
Classification on Manifolds

by
Suman K. Sen

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in the Department of Statistics and Operations Research.

Chapel Hill
2008

Approved by

Advisor: Dr. James S. Marron

Reader: Dr. Douglas G. Kelly

Reader: Dr. Mark Foskey

Reader: Dr. Martin A. Styner

Reader: Dr. Yufeng Liu





© 2008

Suman Kumar Sen

ALL RIGHTS RESERVED

iii





ABSTRACT
SUMAN KUMAR SEN: Classification on Manifolds

(Under the direction of Dr. James S. Marron)

This dissertation studies classification on smooth manifolds and the behavior of

High Dimensional Low Sample Size (HDLSS) data as the dimension increases. In

modern image analysis, statistical shape analysis plays an important role in under-

standing several diseases. One of the ways to represent three dimensional shapes is

the medial representation, the parameters of which lie on a smooth manifold, and

not in the usual d-dimensional Euclidean space. Existing classification methods like

Support Vector Machine (SVM) and Distance Weighted Discrimination (DWD) do

not naturally handle data lying on manifolds. We present a general framework of

classification for data lying on manifolds and then extend SVM and DWD as special

cases. The approach adopted here is to find control points on the manifold which

represent the different classes of data and then define the classifier as a function of

the distances (geodesic distances on the manifold) of individual points from the con-

trol points. Next, using a deterministic behavior of Euclidean HDLSS data, we show

that the generalized version of SVM behaves asymptotically like the Mean Differ-

ence method as the dimension increases. Lastly, we consider the manifold (S2)d, and

show that under some conditions, data lying on such a manifold has a deterministic

geometric structure similar to Euclidean HDLSS data, as the dimension (number of

components d in (S2)d) increases. Then we show that the generalized version of SVM

behaves like the Geodesic Mean Difference (extension of the Mean Difference method

to manifold data) under the deterministic geometric structure.
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CHAPTER 1

Introduction

1.1 Motivation

Statistical shape analysis is important in but not limited to understanding and

diagnosing a number of challenging diseases. For example, brain disorders like autism

and schizophrenia are often accompanied by structural changes. By detecting the

shape changes, statistical shape analysis can help in diagnosing these diseases. One

of the many ways to represent anatomical shape models is a medial representation

or M-rep. The medial locus, which is a means of representing the “middle” of a

geometric object, was first introduced by Blum (1967). Its treatment for 3D objects

is given by Nackman and Pizer (1985). The medial atom represents a sampled place

in the medial locus. Atoms form the building blocks for m-reps. In particular, the

m-rep sheet can be thought of as representing a continuous branch of medial atoms.

For details of discrete and continuous m-reps, see Pizer et al. (1999) and Yushkevich

et al. (2003) respectively. The M-rep approach has proven to be useful in describing

various aspects of shape, in capturing important summaries of the object’s interior

and boundary, and in providing relationships between neighboring objects. A major

advantage of the m-reps approach to object representation over competitors is that

it allows superior correspondence of features across a population of objects, which is

critical to statistical analysis.

The elements of m-rep space are most naturally understood as lying in a curved



manifold, and not in the usual Euclidean space. We are interested in classification

of data which lie on this curved m-rep space. A major contribution of this work is

to use the geometric information inherent to the manifold. This enables the capture

of a wide range of nonlinear shape variability including local thickness, twisting and

widening of the objects. Principal geodesic analysis, the nonlinear analog of principal

component analysis in this type of manifold setting, was developed using the geom-

etry that can be derived from the Riemannian metric, including geodesic curves and

distances (see Fletcher et al., 2003, 2004) . Classification methods like Fisher Lin-

ear Discrimination (Fisher, 1936), Support Vector Machines (see Vapnik et al., 1996;

Burges, 1998), Distance Weighted Discrimination (Marron et al., 2004) were designed

for data which are vectors in Euclidean space and do not deal extensively with data

that are parameterized by elements in curved manifolds. See Duda et al. (2001) and

Hastie et al. (2001) for an overview of common existing classification methods. The

challenge addressed here is to develop classification methods, or extend the existing

methods so that they can handle data in curved manifolds. The notion of separating

hyperplane, fundamental to many Euclidean classifiers, is challenging to even define

in manifolds. The approach adopted here is to find control points on the manifold

which represent the different classes of data and then define the classifier as a function

of the distances (geodesic distances on the manifold) of individual points from the

control points. We thus bypass the problem of explicitly finding separating bound-

aries on the manifold. The control points chosen will be those which optimize some

objective function and the performance of several reasonable objective functions will

be investigated and compared.

This approach will enable us not only to use the method on our motivating example

of m-rep data (Sen et al., 2008), but it is also applicable for Diffusion Tensor Magnetic

Resonance Imaging (DT-MRI), and several other sciences like human movement,

mechanical engineering, robotics, computer vision and molecular biology where non-
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Euclidean data often appear.

Data sets with more variables (i.e., attributes or entries in the data vector) than

observations are now important in many fields. This type of data is called High

Dimension Low Sample Size (HDLSS) data. For example, in genetics a typical mi-

croarray gene expression data set has the number of genes ranging from thousands to

tens of thousands, while the number of tissue samples (i.e., observations) is typically

less than several hundreds. Data from medical imaging, and from text recognition

also often have a much larger dimension d than the sample size n. In our motivating

example of m-reps, we have the HDLSS situation too, but the entries in each dimen-

sion are not Euclidean. As pointed out earlier, they lie on a smooth manifold. Due

to the limitations of human visual perception beyond three dimensions, the behav-

ior of HDLSS data is often counter-intuitive (Hall et al., 2005; Donoho and Tanner,

2005), even in the Euclidean case. Ge and Simpson (1998) provided a framework

for evaluating dimensional asymptotic properties of classification methods such as

the Mean Difference. For the Euclidean case, Hall et al. (2005) have studied some

deterministic behavior of the data and used the observations to analyze the asymp-

totic properties (as d → ∞) of classification methods such as Mean Difference, SVM,

DWD and One-Nearest-Neighbor. As a part of this dissertation, we have studied

some geometric properties of HDLSS manifold data and used them to analyze the

asymptotic behavior of one of our proposed methods, which is an extension of SVM

for manifold data.

1.2 Overview of Chapters

This dissertation has been organized into chapters as follows:

Section 1.3 gives an overview of the medial representation. Section 1.4 gives an

overview of different statistical methods for manifold data and m-reps.

Section 2.1 gives an overview of the problem of classification while Section 2.2

3



contains a literature review of popular classification methods like Mean Difference,

Fisher Linear Discrimination, Support Vector Machines, Distance Weighted Discrim-

ination. Section 2.3 illustrates why these methods are not always ideal for data on

manifolds.

