible surgical approach that ensures the least possible
damage to the brain.

If a tumor is located close to the motor area (the precentral gyri) of the brain,
the location of the white matter tracts is particularly important to the surgeon.
These tracts converge fan-like from the motor cortex, connecting it to the spinal
cord (Figure 6.6 (c)). A tumor close to the tracts may impair motor abilities of
the patient, and the damage of theses structures during surgery may lead to spastic
paralysis which cannot be recovered. Pre-operative knowledge about the deforma-
tion and location of the white matter tracts allows the surgeon to plan the surgical
approach most likely to avoid additional damage of the white matter tracts.

The white matter tracts can be manually segmented from MRI by an experienced
radiologist. However, manual segmentation is clinically not feasible, and automatic
identification is not yet possible, because these structures do not differentiate in
conventional MRI. MRI dedicated to the imaging of white matter bundles is not yet
at the stage of providing exact information [104]. The registration of an anatomical
atlas, where functional areas have been identified and segmented, enables to identify
particular structures of the brain [86, 155].

This section presents a method to retrieve the structural information, in partic-
ular the white matter tracts, in patients with brain tumors, by using an automated
image processing pipeline [76].

Methods

A representation of the image processing pipeline is illustrated in Figure 6.5. The
patient dataset was segmented into the classes skin (fat/bone), brain, ventricles and
tumor using the automated segmentation method (Section 4). Subsequently, the
atlas was relabeled to contain only skin (fat/bone), brain and ventricles and regis-
tered to the segmented patient dataset (Chapter 5). The established deformation
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field was applied to the white matter tracts, which had been previously extracted
from the digital atlas.

MRI Automated brain

—’[ Segmentation ] B

‘ Def [ {\/\/Ilfﬁgt'(:hel\%I
- : ormation ite Matter
Registration Fald Deform Tracts

Anatomical brain 4 White M atter“
Brain Atlas Tracts

Figure 6.5: Image processing pipeline for the projection of white matter
tracts onto patients with brain tumors. The atlas brain is registered to the la-
beled patient’s brain to compute the deformation field. Subsequently, the deformation
field s applied to the white matter tracts and other structures of the atlas.

Preliminary Results and Discussion

The result of the projected white matter tracts onto a brain tumor patient is shown
in Figure 6.6 shows several 3D renderings of different anatomical structures of the
patient, and structures projected from the atlas, i.e. the precentral gyri and the
white matter tracts. Visual validation of the projected structures correlated well
with the neuroradiological interpretation. The precentral gryi coincide with the
correct gyri from the actual patient’s brain model (Figure 6.6 (b)), and the white
matter tracts passes the crus cerebri, a part of the brainstem, in the correct location
(Figure 6.6 (d)). It can be also seen, that the projection of atlas structures is
consistent, i.e. the white matter tracts touch the precentral gryi in the correct
location (Figure 6.6 (c)).

It was demonstrated that structural information like the white matter tracts re-
trieved from a normal brain atlas can be projected onto patients with brain tumors
with reasonable accuracy. This enables the visualization of complex anatomical rela-
tionships with minimal user interaction for surgical planning that cannot otherwise
be visualized.

Currently, the method is limited to the special case of extrinsic tumors, because
the registration method is not capable of matching structures that are topologically
not equivalent.

Validation has been carried out visually. Future work will include the clinical
validation on the basis of a larger number of cases, and the comparison of projected
with manually segmented anatomical structures.
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(b) Projected precentral gyri coincides
with the manually generated brain model

(¢) Projection of structures is anatomi- (d) White matter tracts passes crus cere-
cally consistent bri (part of brainstem) correctly

Figure 6.6: Visual verification of the structures projected from the atlas
onto the patient’s brain. Comparing the projected structures with manually
segmented and grey value data of the patient show’s that the precentral gyri coincide
well with the manually segmented brain (b), the structures are projected coherently
(i.e. the white matter tracts and the precentral gyri are connected in the correct
locations) (c), and the white matter tracts passes the “crus cerebri” (part of the
brainstem) at the correct location (d).
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Conclusion

Computer based image guided technology and computer aided surgical planning have
become increasingly utilized in neurosurgical treatment. While two-dimensional
(2D) cross-sections of the intensity value images accurately describes the size and
location of anatomical objects, the availability of three dimensional (3D) anatomical
models significantly improves spatial information concerning relationships of critical
structures (e.g. eloquent cortical areas, vascular structures) and pathology. Com-
puter assisted techniques have shown the potential for increasing the safety in the
removal of pathologic tissue, improving treatment outcome and reducing postoper-
ative deficits.

Precise 3D modeling requires the segmentation of magnetic resonance images
(MRI), and the lack of automated segmentation algorithms necessitates the use of
interactive segmentation methods, which require tedious manual labor. This has
been one of the reasons why 3D models have been typically limited to university
research settings.

In this thesis, the problem of segmenting MRI in patients with brain tumors was
studied. An algorithm was developed that allows the automated segmentation of
some of the most common tumor types, meningiomas and low grade gliomas, from
MRI data. With the combination of anatomical knowledge and local segmentation
strategies such as statistical classification, mathematical morphology and region
growing, normal and abnormal structures can be correctly identified, despite similar
image intensity values of different tissue types. At the Surgical Planning Labo-
ratory, the preliminary application of the method has reduced the operator time
from 3 hours to 5-10 minutes. This makes it practical to consider the integration of
computerized segmentation into daily clinical routine.

In this work, anatomical knowledge is integrated into the segmentation pro-
cess through the registration of an anatomical atlas using an adaptive template
matching approach. It has been shown how an N-channel probabilistic similarity
measure achieves better accuracy than the conventional sum-of-squared difference
(SSD) method for the registration of multiple anatomical templates. Also, the accu-
racy for the alignment of anatomical templates to images with classification errors
could be improved with the use of this method. The improved registration results
suggest an integration into the segmentation method presented in this work, with
the potential of improving robustness and reducing computation time.

71



7.1. SUMMARY 72

7.1 Summary

After an overview of the state of the art in Chapter 2 and an outline of the method-
ology of this work, a method for the automated segmentation of MRI in brain tumor
patients was presented in Chapter 4. Initially, tissue composition and intensity dis-
tribution of brain and tumors (meningiomas and low grade gliomas) in spin-echo
MRI were analyzed. It was shown that segmentation is not possible with the use
of statistical classification or registration of an anatomical atlas alone, because a)
statistical classification due to overlapping intensities of different tissue classes, or
b) registration of an anatomical brain atlas because it does not describe pathology.
A method for the automated segmentation of meningiomas and low grade gliomas
was developed, based on the concept of adaptive template moderated classification
(ATMC), a general segmentation framework which iterates between classification
and registration. The method operates in stages, and sequentially segments the
head, the brain, the ventricles and the tumor according to a hierarchical model of
anatomy.