Chapter 3 presents the key ideas of our methods. Section 3.1 introduces the

fundamental idea of control points, and based on it proposes the general classification

rule. Section 3.1.2 illustrates the importance of a reasonable choice of control points.

Section 3.3 gives a brief overview of SVM, and generalizes it to manifold data. It also

provides a solving algorithm to the resulting optimization problem. Section 3.4 gives

a brief overview of DWD, and develops an optimization problem which generalizes

DWD to work with manifold data.

Chapter 4 studies some geometric properties of HDLSS data. Section 4.1 briefly

discusses some deterministic properties of Euclidean HDLSS data and studies the

asymptotic behavior (as dimension d → ∞) of one of our developed methods (mani-

fold SVM, also called MSVM) under such conditions. Section 4.2 studies conditions

under which there is a deterministic structure in HDLSS manifold data. This deter-

ministic structure is then used to study some properties of the MSVM method.

Chapter 5 discusses some avenues for future research, involving unresolved ques-

tions and possible applications of the developed methods in new areas.

The next section gives an overview of the medial locus and some of its mathemat-

ical properties. It describes m-reps and the deformable models approach based on

them. The deformable m-reps approach to image segmentation is described by Pizer

et al. (2003). A fine overview of medial techniques that goes beyond the material

covered in this section can be found in the Ph.D. dissertation of Yushkevich (2003)

and the book by Siddiqi and Pizer (2007).

4



1.3 The Medial Locus and M-reps

The medial locus is a means of representing the “middle” or “skeleton” of a geo-

metric object. Such representations have found wide use in computer vision, image

analysis, graphics, and computer aided design (Bloomenthal and Shoemake (1991);

Storti et al. (1997)). Psychophysical and neurophysiological studies have shown ev-

idence that medial relationships play an important role in the human visual system

(Leyton (1992); Lee et al. (1995)). The medial locus was first proposed by Blum

(1967), and its properties were later studied in 2D by Blum and Nagel (1978) and in

3D by Nackman and Pizer (1985). The definition of the medial locus of a set A ∈ <n

is based on the concept of a maximal inscribed ball.

The medial representation is based on the medial axis of Blum (1967). In this

framework, a geometric object is represented as a set of connected continuous medial

manifolds. For three-dimensional (3-D) objects, these medial manifolds are formed

by the centers of all spheres that are interior to the object and tangent to the object’s

boundary at two or more points. The medial description is defined by the centers of

the inscribed spheres and by the associated vectors, called spokes, from the sphere

centers to the two respective tangent points on the object boundary. Each continuous

segment of the medial manifold represents a medial figure.

5



Figure 1.1: Medial atom with a cross section of the boundary surface it implies (left). An
m-rep model of a hippocampus and its boundary surface (right).

The medial manifold is sampled over an approximately regular lattice and the

elements of this lattice are called medial atoms. A medial atom (Fig. 1.1) is defined

as a 4-tuple m = {x, r, n0, n1}, consisting of: x ∈ <3, the center of the inscribed

sphere; r ∈ <+, the local width defined as the common spoke length; no, n1 ∈ S2 ,

the two unit spoke directions (represented as points on S2, the unit sphere in <3). The

medial atom implies two opposing boundary points, yo, y1, called implied boundary

points, which are given by

y0 = x + rn0 and y1 = x + rn1. (1.1)

The surface normals at the implied boundary points y0, y1 are given by n0, n1, respec-

tively.

A medial atom, as defined above, is represented as a point on the manifold M(1) =

<3 × <+ × S2 × S2. Moreover, an m-rep model consisting of n medial atoms may

be considered as a point on the manifold cartesian product M(n) =
∏n

i=1 M(1).

This space is a particular type of manifold known as a Riemannian symmetric space,

which simplifies certain geometric computations, such as computing geodesic dis-

tances. We briefly review some of the concepts now. See Boothby (1986); Helgason

(1978); Fletcher (2004), Fletcher et al. (2003, 2004) for more details. Pizer et al.
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(1999) describes discrete m-reps. For details on continuous m-reps, see Yushkevich

et al. (2003); Terriberry and Gerig (2006).

1.3.1 Riemannian metric, Geodesic curve, Exponential and

Log maps

A Riemannian metric on a manifold M is a smoothly varying inner product < ·, · >

on the tangent plane TpM at each point p ∈ M . The norm of a vector X ∈ TpM

is given by ||X|| =< X,X >(1/2). The Riemannian distance between two points

x, y ∈ M , denoted by d(x, y), is defined as the minimum length over all possible

smooth curves between x and y. A geodesic curve is a curve that locally minimizes

the distance between points.

Given a tangent vector X ∈ TpM , there exists an unique geodesic, γX(t), with

X as its initial velocity. The Riemannian exponential map, denoted by Expp, maps

X to the point at time one along the geodesic γX . The exponential map preserves

distances from the initial point, i.e., d(p, Expp(X)) = ||X||. In the neighborhood of

zero, its inverse is defined and is called the Riemannian log map, denoted by Logp.

Thus, for a point y in the domain of Logp, the geodesic distance between p and y is

given by

d(p, y) = ||Logp(y)|| (1.2)

1.3.1.1 Exponential and Log maps for S2

On the sphere S2, the geodesics at the base point p = (0, 0, 1) are great circles

through p. If we consider the tangent vector v = (v1, v1, 0) ∈ TpS
2 in the x− y plane,

the exponential map at p is given by

Expp(v) = (v1.
sin ||v||
||v|| , v2.

sin ||v||
||v|| , cos ||v||) (1.3)

7



Figure 1.2: The Riemannian exponential map at p ∈ M . X ∈ TpM

where ||v|| =
√

v2
1 + v2

2.

The corresponding log map for a point x = (x1, x2, x3) ∈ S2 is given by

Logp(x) = (x1.
θ

sin θ
, x2.

θ

sin θ
) (1.4)

where θ = arccos(x3) is the spherical distance from the base point p to the point x.

Note that the antipodal point −p is not in the domain of the log map.

1.3.1.2 Exponential and Log maps for M-reps

Recall, from first part of Section 1.3 that the medial atom m = {x, r, n0, n1} ∈

M(1) = <3 ×<+ × S2 × S2 and a m-rep model consisting of n medial atoms may be

considered as a point on the manifold M(n) =
∏n

i=1 M(1). Let p = (0, 1, p0, p1) ∈

M(1) be the base medial atom, where p0 = p1 = (0, 0, 1) are base points for the

spherical components. Let us write a tangent vector u ∈ TpM(1) as u = (x, ρ, v0, v1),

where x ∈ <3 is the positional tangent component, ρ ∈ < is the radius tangent

component, and v0, v1 ∈ <2 are the spherical tangent component. Then, for M(1)

we have

Expp(u) = (x, eρ, Expp0
(v0), Expp1

(v1)) (1.5)

8



where the Exp maps on the right-hand side are the spherical exponential maps given

by equation (1.3). Likewise, the log map of m = {x, r, n0, n1} is

Logp(m) = (x, log r, Logp0
(n0), Logp1

(n1)) (1.6)

where the Log maps on the right-hand side are the spherical log maps given by (1.4).

Finally, the exponential and log maps for the m-rep model space M(n) is the

cartesian product of corresponding maps in M(1).

The norm for vector u ∈ TpM(1) is

||u|| = (||x||2 + r̄2(ρ2 + ||v1||2 + ||v2||2))
1
2 (1.7)

and the geodesic distance between two atoms m1,m2 ∈ M(1) is given by

d(m1,m2) = ||Logm1
(m2)|| = ||Logm2

(m1)|| (1.8)

1.4 Statistical Methods on M-reps and on General

Manifolds

The study of anatomical shape and its relation to biological growth and function

dates back to the landmark work of Thompson (1942). While most work on the sta-

tistical analysis of shape has focused on linear methods, there has been some work on

statistical methods for nonlinear geometric data. Hunt (1956) describes probability

measures on Lie groups that satisfy the semigroup property under convolution. This

leads to a natural definition of a Gaussian distribution on a Lie group as a fundamental

solution to the heat equation. Wehn (1959, 1962) shows that such distributions satisfy

a law of large numbers as in the Euclidean Gaussian case. Grenander (1963)’s book on

probabilities on algebraic structures includes a review of these works on Gaussian dis-

9



tributions on Lie groups. Pennec (1999) defines Gaussian distributions on a manifold

as probability densities that minimize information. Bhattacharya and Patrangenaru

(2002) develop nonparametric statistics of the mean and dispersion values for data

on a manifold. Mardia (1999) describes several methods for the statistical analysis

of directional data, i.e., data on spheres and projective spaces. Kendall (1984) and

also Mardia and Dryden (1989) have studied the probability distributions induced

on shape space by independent identically distributed Gaussian distributions on the

landmarks. Similar ideas in the theory of shape were independently developed by

Bookstein (1978, 1986). Ruymgaart (1989) studied convergence of density estimators

on spheres. Ruymgaart et al. (1992) gave a Rao-Cramer type inequality on Euclidean

manifolds. Olsen (2003) and Swann and Olsen (2003) describe Lie group actions on

shape space that result in nonlinear variations of shape. Klassen et al. (2004) de-

velop an infinite-dimensional shape space representing smooth curves in the plane.

Chikuse (2003) concentrates on the statistical analysis of two special manifolds, the

Stiefel manifold and the Grassmann manifold, treated as statistical sample spaces

consisting of matrices.

A standard technique for describing the variability of linear shape data is principal

component analysis (PCA), a method whose origins go back to Pearson (1901) and

Hotelling (1933). One of the earliest applications of PCA in functional data analysis

was given by Rao (1958). Its use in shape analysis and deformable models was

introduced by Cootes et al. (1993). Principal geodesic analysis, the nonlinear analog of

principal component analysis in this type of manifold setting was developed using the

geometry that can be derived from the Riemannian metric, including geodesic curves

and distances (see Fletcher et al. (2003, 2004)). A popular approach to handling data

in manifolds is “Kernel Embedding” (see Schölkopf and Smola (2002)) where the data

are mapped to a higher dimensional feature space.

The next chapter provides a brief overview of the problem of classification. It also

10



discusses the challenges faced by the classical methods when applied to data lying on

a manifold.
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CHAPTER 2

Overview of Classification

The first section gives the general setup followed by a description of popular

methods in Section 2.2. The last section explains why these methods fail in the context

of data naturally understood to be lying on curved manifolds. See Duda et al. (2001)

and Hastie et al. (2001) for an overview of common existing classification methods.

Note that, in the literature, classification and discrimination are interchangeable

terms. In our discussion we mostly refer to it as classification.

2.1 The Problem of Classification

Let Xi denote the attributes that describe the ith individual and Yi denote its

group label, i = 1, 2, . . . , n. Xi can be vector valued (in most cases it is a high

dimensional vector) while Yi is a scalar taking values in the set {1, 2, . . . , K} if there

are K classes. In our discussion, we will always have only two classes. For some

mathematical convenience, let the corresponding labels Y ∈ {−1, 1}.

Given a set of individuals (and their group labels), the goal of classification meth-

ods is to find a rule f(x) that assigns a new individual to a group on the basis of its

attributes X.

2.2 Popular Methods of Classification

There are quite a few popular methods of classification. Mean Difference is the

simplest of them. It assigns a new observation to that class whose mean is closest



to it. It is the optimal classification rule when the data comes from distributions

which only differ by their means and have common covariance matrix, which is the

identity. A classical approach to improve the Mean Difference method was proposed

by Fisher (1936), now called Fisher Linear Discrimination (FLD). It is the optimum

rule when the two classes is assumed to have the same covariance matrix (but not

limited to the identity). Since FLD approaches the problem by sphering the data it

is frequently useless in many modern day applications, particularly High Dimension

Low Sample Size (HDLSS) situations, where we cannot calculate the inverse of the

covariance matrix.

The Support Vector Machine (SVM), proposed by Vapnik (1982, 1995) is a pow-

erful classification method used in HDLSS situations. See Burges (1998) for a lucid

overview. Marron et al. (2004) showed that SVM suffers from “data piling” at the

“margin” and introduced a related method called Distance Weighted Discrimina-

tion (DWD). DWD avoids data piling and improves generalizability of the decision

rule. Both SVM and DWD are “linear” classifiers in the sense that the rules are

linear functions of the data vector. Geometrically, the separating surface they pro-

vide is a linear hyperplane and thus cannot separate data which need a nonlinear

separating boundary. This problem is overcome by “kernel embedding”. The data

vectors are embedded in a higher dimensional space where linear methods, such as

SVM can be much more effective. The book by Schölkopf and Smola (2002) gives

a fine overview of the kernel methods. Readers can also visit http://www.kernel-

machines.org/publications.html for a list of publications on kernel methods.

In this dissertation, we focus on the methods of SVM and DWD. Brief overviews

of these methods are given in Sections 3.3.1 and 3.4.1 respectively.
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2.3 Value Added by Working on Manifolds

Recall that our goal is to help image analysts and doctors understand how two

groups of objects differ. For example, let us consider a study of shapes of hippocampi

for groups of schizophrenic and normal individuals. There is a strong interest in

knowing whether the occurrence of the disease is actually accompanied by a struc-

tural difference of the hippocampus. If there is an association, the next question is

how these shapes change as we look at the direction of separation.

Some common approaches to handling data on manifolds are:

• Flatten, as for data on a cylinder (Section 2.3.1).

• Work in the tangent plane, with base as the overall geodesic mean of the data

(Section 2.3.2).