The use of optical low methods for the task of aligning an anatomical atlas to
individual patient datasets were analyzed in Chapter 5. A N-channel probabilistic
(NP) similarity measure was presented, which increases the accuracy of a classic
sum-of-squared difference (SSD) measure when registering multiple templates, and
registering templates to images with segmentation errors. The improvement was
achieved by a) making explicit use of the correspondence established with segmen-
tation, i.e. separating labels of different objects into different channels, and b) using
classification probabilities as confidence measures.

The algorithms were applied to different problems in the domain of medical image
analysis and validated with synthetic and clinical image data (Chapter 6). The
goal of the segmentation validation study was to assess the difference between the
manual and the automated segmentation in terms of accuracy and reproducibility.
A study based on 20 clinical datasets of patients with meningiomas and low grade
gliomas demonstrated that automated segmentation produces comparable accuracy
at higher inter-operator reproducibility in all cases. In the registration validation
study, the performance of an adaptive template matching approach was analyzed in
the framework of ATMC. The accuracy of two similarity measures (SSD and NP)
were compared in a study based on synthetic and 5 clinical datasets. While both
methods showed difficulties with the alignment of the 3rd and 4th ventricle, it was
demonstrated that NP achieves better alignment for images with more than one
object. Also, better alignment was achieved when using classification probabilities
as confidence measures. The chapter concludes with the presentation of a method
to project white matter tracts from a normal brain atlas onto patients with brain
tumors.

7.2 Future Work

Adaptive template moderated segmentation (ATMC) is a method of combining reg-
istration and statistical classification into an iteration process. Registration was
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implemented with adaptive template matching, and statistical classification with
the kNN-rule. However, these may be substituted by or combined with comple-
mentary techniques which may improve the overall segmentation. Recent work by
Kapur et al. [73, 74] on classification of MRI images using a Bayesian framework
and spatial priors reports improved robustness to image noise. Preliminary work
by Ferrant et al. [39] presents a biomechanical tissue model for the registration of
medical images, that allows improved control over the type of deformation.

The improved accuracy for aligning multiple objects and segmentations of early
stages of the ATMC segmentation cycle suggests the integration of the N-channel
probabilistic (NP) similarity measure into ATMC. Future work will involve the re-
design of the segmentation hierarchy to allow the segmentation of several objects in
less iterations.

The similarity measures described in this work are not specific to non-linear
template matching, but rather may be used with any kind of registration algorithm
that uses a scalar similarity measure. For example, the use of the NP measure could
be investigated with biomechanical deformation models to compute external forces.

In this work, non-linear registration was investigated for the registration of an
anatomical atlas to individual patient datasets. However, other areas of applications,
e.g. intra-operative registration to update preoperative images and 3D models would
be interesting to investigate. Some of the problems known to make intra-operative
registration difficult, e.g. intensity variations due to intra-operative application of
contrast agent, field inhomogeneities and noise, are addressed by the NP similarity
measure.

Segmentation of intra-operative images to update pre-operative image informa-
tion and 3D models is another important application area. Preliminary trials using
preoperatively segmented data as a template were carried out [142]. While reason-
able result were obtained, future work will require algorithmical improvements to
meet the time constraints of the neurosurgical intervention.

The segmentation method presented in this thesis is currently being used for the
preparation of data for image guided surgery in a clinical setting. In an ongoing
study, the method will be further evaluated based on a larger number of patient
cases.

The tumor segmentation method has been applied to the segmentation of menin-
giomas and low grade gliomas. The extension to more complex tumors, e.g. glioblas-
toma multiforme, will involve the modeling of separate pathological tissue classes
(e.g. enhancing and non-enhancing tissue, edema, cystic necrosis), improved use of
anatomical information, and the investigation of additional imaging modalities.
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Description of normal and
pathologic Brain
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ventricle

Figure A.1: SPGR MR exam of a normal brain. The white matter is the
brain tissue appearing light grey and the grey matter appears dark grey.



76

active tumor

necrosis

cyst

Figure A.2: SPGR MR exam of a brain with a glioblastoma multiforme
and related pathology.



Appendix B

List of frequently used
Abbreviations

ATMC - Adaptive Templater Moderated Classification
CAS - Computer assisted surgery
CGC - Coarse grid correction

CSF - Cerebro-spinal fluid

CT -  Computer Tomography

CvV - Coefficient of Variation

DOF - Degrees of freedom

FOV - Field of view

GRE - Gradient-recalled-echo

HPC - High Performance Computing
ICC - Intra-cranial cavity

M - Mean

MI - Mutual Information

MRI - Magnetic Resonance Imaging
MS - Multiple Sclerosis

NP - N-channel probabilistic similarity measure
OF - Optical flow

PD - Proton Density

PDE - Partial differential equation
ROI - Region of interest

SD - Standard Deviation

SE - Spin-echo

SNR - Signal-to-noise

SPGR - Spoiled gradient recalled
SRG - Seeded region growing

SSD - Sum of squared differences
TE - Echo time

TR - Repetition time

kNN - k-nearest-neighbour rule
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Appendix C

Discretization of the Optical Flow
PDE

The source and target image data is presented on a regular, discrete grid with cubic
elements. In the following, a discretization of Equation (5.13) will be derived. Let
the volumetric images I; » (in the following treated as I) be defined on

Zmin S x S Tmax

Ymin S Yy S Ymax
Zmin S 4 S Zmax . (Cl)

The discrete grid of [ is defined with the integer indices tmax, Jmax and kmay and the
grid spacing

X — Tmi
h — max min
? imax —1
hy — ynTax — Ymin
Jmax — 1
zZ — Zmi
h — max min . 02
¢ kmax -1 ( )

Then for each grid point (i, j, k) the coordinates (z,y, z) are given by
T = Zpin+ (1 — 1)hy
Y = Ymin + (Z - 1)hy

zZ = Zmin+ (i —1h, (C.3)
where
1 <9 < imax
1 <7 < Jmax
1<k < kmax - (C4)

In the following the notation f;;, and f[i,J, k] are used to denote a value of a
function f(z,y, z), where x,y, z and i, j, k relate to each other according to Equation

(C.3).

78



79

For the discretization of the Laplacian operator A, 2nd order central finite dif-
ferences (see e.g. [16])

0?u, . . Uitk — 2Uijk + Uit1,5k
aQ—x[Z:]:k] = U’ww[Z:])k] ~ h$2

for the approximation of the derivative in z-direction and similarly for y and z are
used. Thus, A can be estimated with

(C.5)

Ui—1,jk — 2Uijk + Uit1,5k 4 Y1k 2U; 5k + Uijr1k

Auiajzk ~ h$2 hyZ +
A 2ui,;-,k t Uikt (C.6)
h,
On a uniform grid with h, = h, = h,, this leads to
At R~ Uijk — Uik (C.7)
where
w
vl u" '7k
Ui jj = 2 Uigh (C.8)

>
is the average of the neighbors of u and similarly for v and w.