• Treat data as points embedded in a higher dimensional Euclidean space (Section

2.3.3).

The drawbacks of these approaches are illustrated in the above mentioned subsec-

tions.

2.3.1 Importance of Geodesic Distance on Manifolds

Throughout our discussion, the geodesic distance will play a crucial role. Let us

use an example to explain its importance.

Fig. 2.1(a) shows a cylinder with data points on its surface (different symbols

denote different classes). Fig. 2.1(b) shows the same data set when the cylinder is

flattened. The Mean Difference decision rule (given by the two shaded regions: blue

and white) is calculated by using the usual Euclidean distance on the flattened two

dimensional plane. This approach is not ideal. For example, it ignores the fact that

15



the point on the extreme left is actually close to the point to the extreme right when

the geometry of the manifold (in this case, the cylinder) is considered. A better way

to treat this data is to correctly account for the periodicity by repeating the flattened

plane sideways (as shown in Fig. 2.1(c)) and consider the shortest possible distance

between any pair of points while constructing a decision rule. This approach uses

the Mean Difference rule based on the geodesic distance on the manifold and the

corresponding decision rule is given by the shaded regions. The Mean Difference rule

using Euclidean distance misclassifies a point (green star in the blue shaded region).

The geodesic distance based Mean Difference classification rule (Fig. 2.1(c)) is able to

find a separating surface (the boundary between the shaded regions) which properly

separates the two classes. This illustrates the importance of using geodesic distances

for classification on manifolds. The cylinder is a simple manifold (<×S1): even there

geodesic distance makes a difference. This effect will usually be magnified for more

complex manifolds. It is therefore recommended that geodesic distance be used when

dealing with more complicated manifolds, such as M(n) (as defined in Section 1.3),

where the M-reps live.
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(b)
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1
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Figure 2.1: (a): Toy data on the surface of a cylinder. Different colors (with symbols)
denote different groups. (b): Data on the flattened cylinder. Shaded regions show the Mean
Difference rule using Euclidean distance. A point (green star) is misclassified. (c): Tiled
flattened planes capturing the structure (periodicity) of the manifold. Geodesic distance used
to construct the Mean Difference rule which has no misclassified points. The red dotted line
is the Mean Difference separating surface if Euclidean distance is used. c1 and c−1 are
means of the classes in each case.
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2.3.2 Choice of base point for Euclidean Classification on the

Tangent Plane

As pointed out in the Sections 1.1 and 1.4, when data appear in a small neigh-

borhood, some statistical analysis, such as finding means and Principal Component

Analysis can be successfully implemented. This is done in the tangent plane by

projecting the data from the manifold to the tangent plane with base point as the

geodesic mean (see Fletcher et al., 2003, 2004). This suggests implementing SVM

and DWD in the tangent plane at the geodesic mean of the data. Fig 2.2 shows why

this might not always be a good idea. In particular, this example shows that we can

end up with a tangent plane where the data is not linearly separable while there is

another tangent plane where separation is possible. Thus, the choice of the base point

is a crucial issue.

Figure 2.2: Top left: Toy data on the surface of a sphere. Different colors (with symbols)
denote different groups. Bottom Left: Tangent plane with base as overall geodesic mean of
the entire data. The data are not linearly separable. Bottom right: Tangent plane at the
geodesic mean of the black circles. The data can be separated linearly. Top Right: Tangent
plane at the geodesic mean of the geodesic means of the two groups. The points are not as
well-separable as in the bottom right panel.
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2.3.3 Validity and Interpretability of Projections

Another approach to handle manifold data is standard Euclidean SVM and DWD,

treating the data as points embedded in the higher dimensional Euclidean space.

For example, planar angles (θ ∈ (−π, π)) can be considered as embedded in <2 (as

(sin(θ), cos(θ))), while naturally they are understood to be lying on a one-dimensional

manifold (the unit circle in <2). Similarly solid angles are embedded points in <3

while naturally they are points restricted to the surface of the unit sphere (S2) in

<3. A separating rule will be obtained by taking this approach, but geometrically the

separating surface will not relate properly to the manifold. For example, in case of

data on the surface of a sphere a separating plane cutting through the sphere will be

obtained. This will probably not give a geodesic (in this case, a great circle), which

is the analog of a separating hyperplane.

More importantly, when the original data is projected on to the separating direc-

tion, most of them will be somewhere inside the sphere and not the surface. These

projections are not interpretable because they are not valid representations of shape

objects. Recall, in this example, our data objects must lie on the surface of the sphere.

Original m−rep sheet Original m−rep surface

Projected m−rep sheet Projected m−rep surface

Figure 2.3: Top left and right: Original m-rep sheet of a hippocampus and its surface
rendering respectively. Bottom left: M-rep model projected on to the separating direction
(obtained when data objects are considered as points in <240). Since it is not in the manifold
it is not a valid m-rep. Bottom right: Surface rendering of the m-rep sheet on the left. It is
not an interpretable shape object.
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To emphasise this issue consider Figure 2.3. The upper figure is the medial repre-

sentation of a human hippocampus. In our study we had two groups: 56 patients and

26 controls (see Styner et al. (2004)). Each of these models have 24 medial atoms,

placed in a 8×3 lattice (see Fig. 2.3, top left). Therefore, each of these figures belong

to M(24) = {<3 ×<+ ×S2 ×S2}24. But when standard SVM is implemented on the

data we consider them as elements of {<3 ×<×<3 ×<3}24 = <240. Naturally, when

we project the data sets on to the separating directions, what we get back are also

elements of <240 and not in M(24). Therefore the projection is not a valid medial

representation and thus not interpretable (Fig. 2.3, bottom panels). This motivates

our approach to work on manifolds.

The next chapter provides a framework for classification on manifolds using geodesic

distances. This framework is then used to extend methods like Mean Difference, SVM

and DWD for manifold data.
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CHAPTER 3

Classification on Manifolds

The main problem with classification on manifolds is that it is very difficult to

derive analytical expressions for geodesics and separating surfaces. Recall, from Sec-

tion 1.3, a geodesic is the local shortest path along the manifold and the distance

between two points is obtained as the arc length of this geodesic. Our goal is to ex-

tend the idea of a separating hyperplane (which is the foundation of many Euclidean

classification methods such as Mean Difference, FLD, SVM and DWD) to data lying

on a manifold. A major challenge is to find an appropriate manifold analog of the

separating hyperplane. Our solution is based on the idea of control points (and the

geodesic distance of data from these control points), as described in the following

section.

3.1 Control Points and the General Classification

Rule

We think about control points as being representatives of the two classes. If we

name the control points as c1 and c−1, then we propose the classification rule fc1,c−1(x)

given by

fc1,c−1(x) = d2(c−1, x) − d2(c1, x), (3.1)



where c1, c−1, and x ∈ M and d(·, ·) is the geodesic distance metric defined on the

manifold M . This rule assigns a new point x to class 1 if it is closer to c1 than c−1, and

to class -1 otherwise. It is important to note here that the formulation also provides

us with an implicitly defined separating surface and a direction of separation.

3.1.1 The Implied Separating Surface and Direction of Sep-

aration

The zero level set of fc1,c2(·) is the analog of the separating hyperplane, while the

geodesic joining c1 and c−1 is the analog of the direction of separation. Thus, the

separating surface is the set of points which is equidistant from c1 and c−1. If we

denote it by H(c1, c−1), we can write,

H(c1, c−1) = {x ∈ M : fc1,c−1(x) = 0}

= {x ∈ M : d2(c1, x) = d2(c−1, x)} (3.2)

In d-dimensional Euclidean space, H(c1, c−1) is a hyperplane of dimension d − 1

that is the perpendicular bisector of the line segment joining c1 and c−1 (see Lemma

3.1.1). Note that the Mean Difference method is a particular case of this rule, where

the control points are the means of the respective classes. Similarly, the general

control point classifier reduces to Fisher Linear Discrimination in Euclidean space by

taking the control points as the means of the sphered data (using the pooled within

class covariance estimate).

On the sphere (S2), H(c1, c−1) is the great circle equidistant from c1 and c−1 (see

Fig. 3.1.) This shows that this approach provides us with an useful representation

of a separating surface, that avoids the need to explicitly solve for it, which can be

intractable as pointed out earlier.

A set of training points is to said to be separable by H(c1, c−1) if all the points
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Figure 3.1: Two pairs of control points showing their respective separating boundary and
separating direction on the surface of the sphere. Different colors (with symbols) represent
classes. The solid red surface (great circle) separates the data better than the dotted black
surface.

are classified correctly by H(c1, c−1). Mathematically, the training set T is said to be

separable by H(c1, c−1), if, ∀xi ∈ T, i = 1, 2, . . . , n,

fc1,c−1(xi)





> 0 if yi = 1

< 0 if yi = −1
(3.3)

Lemma 3.1.1. Consider the separating surface defined in equation (3.2). Let the

data live in <d. Then

(1) H(c1, c−1) is a d − 1 dimensional hyperplane.

(2) The level set of fc1,c−1(x) = k is a hyperplane, parallel to H(c1, c−1).

(3) The distance of any point x from the separating surface H(c1, c−1) is given by

d(x,H(c1, c−1)) =
|fc1,c−1(x)|
2d(c1, c−1)

(3.4)

Proof. Since the space in which the data live is Euclidean, the distance between any
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two points x, y ∈ <d is given by

d(x, y) = ||x − y||

=
√

(x − y)T (x − y). (3.5)

Therefore, we can write the following:

fc1,c−1(x) = d2(c−1, x) − d2(c1, x)

= (c−1 − x)T (c−1 − x) − (c1 − x)T (c1 − x)

= wT x + b, (3.6)

where w = 2(c1 − c−1) and b = (cT
−1c−1 − cT

1 c1). Thus, the equation of the level set of

fc1,c−1(x) = k, for any k can be written as

wT x + b = k

⇒ wT x + (b − k) = 0 (3.7)

Note, that Equation (3.7) says that for all k, the level set is a d − 1 dimensional

hyperplane with common normal vector w and intercept b − k. This proves part (i),

as we note that H(c1, c−1) is the level set for k = 0. Moreover, for any other k 6= 0,

the normal to the resulting hyperplane is the same (= w). This proves part (ii).

For part (iii), we use the fact that the distance from any point z to a plane

wT x + b = 0 is given by
|wT z + b|

||w|| . Therefore, using equation (3.6) we can write the

distance of any point x from H(c1, c−1) as

d(x,H(c1, c−1)) =
|wT x + b|

||w||
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=
|fc1,c−1(x)|

||2(c1 − c−1)||
,

=

∣∣∣∣
fc1,c−1(x)

2d(c1, c−1)

∣∣∣∣ (3.8)

3.1.2 Choice of Control Points

Having set the framework for the general decision rule for manifolds the critical

issue now is the choice of control points. For example, Fig. 3.1 shows that for

the given set of data, the control points corresponding to the red solid separating

boundary do a better job of classification than the pair corresponding to the black

dotted boundary. So, the key to the construction of a good classification rule is to

find the right pair of control points.

The rest of the chapter develops new methods for finding control points. The first

approach, motivated by Mean Difference, chooses the control points as the geodesic

means and is called the Geodesic Mean Difference (GMD) Method. Then we propose

methods to extend SVM and DWD for manifold data.

3.2 The Geodesic Mean Difference (GMD) Method

This is motivated by the Mean Difference method in the Euclidean case. Here we

replace the Euclidean means of the two classes by their geodesic means. This is a

special case of the general classification rule (3.1) when c1 and c−1 are the geodesic

means of the two groups of data. The geodesic mean m of a set of observations

x1, x2, . . . , xn ∈ M is defined as

m = argmin
p∈M

n∑

i=1

d2(p, xi). (3.9)
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See Fletcher et al. (2003, 2004) and Pennec (1999) for more details. In Fig. 3.1, the

black dotted great circle shows the GMD separating surface. The two square points

(joined by dotted black curve) are the geodesic means of the two classes. Some points

have been misclassified by this rule.

3.3 Support Vector Machine on Manifolds

This section generalizes SVM to the manifold case. Two new approaches have been

developed here. In the following subsection, we review the standard SVM method.

3.3.1 A Brief Overview of Support Vector Machine (SVM)

SVM is a recently developed method which has been successfully implemented in

a wide variety of applications involving classification. Here, we review this method in

a simple set up. Let us first assume that the training data set is linearly separable,

i.e., there is a linear classifier that can have zero training error. Consider a linear

classifier f(x) = wT x + b. The SVM first finds two hyperplane margins (over w and

b) which are defined by f(x) = ±1, such that there are some observations on the

margins and there are no observations between these two margins. The points on the

margin are called “support vectors”. The SVM finds w and b such that the distance

between the margins (which is equal to 2
||w||) is maximized. The hyperplane between

the two margins: f(x) = 0 is the SVM discrimination hyperplane. Given w and b,

the class label +1 is given to a new sample xi, if f(xi) > 0 and the class label −1 is

given if f(xi) < 0. The SVM optimization problem over w and b is given by:

minimizew,b
||w||2

2

subject to yif(xi) ≥ 1; i = 1, . . . , n, (3.10)

where yi represents the class membership of the ith sample xi in the training data set.