The integral can be approximated with a sum over the integration volume, and
the spatial image gradients V are approximated with 1st order central finite differ-
ences

oIl ik — Licagk

O ikl |
~fis, K = Lfi, . ) - (C9)

for the derivative in z-direction and similarly for y and z.
With lexicographical ordering, i.e. i = i+ j *imax + £ * fmax * Jmax, Foquation (5.5)
becomes

Qx) = /VIl(X)Vll(x)de

S IRl X Deliyli] 3 Lali)E[i]
S Ll I X Lyl (C10)
DI EH IR U D D R U D DA AT

Q

and

1) = [ VEG(L() - L)
S T [i](Is[i] — 1[d])
S Ly [i)(I[] - L) | (C.11)
SV T i) (T[] — L[])

Q
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Substituting equations Equation (5.5)) into Equation (5.13) results in the system of
linear equations

NIl X Dalilhy [ 32 Dalil T[] [uld]

uli) — ZL0
SVl SV S ylilnafl| | vl | - A | eli] - S| =
)OI 1) I DI A1) W11 N S £ 1) I M KT wli} = Sy
SV L[5 - L)
= | Y 1y [i)(1[i] - B[d) (C.12)
SV 1Ll (L[] - L)



Appendix D

Generation of synthetic
Deformation Fields

A set of points (landmarks) [py, ---, Pum), P = [z, ¥, z|7] is manually identified
in the template dataset. A set of random translations [ui, ..., up], u; < 5 mm
w; = [uz(Pi), uy(Pi), u.(Pi)]7, is generated for each landmark, and the correspond-
ing coordinates [Py, ..., Pum| in the target image are calculated. The sets of corre-
sponding landmarks is used to calculate a volumetric deformation field that trans-
forms the template to the target landmarks and interpolates between these transla-
tion vectors based on a polynomial model.

The degrees of freedom needed to achieve the desired “warping” is not so im-
portant since we know where the landmarks are in both images. Thus, it is not
necessary to get a perfectly deformed target where all landmarks have been warped
to the exact location according to the random offset.

The relationship between locations p in the template and p in the target image
is defined by the Nth-order polynomials

N N N
T = Pi(a;,x,y,2) = wry?2F i+ k<N (D.1)
i=0 j=0 k=0

and § = Py(bi,z,y,2), 2 = P;(ci,x,y,2) respectively. Writing the equations in
vector form

1
x
T ag ar,
~ )
Yy = b() bL 2 s (D2)
z Co ol |4y
and solving Equation (D.2) for [Z § Z] leads to
x=A"Ta, y=A"b, z=A"c , (D.3)
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where
i:[jl ‘%M]Ta 5’:[~1 "'gM]Ta 2:[21 2M]T
a= [CLl . GM]T, b = [bl Cen bM]T, CcC = [61 e CM]T s (D4)
and
(1 21 oy & |
1 Al Y1 Z1 e
A= |1 = yp1 2z ... : (D.5)

1 o ym 2Zm

The polynomial coefficients a;, b; and ¢; can be computed in a least-squares sense
according to

a=A"'%, b=Aly, c=A""z72 . (D.6)

The deformation field u(z,y, z) for every voxel in the template image is calculated
according to

P:i(ah x,Y, Z) -
U(.Z', Y, Z) = Ps'c(a'lu z,Y, Z) -y . (D?)
Pi(alaxuya Z) — 2



Bibliography

1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

R. Adams and L. Bischof. Seeded region growing. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16(6):642-645, 1994.

E. Alexander, R. Kikinis, and F.A. Jolesz. Intraoperative Magnetic Resonance
Imaging Therapy. In G.H. Barnett, D. Roberts, and B. Guthrie, editors,
Neurosurgery: Clinical Applications of Interactive Surgical Navigation, pages
260-266, St. Louis, USA, 1996. Quality Medical Publisher.

N. Ayache. Volume Image Processing: Results and Research Challenges. Tech-
nical Report RR-2050, Institute National de Recherche en Informatique et en
Automatique (INRIA), Sophia-Antipolis, France, 1993.

R. Bajcsy and S. Kovacic. Multiresolution Elastic Matching. Computer Vision,
Graphics and Image Processing, 46:1-21, 1989.

R. Bajcsy, R. Lieberson, and M. Reivich. A Computerized System for the Elas-
tic Matching of Deformable Radiographic Images to Idealized Atlas Images.
Journal of Computer Assisted Tomography, 7(4):618-625, 1983.

J.L. Barron and S.S. Beauchemin. The Computation of Optical Flow. Tech-
nical report, Univ. of Western Ontario, Dpt. of Computer Science, London,
Ontario, Canada, 1995.

J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of Optical Flow.
IEEFE International Journal of Computer Vision, 12(1):43-77, 1994.

J.C. Bezdek, L.O. Hall, and L.P. Clarke. Review of MR Image Segmenta-
tion Techniques using Pattern Recognition. Medical Physics, 20(4):1033-1048,
1993.

P.M. Black, T. Moriarty, E. Alexander, P. Stieg, and E.J. Woodward. Devel-
opment and Implementation of Intraoperative Magnetic Resonance Imaging
and its Neurosurgical Applications. Neurosurgery, 41:831-845, 1997.

A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge,
MA, USA, 1987.

F. Bookstein. Morphometric Tools for Landmark Data: Geometry and Biology.
Cambridge University Press, Cambridge, MA, USA, 1991.

83



BIBLIOGRAPHY 84

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

Gunilla Borgefors. Distance transformations in arbitrary dimensions. Com-
puter Vision, Graphics, Image Processing, 27:321-345, 1984.

Chr. Brechbiihler, G. Gerig, and G. Szekely. Compensation of Spatial Inho-
mogeneity in MRI Based on a Parametric Bias Estimate. In LNCS No. 1131,
Proceedings of the 4th International Conference on Visualization in Biomedical
Computing, pages 141-146, 1996.

M. Bro-Nielsen and C. Grankow. Fast Fluid Registration of Medical Images.
In LNCS No. 1131, Proceedings of the 4th International Conference on Visu-
alization in Biomedical Computing, pages 267-276, 1996.

C. Broit. Optimal Registration of Deformed Images. PhD thesis, University
of Pennsylvania, Pennsylvania, USA, 1981.

ILN. Bronstein and K.A. Semendjajew. Taschenbuch der Mathematik. Harri
Deutsch Verlag, Berlin, 1990.

M.E. Brummer, R.M. Mersereau, R.L. Eisner, and R.R. Lewine. Automatic
Detection of Brain Contours in MRI Data Sets. IEEE Transactions on Medical
Imaging, 12(2):153-166, 1993.