The normalized direction vector of w represents the SVM direction. The constraints
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Figure 3.2: SVM hyperplane (broken green line) to separate two classes, represented by
crosses and pluses. The purple vector is the SVM direction of separation.

yif(xi) ≥ 1, i = 1, . . . , n indicate that the f(x) must classify all the samples in the

training data set correctly. The distance of a point xi from the separating hyperplane

is denoted as ri.

Figure 3.2 shows the SVM separating hyperplane (green dashed line) for classi-

fying a toy data set, with the two classes represented by blue circles and red pluses

respectively. The support vectors are shown in black boxes. The distance ri’s of only

these support vectors play a role in determining the separating hyperplane.

The next subsection extends SVM to manifold data by iteratively constructing

tangent planes on the manifold and implementing Euclidean SVM on the tangent

planes. We call this method Iterative Tangent Plane SVM (ITanSVM).

3.3.2 Iterative Tangent Plane SVM (ITanSVM)

In this section, we propose an extension of SVM in Euclidean space to manifold

data. A common approach is to implement SVM in the tangent plane at the overall

mean of the data. In Section 2.3.2, we have discussed possible drawbacks of this

approach which arises out of taking the point of tangency at a predetermined point

(the geodesic mean). Thus, when classification is done on the tangent plane, the

choice of the base point is a crucial issue. This motivates the need to find the base
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point that is determined by the separability of the data in the tangent plane. In

particular, we develop an iterative approach with changing point of tangency.

We start with the overall geodesic mean as the initial base point and implement

Euclidean SVM in that tangent plane. Given the SVM separating hyperplane, we

find out the pair of points (on the tangent plane) which determine that hyperplane

and is closest to the present pair of control points (the geodesic means of the two

classes, mapped to the tangent plane). The next point of tangency is taken to be

the geodesic mean of the new pair of control points (after being mapped back to the

manifold). We repeat these steps until convergence. The detailed algorithm is given

below:

1. Let c0
1 = mean of the data in class 1 and c0

−1=mean of the data in class 2. Let

b0 = mean(c0
1, c0

−1). The superscript of zero means it is the present solution.

2. Compute the tangent plane Tb0M at b0 and find the separating hyperplane

w′x + b = 0 by doing linear SVM on Tb0M .

3. Given (w, b), find Lc1
1, Lc1

−1 ∈ Tb0M that minimize the sum of the squares of

their respective distances to Logb0(c
0
1) and Logb0(c

0
−1), subject to the constraint

that w′x + b is the perpendicular bisector of the the line segment joining Lc1
1

and Lc1
−1.

4. If {d2(Logb0(c
0
1), Lc1)+d2(Logb0(c

0
−1), Lc−1)} is very small then stop. Otherwise

go to the next step.

5. Set c0
1 = Expb0(Lc1

1) and c0
−1 = Expb0(Lc1

−1) and then compute b0 = mean(c0
1,

c0
−1). Go to step 2.

We call this method the Iterative Tangent Plane SVM or ITanSVM. In Fig. 3.1

the solid red great circle shows the ITanSVM separating surface obtained after one

iteration. The square points (joined by red solid curve) are the ITanSVM control
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points after the first iteration. In this example, ITanSVM solution does a better job

of classification than GMD (given by the dotted black great circle).

3.3.3 The Manifold SVM (MSVM) method

An unappealing feature of ITanSVM is the continual approximation of the data by

projections on to the tangent plane. MSVM appears to be the first approach where

all calculations are done on the manifold. MSVM determines a pair of control points

that maximizes the minimum distance to the separating boundary. While the SVM

criterion has many interpretations, it is the maximum margin idea that generalizes

most naturally to manifolds where some Euclidean notions such as distance, are much

more readily available than other (e.g., inner product). The mathematical formulation

of the method and an algorithm for solving the resulting optimization problem are

given below.

As given in equation (3.1), the decision function fc1,c−1(x) is

fc1,c−1(x) = d2(c−1, x) − d2(c1, x)

The zero level set of fc1,c−1(·) defines the separating boundary H(c1, c−1) for a

given pair (c1, c−1). Also, let X̂(c1,c−1) denote the set (to handle possible ties) of

training points which are nearest to H(c1, c−1). We would like to solve for some c̃1

and c̃−1 such that

(c̃1, c̃−1) = argmax
c1,c−1∈M

min
i=1...n

d(xi, H(c1, c−1)) (3.11)

In other words, we want to maximize the minimum distance of the training points

from the separating boundary. Recall, from Chapter 2, that as in the classical SVM

literature, we denote yi to be the class label taking values -1 and 1.

By Lemma 3.1.1, in Euclidean space, note that the distance of any point x from
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the separating boundary H(c1, c−1) is

d(x,H(c1, c−1)) =

∣∣∣∣
fc1,c−1(x)

2d(c1, c−1)

∣∣∣∣ (3.12)

Therefore, for a separable training set (see Section 3.1), using (3.3) and (3.12), we

can write the distance from the training points to the separating surface as

d(x,H(c1, c−1)) =
yfc1,c−1(x)

2d(c1, c−1)
, (3.13)

where y = ±1 is the class label for x. Relation (3.13) will be used as an approximation

that is reasonable for data on manifolds lying in a small (convex) neighborhood as

this is directly computable for manifold data. Then, using (3.13) in (3.11) we would

like to solve for some c̃1 and c̃−1 such that

(c̃1, c̃−1) = argmax
c1,c−1∈M

min
i=1...n

{
yifc1,c−1(xi)

2d(c1, c−1)

}
(3.14)

It is important to note that the solution of (c̃1, c̃−1) in (3.14) is not unique. In fact,

in the d-dimensional Euclidean case there is a (d− 1)-dimensional space of solutions.

Therefore, in order to make the search space for (c̃1, c̃−1) smaller we propose to find

(c̃1, c̃−1) as follows:

(c̃1, c̃−1) = argmax
(c1,c−1)∈Ck

min
i=1...n

{
yifc1,c−1(xi)

2d(c1, c−1)

}
(3.15)

where, for a given k > 0,

Ck = {(c1, c−1) : ŷ(c1,c−1)fc1,c−1(x̂(c1,c−1)) = k} (3.16)

and,

x̂(c1,c−1) = argmin
x∈X̂(c1,c

−1)

fc1,c−1(x) (3.17)
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and ŷ(c1,c−1) is the class label of x̂(c1,c−1).

Therefore, using (3.15) - (3.17), we have

(c̃1, c̃−1) = argmax
(c1,c−1)

{
k

2d(c1, c−1)

}
(3.18)

Now, recall that x̂(c1,c−1) is one of the training points closest to H(c1, c−1). This

means, no other training point should be closer to H(c1, c−1) than x̂(c1,c−1). This

presents us with a set of constraints which should be considered while solving for

(c̃1, c̃−1) in (3.18). The constraints are given as follows:

∀i=1,2,. . . , n,

d(xi, H(c1, c−1)) ≥ d(x̂(c1,c−1), H(c1, c−1))

⇒ yif(xi)

2d(c1, c−1)
≥ k

2d(c1, c−1)

⇒ yif(xi) ≥ k

⇒ k − yi{d2(xi, c−1) − d2(xi, c1)} ≤ 0 (3.19)

⇒ hi ≤ 0 (3.20)

where hi = k − yi{d2(xi, c−1) − d2(xi, c1)}.