A. Chabrerie, F. Ozlen, S. Nakajima, M.E. Leventon, H. Atsumi, E. Grimson,
F.A. Jolesz, R. Kikinis, and P. Black. Three-dimensional Image Reconstruction
for Low-Grade Glioma Surgery. Neurosurgical Focus, 4(4):Article 7, 1996.

G. Christensen, R. Rabbitt, and M. Miller. Deformable Templates using large
Deformation Kinematics. IEEE Transactions on Medical Imaging, 5(10):1435—
1447, 1996.

G.E. Christensen, M.I. Miller, J.L. Marsh, and M.W. Vannier. Automatic
Analysis of Medical Images using a Deformable Textbook. In Computer As-
sisted Radiology CAR, pages 146-151, 1995.

G.E. Christensen, R.D. Rabbitt, and M.I. Miller. 3D Brain Mapping using a
Deformable Neuronatomy. Physics in Medicine and Biology, 39:609-618, 1994.

M. Clark. Knowledge Guided Processing of Magnetic Resonance Images of the
Brain. PhD thesis, University of Florida, Florida, 1998.

M.C. Clark, L.O. Hall, D.B. Goldgof, L..P. Clarke, R.P. Velthuizen, and M.S.
Silbiger. MRI Segmentation Using Fuzzy Clustering Techniques: Integrating

Knowledge. In IEEE Engineering Medicine and Biology Magazine, page talk,
1994.

L.P. Clarke, R.P. Velthuizen, M.A. Camacho, J.J. Heine, M. Vaidyanathan,
L.O. Hall, R.W. Thatcher, and M.L. Silbinger. MRI Segmentation: Methods
and Applications. Magnetic Resonance Imaging, 13(3):343-368, 1995.



BIBLIOGRAPHY 85

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

L.P. Clarke, R.P. Velthuizen, S. Phuphanich, J.D. Schellenberg, J.A. Arring-
ton, and M. Silbinger. MRI: Stability of Three Supervised Segmentation Tech-
niques. Magnetic Resonance Imaging, 11(1):95-106, 1993.

H.E. Cline, E. Lorensen, R. Kikinis, and F.A. Jolesz. Three-Dimensional
Segmentation of MR Images of the Head using Probability and Connectivity.
Journal of Computer Assisted Tomography, 14(6):1037-1045, 1990.

A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Mar-
chal. Automated Multi-Modality Image Registration based on Information
Theory. In Proceedings of the 13th International Conference on Information
Processing in Medical Imaging, pages 263-274, 1995.

D.L. Collins. 8D Model-Based Segmentation of Individual Brain Structures
from Magnetic Resonance Imaging Data. PhD thesis, McGill Uuniversity,
Canada, 1994.

D.L. Collins, G. Le Goualher, and A.C. Evans. Non-linear Cerebral egistration
with Sulcal Constraints. In 1st. International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 974-984, 1998.

D.L. Collins, G. Le Goualher, R. Venugopal, A. Caramanos, A.C. Evans, and
C. Barillot. Cortical Constraints for Non-Linear Cortical Registration. In
LNCS No. 1131, Proceedings of the 4th International Conference on Visual-
wzation in Biomedical Computing, pages 307-316, 1996.

D.L. Collins, T.M. Peters, W. Dai, and A.C. Evans. Model based Segmentation
of Individual Brain Structures from MRI Data. In SPIE Vol. 1808, Proceedings

of the 1st International Conference on Visualization in Biomedical Computing,
pages 10-23, 1992.

J. Dengler and M. Schmidt. The Dynamic Pyramid - A Model for Motion
Analysis with Controlled Continuity. International Journal of Pattern Recog-
nition and Artificial Intelligence, 2(2):275-286, 1987.

S. Dickson and B.T. Thomas. Using Neural Networks to automatically de-
tect Brain Tumours in MR Images. International Journal of Neural Systems,
4(1):91-99, 1997.

R.O. Duda and P.E Hart. Pattern Classification and Scene Analysis. John
Wiley and Sons, New York, 1973.

G. Ettinger, W.E.L. Grimson, M. Leventon, R. Kikinis, V. Gugino, W. Cote,
M. Karapelou, L. Aglio, M. Shenton, G. Potts, and E. Alexander. Non-Invasive
Functional Brain Mapping using Registered Transcranial Magnetic Simulation.
In IEEE Workshop on Mathematical Methods in Biomedical Image Analysis,
Registration I, 1996.



BIBLIOGRAPHY 86

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

A. Evans, W. Dai, L. Collins, P. Neelin, and S. Marrett. Warping of a Com-
puterized 3-D Atlas to Match Brain Image Volumes for Quantitative Neu-
roanatomical and Functional Analysis. In SPIE Medical Imaging V: Image
Processing, volume 1445, pages 236246, 1991.

A.C. Evans, D.L. Collins, and B. Milner. An MRI-based Stereotactic Brain
Atlas from 300 young normal subjects. In Proceedings of the 22nd Symposium
of the Society for Neuroscience, volume 408, 1992.

A.C. Evans, J.A. Frank, J. Antel, and D.H. Miller. The Role of MRI in Clinical
Trials of Multiple Sclerosis: Comparison of Image Processing Techniques. Ann
Neurol, 41:125-132, 1997.

M. Ferrant, S.K. Warfield, C.R. Guttmann, R.V. Mulkern, F.A. Jolesz, and
R. Kikinis. 3D Image Matching using a Finite Element based Elastic Defor-
mation Model. In 2nd International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 202-209, 1999.

M. Froder. Darstellung geringkontrastiger Objekte im menschlichen Schddel
mit rechnerunterstitzter Rontegenvideotechnik. PhD thesis, Lehrstuhl fiir
Technische Elektronik, Universitat Erlangen-Niirnberg, Erlangen, 1986.

H. Fuchs. 3D Imaging in Medicine. In K.H. Héhne, H. Fuchs, and S. Pizer,
editors, Systems for Display of 8D Medical Image Data, volume F60 of Nato
ASI Series, pages 315-331. Springer-Verlag, Berlin-Heidelberg-Tokyo, 1990.

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,
New York, 2nd edition, 1990.

R.L.J. Galloway and R.J. Maciunas. Stereotactic Neurosurgery. Critical Re-
visions of Biomedical Engineering, 18:181-205, 1990.

J.C. Gee, M. Reivich, and R. Bajcsy. Quantitative Analysis of Cerebral Images
using an Elastically Deforming Atlas: Theory and Validation. SPIE Medical
Imaging IV: Image Processing, 1652:260-269, 1992.

J.C. Gee, M. Reivich, and R. Bajcsy. Elastically Deforming 3D Atlas to
Match Anatomical Brain Images. Journal of Computer Assisted Tomography,
17(2):225-236, 1993.

S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distribution and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721-741, 1984.