Combining the constraints (hi < 0, ∀ i = 1, 2, . . . , n) with (3.18), the optimization

problem becomes
max
c1,c−1

1

d(c1, c−1)
s.t. hi ≤ 0

or,
min
c1,c−1

d(c1, c−1) s.t. hi ≤ 0 (3.21)

Rather than solving the constrained optimization problem in (3.21), we consider

the penalized minimization problem as defined below:

Minimize
gλ(c1, c−1) = d2(c1, c−1) +

λ

n

n∑

i=1

(hi)+
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or,
gλ(c1, c−1) = d2(c1, c−1) +

λ

n

n∑

i=1

[
k − yi{d2(xi, c−1) − d2(xi, c1)}

]

+

(3.22)

where λ is the penalty for violating the constraints given by (3.20).

Equation (3.22) gives the function to be minimized in the separable case. In the

non-separable case, the form of the function gλ(c1, c−1) to be minimized remains the

same. What changes is the definition of X̂(c1,c−1), and hence, the definition of x̂(c1,c−1),

ŷ(c1,c−1) and k. X̂(c1,c−1) is now defined as the set of correctly classified training points

which are closest to H(c1, c−1) (in the separable case, the term correctly classified was

not necessary since all the training points are correctly classified by H(c1, c−1). In

the non-separable case there can be a misclassified point which is closest to H(c1, c−1)

among all training points, but it is not an element of X̂(c1,c−1)). Note that the second

term in (3.22) not only penalizes misclassification, but also penalizes cases where

training points come too close to the separating boundary.

The exact solution which minimizes the objective function in Eq. (3.22) will be

referred to as the “idealized” MSVM solution. The following subsection assumes that

the data lies in a small convex neighborhood and then proposes a gradient descent

approach to minimize the objective function (Eq. 3.22). The resulting solution will

be referred to as the MSVM solution.

3.3.3.1 A Gradient Descent Approach to the MSVM Objective Function

Here we propose and develop an algorithm to minimize the objective function

given by (3.22).

Given c1 = m1 and c−1 = m2, let us denote by ∆1(m1,m2) and ∆2(m1,m2), the

gradient of gλ(c1, c−1) with respect to c1 and c−1 respectively. It is assumed that the

data lie in a small convex neighborhood. Therefore, a negative gradient approach is

followed, which has been successfully used in finding geodesic means on manifolds (see

Fletcher et al., 2003, 2004), using arguments in Karcher (1977) and Pennec (1999).
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The gradients of the objective function are given by

∆1(m1,m2) =
∂gλ

∂m1

= −2Logm1
(m2) − 2

λ

n

∑

(i:hi≥0)

(yiLogm1
(xi))

(3.23)

and,

∆2(m1,m2) =
∂gλ

∂m2

= −2Logm2
(m1) + 2

λ

n

∑

(i:hi≥0)

(yiLogm2
(xi))

Algorithm:

Start with initial value of c1 = c0
1 and c−1 = c0

−1

Set ∆ = 1, i = 0

While ∆ > ε(small)

{

i = i + 1

Calculate ∆1(c
i−1
1 , ci−1

−1 )

UPDATE: ci
1 = Expci−1

1
(−t∆1(c

i−1
1 , ci−1

−1 )), t = step size ∈ (0, 1)

Calculate ∆2(c
i
1, c

i−1
−1 )

UPDATE: ci
−1 = Expci

−1
(−t∆2(c

i
1, c

i−1
−1 )), t = step size ∈ (0, 1)

∆ = ||∆1(c
i
1, c

i
−1)|| + ||∆2(c

i
1, c

i
−1)||

}
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In the next section we will compare the results of MSVM and ITanSVM along

with the Geodesic Mean Difference (GMD) method.

3.3.4 Results

In the previous sections, three classification methods, GMD (Section 3.2), ITanSVM

(Section 3.3.2) and MSVM (Section 3.3.3) were proposed. In this section, we com-

pare the performance of these methods along with the method of Euclidean SVM on

a single tangent plane (with the overall geodesic mean as base point). We will call

this method TSVM.

Associated with every classification rule are two types of errors, the training error

and the cross-validation error (also called test error). Training error is the proportion

of the training data (data used to find the rule) that is misclassified by the rule. The

cross-validation error is the proportion of the test data (data believed to be behaving

like the training data but not used to find the rule) that is misclassified. For example,

let us suppose we have a set of 50 data points. We randomly choose 40 of them and

use those to train a classification rule. If, out of this training set of 40 data points,

4 are misclassified by the rule, the training error for this particular rule is 4
40

= 0.1.

On the other hand, the remaining 10 data points form our test data. If four of them

are misclassified by the rule then the cross-validation error is 3
10

= 0.3.

Recall, from Section 3.3.3, that the classification rule MSVM depends on the

choice of a tuning parameter λ. In particular, refer to (3.22) to see how the objective

function (which is minimized to find the classification rule) depends on λ. For small λ,

the training error tends to decrease. But increasing λ indiscriminately tends to result

in overfitting. This tradeoff is reflected by the cross-validation error, which initially

decreases, but increases when λ becomes large enough that the error is driven by

overfitting. A sensible choice of λ is one which has low value of the cross-validation

error. ITanSVM and TSVM are also dependent on λ in a similar way while GMD
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does not depend on λ. In our experiments, we will consider several values of λ

(λ = 15k, k = 0, 1, . . . , 7) for each of MSVM, ITanSVM and TSVM. The choice of

the base 15 for λ is not set in stone: we chose it as a reasonable compromise between

coverage of a large range of values and computational cost. Note that the lowest

values for the errors (training and cross-validation) can be attained at different λ

values for MSVM, ITanSVM and TSVM. The value of the parameter k (see Eq. 3.22)

was set equal to 0.01.

3.3.4.1 Application To Hippocampi Data

This data consists of 82 m-rep models (of Hippocampi), 56 of which are from

schizophrenic individuals and the remaining 26 are from healthy control individuals

(see Styner et al. (2004)). Each of these models have 24 medial atoms, placed in a

8 × 3 lattice (see Fig. 3.3).

Figure 3.3: Left: M-rep sheet of a hippocampus with the 24 medial atoms. Right: Surface
rendering of the m-rep model.