G. Gerig, R. Kikinis, O. Kiibler, and F.A. Jolesz. Nonlinear Anisotropic Fil-
tering of MRI Data. IEEE Transactions on Medical Imaging, 11(2):221-232,
1992.

G. Gerig, J. Martin, R. Kikinis, O. Kiibler, M. Shenton, and F.A. Jolesz.
Unsupervised Tissue Type Segmentation of 3D dual-echo MR Head Data.
Image and Vision Computing, 10(6):349-360, 1992. IPMI 1991 Special Issue.



BIBLIOGRAPHY 87

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

D.T Gering, A. Nabavi, R. Kikinis, W.E.L. Grimson, N. Hata, P. Everett,
F.A. Jolesz, and W.M. Wells. An Integrated Visualization System for Surgical
Planning and Guidance using Image Fusion and Interventional Imaging. In
2nd International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 809-819, Cambridge, UK, 1999.

P. Gibbs, D.L. Buckley, S.J. Blackband, and A. Horsman. Tumour Volume
Determination from MR Images by Morphological Segmentation. Physics in
Medicine and Biology, 41:2437-2446, 1996.

S. Gilles, M. Brady, J. Declerck, J.-P. Thirion, and N. Ayache. Bias Field Cor-
rection of Breast Images. In LNCS No. 1131, Proceedings of the 4th Interna-
tional Conference on Visualization in Biomedical Computing, pages 153-158,
1996.

S. Gilman. Imaging the Brain. New England Journal of Medicine, 338(12):812—
896, 1998.

R.C. Gonzalez and P. Wintz. Digital Image Processing. Addison-Wesley,
Reading, MA, USA, 1987.

W.E.L. Grimson, M. Leventon, A. Chabrerie, F. Ozlen, S. Nakajima, H. At-
sumi, R. Kikinis, and P. Black. Clinical Experience with a high Precision
Image-guided Neurosurgery System. In 1st. International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention, pages 63-73, 1998.

W.E.L. Grimson, T. Lozano-Perez, W.M. Wells, G.J. Ettinger, S.J. White,
and R. Kikinis. An automatic Rregistration Method for Frameless Stereotaxy,

Image-guided Surgery, and enhanced Reality Visualization. IEEE Transac-
tions on Medical Imaging, 15(2):129-140, 1996.

D.H.W. Gronemeyer, R.M.M. Seibel, A. Melzer, et al. Future of advanced
Guidance Techniques by interventional CT and MRI. Minimally Invasive
Therapy, 4:251-259, 1995.

J.W. Haller, G.E. Christensen, M.I. Miller, M. Gado, D.W. McKeel, J.G.
Csernansky, and M.W. Vannier. A Comparison of Automated and Manual
Segmentation of Hippocampus MR Images. In SPIE Vol 234, Proceedings of
the Conference on Medical Imaging, pages 206-215, 1995.

R.M. Haralick and L.G. Shapiro. Image Segmentation Techniques. Computer
Vision, Graphics, Image Processing, 29:100-132, 1985.

N. Hata. Rigid and deformable medical Image Registration for Image-quided
Surgery. PhD thesis, University of Tokyo, Tokyo, Japan, 1998.

N. Hata, T. Dohi, S. Warfield, S.W. Wells, R. Kikinis, and F.A. Jolesz. Multi-
modality deformable Registration of pre- and intraoperative Images for MRI-
guided Brain Surgery. In Ist. International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 10671074, 1998.



BIBLIOGRAPHY 88

[61] K. Held, E. Rota Kops, B.J. Kraus, W. M. Wells, and R. Kikinis H.W. Miiller-
Géartner. Markov Random Field Segmentation of Brain MRI Images. IEFEE
Transactions on Medical Imaging, 16(6):878-886, 1996.

[62] K.H. Hohne and W.A. Hanson. Interactive 3D Segmentation of MRI and
CT Volumes using Morphological Operations. Journal of Computer Assisted
Tomography, 16(2):285-294, 1992.

[63] K.H. Hohne, A. Pommert, M. Riemer, T. Schiemann, R. Schubert, U. Tiede,
and W. Lierse. Framework for the generation of 3D Anatomical Atlases. In
SPIE Vol. 1808, Proceedings of the 1st International Conference on Visual-
wzation in Biomedical Computing, pages 510-520, 1992.

[64] B.K.P. Horn and B.G. Schunk. Determining Optical Flow. Artifical Intelli-
gence, 17:185-203, 1980.

[65] X. Hu, K.K. Tan, and D.N. Levin. Three-dimensional Magnetic Resonance
Images of the Brain: Application to Neurosurgical Planning. Journal of Neu-
rosurgery, 72:443-440, 1990.

[66] D.V. Iosifescu, M.E. Shenton, R. Kikinis, S.K. Warfield, and R.W. McCarley.
Elastically Matching an MR Brain Atlas onto a new MR image of the Brain. In

Proceedings of the 8th Scientific Assembly and Annual Meeting, Radiological
Society of North America, pages 293-301, 1995.

[67] E.F. Jackson, L.E. Ginsberg, D.F. Schomer, and N.E. Leeds. A Review of
MRI Pulse Sequences and Techniques in Neuroimaging. Surgical Neurology,
47:185-199, 1997.

[68] B. Jéhne. Digital Image Processing: Concepts, Algorithms and Scientific Ap-
plication. Springer-Verlag, Berlin-Heidelberg-Tokyo, 1991.

[69] F.A. Jolesz. Image-Guided Procedures and the Operating Room of the Future.
Radiology, 204:601-612, 1997.

[70] M. Just, H.P. Higer, M. Schwarz, J. Bohl, G. Fries, P. Pfannenstiel, and
M. Thelen. Tissue Characterization of Benign Brain Tumors: Use of NMR-
Tissue Parameters. Magnetic Resonance Imaging, 6(4):463-472, 1988.

[71] M. Just and M. Thelen. Tissue Characterization with T1, T2 and Proton Den-
sity Values: Results in 160 Patients with Brain Tumors. Radiology, 169:779—
785, 1988.

[72] M. Kamber, R. Shinghal, D.L. Collins, G.S. Francis, and A.C. Evans. Model-
Based 3-D Segmentation of Multiple Sclerosis Lesions in Magnetic Resonance
Brain Images. IEEE Transactions on Medical Imaging, 14(3):442-453, 1995.

[73] T. Kapur. Model-Based Segmentation of Three-Dimensional Medical Images.
PhD thesis, MIT, Cambridge, MA, 1999.



BIBLIOGRAPHY 89

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

T. Kapur, W.E.L. Grimson, R. Kikinis, and W.M. Wells. Enhanced Spatial
Priors for Segmentation of Magnetic Resonance Imagery. In 1st. International
Conference on Medical Image Computing and Computer-Assisted Intervention,
pages 457-468, 1998.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models.
IEEFE International Journal of Computer Vision, 1(4):321-331, 1988.

M.R. Kaus, A. Nabavi, S. Warfield, F.A. Jolesz, and R. Kikinis. Computer
Simulation of the Displacement of white Matter Tracts in Patients with Brain
Tumors for the Planning of Surgical Approaches. In Proceedings of the Tagung
der Deutschen Gesellschaft fiir Neurochirurgie, Munich, Germany. Abstract,
1999.

M.R. Kaus, S. Warfield, F.A. Jolesz, and R. Kikinis. Adaptive template mod-
erated tumor segmentation of mri images. In Workshop fir Bildverarbeitung
in der Medizin, pages 102-106, Heidelberg, Germany, 1999.

M.R. Kaus, S.K. Warfield, A. Nabavi, E. Chatzidakis, P. Black, F.A. Jolesz,
and R. Kikinis. Automated Brain Tumor Segmentation in MRI: Meningiomas
and Low Grade Gliomas. In 2nd International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 1-10, 1999.

P.K. Kelly, B.A. Kall, S. Goerss, and F. Earnest. Computer-assisted stereo-
taxic Laser Resection of intra-axial Brain Neoplasms. Journal of Neurosurgery,
64:427-439, 1986.

R. Kikinis, P.L.. Gleason, T.M. Moriarty, M.R. Moore, E. Alexander III, P.E.
Stieg, M. Matsumae, W.E. Lorensen, H.E. Cline, P.McL. Black, and F.A.
Jolesz. Computer-assisted interactive three-dimensional Planning for Neuro-
surgical Procedures. Neurosurgery, 38:640—649, 1996.

R. Kikinis, M.E. Shenton, D.V. losifescu, R.W. McCarley, P. Saiviroonporn,
H.H. Hokama, A. Robatino, D. Metcalf, C.G. Wible, C.M. Portas, R. Don-
nino, and F.A. Jolesz. A Digital Brain Atlas for Surgical Planning, Model
Driven Segmentation and Teaching. IEEE Transactions on Visualization and
Computer Graphics, 2(3):232-241, 1996.

B. Kim, J.L. Boes, K.A. Frey, and C.R. Meyer. Mutual Information for Auto-
mated Multimodal Image Warping. In LNCS No. 1131, Proceedings of the 4th

International Conference on Visualization in Biomedical Computing, pages
349-354, 1995.

L. Kjaer, P. Ring, C. Thomsen, and O. Henriksen. Texture Analysis in Quanti-
tative MR Imaging: Tissue Characterisation of Normal Brain and Intracranial
Tumors at 1.5 T. Acta Radiologica, 36:127-135, 1995.

M.I. Kohn, N.K. Tanna, G.T. Herman, S.M. Resnick, P.D. Mozley, R.E. Gur,
A. Alavi, R.A. Zimmerman, and R.C. Gur. Analysis of Brain and Cere-
brospinal Fluid Volumes with MR Imaging. Radiology, 178(1):115-122, 1991.



BIBLIOGRAPHY 90

[85] E. Krestel. Bildgebende Systeme fiir die medizinische Diagnostik. Siemens
Aktiengesellschaft, Berlin, Germany, 1988.

[86] G. Le Goualher, D.L. Collins, C. Bariollot, and A.C. Evans. Automatic iden-
tification of cortical Sulci using a 3D probabilistic Atlas. In 1st. International
Conference on Medical Image Computing and Computer-Assisted Intervention,
pages 509-518, 1998.

[87] D.N. Levin, X. Hu, K.K. Tan, et al. The Brain: Integrated three-dimensional
Display of MR and PET Images. Radiology, 172:783-789, 1989.

[88] K.O. Lim and A. Pfefferbaum. Segmentation of MR Brain Images into Cere-
brospinal Fluid Spaces, White and Grey Matter. Journal of Computer Assisted
Tomography, 13(4):588-593, 1989.

[89] R.B. Lufkin. Interventional MRI. Radiology, 197:16-18, 1995.

[90] L.D. Lunsford, R. Parrish, and L. Albright. Intraoperative Imaging with a
therapeutic computed tomographic Scanner. Neurosurgery, 15:559-561, 1984.

[91] D. MacDonald, D. Avis, and A.C. Evans. Multiple Surface Identification and
Matching in Magnetic Resonance Images. In SPIE Vol. 2359, Proceedings of
the 3rd International Conference on Visualization in Biomedical Computing,
pages 160-169, 1994.

[92] R.J. Maciunas, M.S. Berger, B. Copeland, M.R. Mayberg, R. Selker, and G.S.
Allen. A Technique for Interactive Image Guided Neurosurgical Intervention
in Primary Brain Tumors. Neurosurgery Clinics of North America: Clinical
Frontiers of Interactive Image Guided Neurosurgery, 245(7):323-331, 1996.

93] J.A. Maintz.  Retrospective Registration of Tomographic Brain Images.
PhD thesis, Helmholtz Instituut, School for Autonomous Systems Research,
Utrecht, Netherlands, 1996.

[94] T. McInnerney and D. Terzopoulos. Deformable Models in Medical Image
Analysis: A Survey. Medical Image Analysis, 1(2):91-108, 1996.

[95] T. McInnerney and D. Terzopoulos. Deformable Models in Medical Image
Analysis: A Survey. Medical Image Analysis, 1(2):91-108, 1996.

[96] M.IL. Miller, G.E. Christensen, Y. Amit, and U Grenander. Mathematical Text-
book of Deformable Neuroanatomies. Proceedings of the National Academy of
Science USA, 90:11944-11948, 1993.

[97] S. Nakajima, H. Atsumi, A. Bhalerao, F.A. Jolesz, R. Kikinis, T. Yoshimine,
T. Moriarty, and P. Stieg. Computer-Assisted Surgical Planning for Cere-
brovascular Neurosurgery. Neurosurgery, 41(2):403—-409, 1997.

[98] S. Nakajima, H. Atsumi, and R. Kikinis. Use of Cortical Surface Vessel Reg-
istration for Image-guided Neurosurgery. Neurosurgery, 40:1201-1210, 1997.



BIBLIOGRAPHY 91

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

W.W. Orrison, J.D. Lewine, J.A. Sanders, and M.F. Hartshorne. Functional
Brain Imaging. Mosby-Year Book Inc, St. Louis, MO, USA, 1995.

F. Ozlen, S. Nakajima, A. Chabrerie, M.E. Leventon, E. Grimson, R. Kikinis,
F.A. Jolesz, and P. McL. Black. The Excision of Cortical Dysplasia in the Lan-
guage Area with a Surgical Navigatior: A Casereport. Epilepsia, 39(12):1361—
1366, 1998.

A.M. Parikh. Magnetic Resonance Imaging Techniques. Elsevier, New York,
NY, USA, 1992.

P. Perona and J. Malik. Scale-Space and Edge Detection Using Anisotropic
Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(7):629-639, 1990.

W.E. Phillips II, R.P. Velthuizen, S. Phuphanich, L.O. Hall, L.P. Clarke, and
M.L. Silbinger. Application of Fuzzy C-Means Segmentation Technique for
Tissue Differentiation in MR Images of a Hemorrhagic Glioblastoma Multi-
forme. Magnetic Resonance Imaging, 13(2):277-290, 1995.

C. Poupon, J.F. Mangin, V. Frouin, J. Regis, F. Poupon, M. Pachot-Clouard,
D. Le Bihain, and I. Bloc. Regularization of MR Diffusion Tensor Maps for
tracking Brain White Matter Bundles. In 1st. International Conference on

Medical Image Computing and Computer-Assisted Intervention, pages 489—
498, 1998.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C. Cambridge University Press, Cambridge, MA, USA, 1988.

D.W. Roberts, J.W. Strohbehn, J.F. Hatch, W. Murray, and H. Kettenberger.
A frameless stereotaxic Integration of computerized Tomographic Imaging and
the Operating Microscope. Journal of Neurosurgery, 65:545-549, 1986.

I. RoSmanith, H. Handels, S.J. Poppl, E. Rinast, and H.D. Weiss. Character-
isation and Classification of Brain Tumours in Three-Dimensional MR Image
Sequences. In LNCS No. 1131, Proceedings of the 4th International Conference
on Visualization in Biomedical Computing, pages 429-438, 1996.

V.M. Runge, L.R. Muroff, and J.W. Wells. Principles of Contrast Enhance-
ment in the Evaluation of Brain Diseases: An Overview. Journal of Magnetic
Resonance Imaging, 7:5-13, 1997.

L.R. Schad, S. Bliiml, and I. Zuna. MR Tissue Characterization of Intracra-
nial Tumors by Means of Texture Analysis. Magnetic Resonance Imaging,
11(6):889-896, 1993.

J.F. Schenck, F.A. Jolesz, P.B. Roemer, H.E. Cline, W.E. Lorensen, R. Kiki-
nis, S.G. Silverman, C.J. Hardy, W.D. Barber, E.T. Lakaris, B. Dorri, R.W.
Newman, C.E. Holley, B.D. Collick, D.P. Dietz, D.C. Mack, M.D. Ainslee, P.L.
Jaslolski, M.R. Figueira, J.C. Lehn, S.P. Souza, C.L. Dumoulin, R.D. Darrow,



BIBLIOGRAPHY 92

R.L. Peters, K.W. Rohling, R.D. Watkins, D.R. Eisner, S.M. Blumenfeld, and
K.G. Vosburgh. Superconducting open Configuration MRI System for Image-
guided Therapy. Radiology, 195:805-814, 1995.

[111] M. Schmidt. Mehrgitterverfahren zur 3D Rekonstruktion aus 2D Ansichten.
PhD thesis, Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Heidel-
berg, Germany, 1988.

[112] J. Serra. Image Analysis and Mathematical Morphology. Academic Press,
1982.

[113] A. Simmons, S.R. Arridge, G.J. Barker, and P.S. Tofts. Segmentation of
Neuroanatomy in Magnetic Resonance Images. SPIE Medical Imaging VI:
Image Processing, 1652:2-13, 1992.

[114] E.P. Sipos, S.A. Tebo, and S.J. Zinreich. In Vivo Accuracy Testing and Clinical
Experience with the ISG Viewing Wand. Neurosurgery, 39:194-204, 1996.

[115] J.A. Sorensen. Course Notes for Medical Physics 568. University of Wisconsin-
Madison, Wisconsin, USA, 1997.

[116] C. Sorlié, D.L. Collins, K.J. Worsley, and A.C. Evans. An anatomical vari-
ability study based on landmarks. Technical report, McConnell Brain Imaging
Center, McGill University, Montreal, Canada, 1994.

[117] R. Steinmeier, R. Fahlbusch, O. Ganslandt, C. Nimsky, M. Buchfelder, M.R.
Kaus, T. Heigl, G. Lenz, R. Kuth, and W. Huk. Intraoperative Magnetic
Resonance Imaging with the Magnetom Oopen Scanner: Concepts, Neuro-

surgical Indications, and Procedures: A Preliminary Report. Neurosurgery,
43(4):739-748, 1998.

[118] T.S. Sumanaweera, J.R. Adler, S. Napel, and G.H. Glover. Characterization
of Spatial Distortion in Magnetic Resonance Imaging and its Implications for
Stereotactic Surgery. Neurosurgery, 35(4):696-704, 1994.

[119] J. Talairach and P. Tournoux. Co-planar stereotazic Atlas of the Human Brain.
Thieme, New York, USA, 1988.

[120] D. Terzopoulos. Multi-Level Reconstruction of Visual Surfaces. Technical
Report 671, Massachusetts Institute of Technology (MIT), Cambride, MA,
USA, 1982.

[121] D. Terzopoulos. Computing Visible-Surface Representations. Technical Re-
port 800, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA,
1985.

[122] D. Terzopoulos. Regularization of Inverse Visual Problems Involving Discon-

tinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence,
8(4):413-424, 1986.



BIBLIOGRAPHY 93

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

J.P. Thirion and G. Calmon. Deformation Analysis to Detect and Quantify
Active Lesions in 3D Medical Image Sequences. Technical Report 3101, In-
stitute National de Recherche en Informatique et en Automatique (INRIA),
Sophia-Antipolis, France, 1997.

P. Thompson, D. MacDonald, M.S. Mega, C.J. Holmes, A. Evans, and A.W.
Toga. Detection and Mapping of Abnormal Brain Structures with a Proba-
bilistic Atlas of Cortical Surfaces. Journal of Computer Assisted Tomography,
21(4):467-481, 1996.

P. Thompson and A.W. Toga. A Surface-Based Technique for Warping Three-
Dimensional Images of the Brain. IEEE Transactions on Medical Imaging,
15(4):402-417, 1996.

P. Thompson and A.W. Toga. Detection, Visualizaton and Animation of Ab-
normal Anatomic Structure with a Deformable Probabilistic Brain Atlas based
on Random Vector Field Transformation. Medical Image Analysis, 1(4):1-24,
1997.

P.M. Thompson, C. Schwartz, R.T. Lin, A.A. Khan, and W. Toga. Three-
Dimensional Statistical Analysis of Sulcal Variability in the Human Brain.
Journal of Neuroscience, 16(13):4261-4274, 1996.

A.N. Tikhonov and V.Y. Arserin. Solutions of Ill-Posed Problems. Wiley, New
York, 1977.

A. Toga and P. Thompson. An Introduction to Brain Warping. In A. Toga,
editor, Brain Warping, pages 1-26. Academic Press, 19909.

V.M. Tronnier, C.R. Wirtz, M. Knauth, G. Lenz, O. Pastyr, M.M. Bonsanto,
F.K. Albert, R. Kuth, A. Staubert, W. Schlegel, K. Sartor, and S. Kunze.
Intraoperative Diagnostic and Interventional Magnetic Resonance Imaging in
Neurosurgery. Neurosurgery, 40(5):891-902, 1997.

M. Vaidyanathan, L.P. Clarke, L.O. Hall, C. Heidtman, L.P. Clarke, R.P.
Velthuizen, K. Gosche, S. Phuphanich, H. Wagner, H. Greenberg, and M.S.
Silbinger. Monitoring Brain Tumor Response to Therapy Using MRI Segmen-
tation. Magnetic Resonance Imaging, 15(3):323-334, 1997.

M. Vaidyanathan, L.P. Clarke, R.P. Velthuizen, S. Phuphanich, A.M. Bensaid,
L.O. Hall, J.C. Bezdek, H. Greenberg, A. Trotti, and M. Silbinger. Comparison
of Supervised MRI Segmentation Methods for Tumor Volume Determination
During Therapy. Magnetic Resonance Imaging, 13(5):719-728, 1995.

M.W. Vannier, R.L. Butterfield, D.L. Rickman, D.M. Jordan, W.A. Murphy,
and P.R. Biondetti. Multispectral Magnetic Resonance Image Analysis. Ra-
diology, 154:221-224, 1985.



BIBLIOGRAPHY 94

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

M.W. Vannier, T.K. Pilgram, C.M. Speidel, L.R. Neumann, D.L. Rickman,
and L.D. Schertz. Validation of Magnetic Resonance Imaging (MRI) multi-

spectral Tissue Classification. Computerized Medical Imaging and Graphics,
15:217-223, 1991.

R.P. Velthuizen, L.P. Clarke, S. Phuphanich, L.O. Hall, A.M. Bensaid, J.A.
Arrington, H.M. Greenberg, and M.L. Silbinger. Unsupervised Measurement
of Brain Tumor Volume on MR Images. Journal of Magnetic Resonance
Imaging, 5:594-605, 1995.

S. Vinitski, C. Gonzalez, F. Mohamed, T. Iwanaga, R.L. Knobler, K. Khalili,
and J. Mack. Improved Intracranial Lesion Characterization by Tissue Seg-

mentation based on a 3D Feature Map. Magnetic Resonance in Medicine,
37:457-469, 1997.

P. Viola and W.H. Wells. Alignment by Maximization of Mutual Information.
In Proceedings of the 6th International Conference on Computer Vision, pages
16-23, 1995.

S. Warfield, F.A. Jolesz, and R. Kikinis. A High Performance Computing
Approach to the Registration of Medical Image Data. Parallel Computing,
24:1345-1368, 1998.

S. Warfield, M.R. Kaus, F.A. Jolesz, and R. Kikinis. Adaptive Template
Moderated Spatially Varying Statistical Classification. In 1st. International

Conference on Medical Image Computing and Computer-Assisted Intervention,
Boston, MA, USA, 1998.

S.K. Warfield. Segmentation of Magnetic Resonance Images of the Brain. PhD
thesis, University of New South Wales, Sydney, Australia, 1997.

S.K. Warfield, J. Dengler, J. Zaers, C.R.G. Guttmann, W.M. Wells, G.J.
Ettinger, J. Hiller, and R. Kikinis. Automatic Identification of Grey Matter
Structures from MRI to Improve the Segmentation of White Matter Lesions.
Journal of Image Guided Surgery, 1(6):326-338, 1995.

S.K. Warfield, J.A. Jolesz, and R. Kikinis. Real-time Image Segmentation
for Image-guided Surgery. In High Performance Networking and Computing
Conference, 1998. Abstract No. 106.

S.K. Warfield, A. Robatino, J. Dengler, F.A. Jolesz, and R. Kikinis. Nonlinear
Registration and Template Driven Segmentation. In A. Toga, editor, Brain
Warping, pages 67-84. Academic Press, 1999.

E. Watanabe, Y. Mayanagi, and Y. Yosugi. Open Surgery Assisted by the
Neuronavigator, a Stereotactic, Articulated, Sensitive Arm. Neurosurgery,
28:792-800, 1991.



BIBLIOGRAPHY 95

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

E. Watanabe, T. Watanabe, S. Manaka, Y. Mayanagi, and K. Takakura.
Three-dimensional Digitizer (Neuronavigator): New Equipment for computed

tomography-guided stereotaxic Surgery. Surgical Neurology, 27(6):543-547,
1987.

F.W. Wehrli, D. Shaw, and J.B. Kneeland. Biomedical Magnetic Resonance
Imaging. Principles, Methodology, and Applications. VCH Publishers Inc.,
NY, USA, 1988.

W.H. Wells, R. Kikins, W.E.L. Grimson, and F.A. Jolesz. Adaptive Seg-
mentation of MRI Data. In Proceedings of the 1st International Conference
on Computer Vision, Virtual Reality and Robotics in Medicine, pages 61-69,
1995.

W.H. Wells, R. Kikins, W.E.L. Grimson, and F.A. Jolesz. Adaptive Segmen-
tation of MRI Data. IEEE Transactions on Medical Imaging, 15:429-442,
1995.

W.H. Wells, R. Kikins, and F.A. Jolesz. Statistical Intensity Correction and
Segmentation of Magnetic Resonance Image Data. In SPIE Vol. 2359, Pro-
ceedings of the 3rd International Conference on Visualization in Biomedical
Computing, pages 13—24, 1994.

W.H. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-Modal
Volume Registration by Maximization of Mutual Information. Medical Image
Analysis, 1(1):35-51, 1996.

J. West et al. Comparison and Evaluation of Retrospective Intermodality
Brain Image Registration Techniques. Journal of Computer Assisted Tomog-
raphy, 21:554-566, 1997.

M.G. Yasargil. Microneurosurgery. Georg Thieme Verlag, Stuttgart, Germany,
1994.

H. Zhu, H.Y. Francis, F.K. Lam, and P.W.F. Poon. Deformable Region Model
for Locating the Boundary of Brain Tumors. In Proceedings of the IEEE 17th
Annual Conference on Engineering in Medicine and Biology, page 411, 1995.

Y. Zhu and H. Yan. Computerized Tumor Boundary Detection using a Hop-
field Neural Network. IEEE Transactions on Medical Imaging, 16(1):55-67,
1997.

A. Zijdenbos, R. Forghani, and A.C. Evans. Automatic Quantification of MS
Lesions in 3D MRI Brain Data Sets. In Ist. International Conference on

Medical Image Computing and Computer-Assisted Intervention, pages 439—
448, 1998.