We conduct the simulation study in the following way. For each run we randomly

remove five data points from the population of 82 and train our classifiers on the

remaining 77 data points. For each such population we consider several values of the

cost parameter λ (λ = 15k, k = 0, 1, . . . , 7) for ITanSVM, MSVM and TSVM. GMD

does not depend on λ. After training we test the classifiers by classifying the five test

data points. Aggregating over several simulated replications, the training error and

the cross-validation error are calculated.
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Fig. 3.4 shows the performance (training error (left panel) and cross-validation

error(right panel)) of the different methods.
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Figure 3.4: Left: Training errors against cost log15 λ. Right: Cross-validation errors against
cost log15 λ. Cross-validation error for MSVM is robust to the choice of λ.

From Fig. 3.4, we see that MSVM has training error either very close to GMD

(λ = 1) or substantially smaller. On the other hand, for small values of λ the training

error of ITanSVM is much higher. MSVM fails to attain a training error of zero while

both TSVM and ITanSVM achieve zero training error (at λ = 155 or higher). But

this could be due to overfitting by ITanSVM and TSVM, and this idea is validated

by their increased cross-validation error for high λ values. We note that the cross-

validation errors of ITanSVM and TSVM is very sensitive to the choice of λ, i.e., a

good choice of λ appears to be critical for these two methods. In contrast MSVM

is much more robust against the choice of λ. In particular, the fact that the cross-

validation of MSVM is much more stable for high values of λ is promising. We also

note that the cross-validation error of MSVM (at λ = 152) is the least among all

methods.
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The MSVM algorithm suggests that with increasing λ the distance between c1

and c2 should increase (see equation 3.22). We monitor this tendency by plotting

d(c1, c2) against λ for MSVM, and for ITanSVM and GMD in order to compare the

behavior of the solutions. Note that TSVM cannot be compared here since there are

no control points involved. Fig. 3.5 plots log10(d(c1, c2)) against log15 λ.
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Figure 3.5: log10(d(c1, c2)) against cost log15 λ. The distance between the MSVM control
points increases with increasing λ, as suggested by the problem formulation (equation 3.22).

Fig. 3.5 verifies that the solution of the MSVM algorithm behaves as expected: the

distance between c1 and c2 increases with increasing λ. The behavior of the ITanSVM

solution is just the opposite. This behavior may be consistent with overfitting.

An important part of this study is to find out whether the classification rules

under consideration give meaningful directions of difference between the classes. In

the context of the given problem, the rule that best shows the structural change

in the hippocampus is the most valuable. The structural change captured by each

method is shown in Figure 3.6. For each classification rule (at the λ which has the

least cross-validation error), we project the data points on to direction of separation.

The mean of the projected data is calculated. The projected data points with the

lowest and highest projection scores give the extent of structural change captured by

37



the separating direction. The objects in the left are the projected shapes with lowest

score, and on the right, with the highest score. The color map shows the surface

distance maps of the mean (of projected data points) and projected shapes. Red,

green, and blue are inward distance, zero distance, and outward distance respectively.

Projected Patient Extreme Projected Control Extreme

GMD

TSVM

ITanSVM

MSVM

Figure 3.6: Diagram showing the structural change captured by the different methods. Red,
green, and blue are inward distance, zero distance, and outward distance respectively.

Fig. 3.6 shows that GMD represents a large structural change. But its relevance is

questionable because of its poor discriminating performance (Fig. 3.4). GMD shows

a lot of structural change, but it fails to isolate the important features which actually

separate the two groups. Among the other three methods, MSVM captures the

change most strongly. ITanSVM hardly captures the change. This could be related

to overfitting where the separating direction feels the microscopic noisy features of

the training data and thus fails to capture the relevant structural change. We can
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conclude that MSVM provides the best balance between classifying performance and

capturing changes in the shapes. Recall, that MSVM is the only method discussed

here which works intrinsically on the manifold (and not on a tangent plane, like

TSVM and ITanSVM) and this can be attributed to its desirable properties of good

classification and informative separating direction.

3.3.4.2 Application to Generated Ellipsoid Data

This data consists of 25 m-rep models of generated distorted ellipsoids. They are

simulated by randomly introducing a bending, twisting and tapering of an ellipsoid.

We divide them into two groups, a group of 11 with negative twisting parameter and

another group of 14 with positive twisting parameter. For our reference we call them

the control group and the patient group respectively. Each of these models have 21

medial atoms, placed in a 7 × 3 lattice (see Fig. 3.7).

m−rep sheet of a
deformed ellipsoid

surface rendering of
 the m−rep model

Figure 3.7: Left: M-rep sheet of one of the simulated distorted ellipsoids used in our study.
It has 21 medial atoms. Right: Surface rendering of the m-rep model.

As in the Hippocampi data set, we compare the performance of the different

methods. The values of λ considered are the same as before. Instead of leaving five

data points for each simulation, we leave out 3 data points in this case.

Fig. 3.8 shows the performance (training error (left panel) and cross-validation

error(right panel)) of the different methods.
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Figure 3.8: Left: Training Errors against log15 λ. Right: cross validation Errors against
cost log15 λ. From the cross validation errors, none of the methods seem to overfit. MSVM
is least sensitive to choice of λ.

MSVM (at λ = 15, 154) has cross validation error very close to the lowest among

all the methods. Just as in the Hippocampus data set, the MSVM seems to be the

least sensitive to high values of λ. But unlike the hippocampus data set, the cross

validation errors of ITanSVM and TSVM do not increase with large λ. It seems for

this dataset, these two methods are not overfitting. This can be attributed to the fact

that the modes of noise component in this data set are far less than what we have in

the real data set of hippocampi.

Fig. 3.9 shows the structural change shown by TSVM, ITanSVM and MSVM.

Here, surface distance maps (like Fig. 3.6) are not shown, since it will not be useful

to show twisting of the object surface. Instead, wire mesh rendering of the deformed

ellipsoid surfaces are shown here. From Fig. 3.9, it can be noted that the structural

change shown by ITanSVM and TSVM is a tapering of the ends, while the true mode

of difference (twisting) is effectively captured by MSVM.
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TSVM

ITanSVM

MSVM

Figure 3.9: Structural change shown by TSVM, ITanSVM and MSVM. MSVM captures the
true mode of difference (twisting), while TSVM and ITanSVM shows tapering/shrinking
effect at the ends.

Again, MSVM seems to be bringing out the best balance of classifying power and

capturing of separating features. Though, in this case, ITanSVM and TSVM do not

seem to be overfitting, they fail to capture the true mode of change. This example

again shows that MSVM, by virtue of its formulation (working on the manifold),

captures the nonlinear modes of variation better than methods like ITanSVM and

TSVM.

3.4 DWD on Manifolds

In this section, we introduce two approaches to extend DWD to manifold data.

The following subsection reviews the standard DWD method.
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3.4.1 A Brief Overview of Distance Weighted Discrimination

(DWD)

The DWD method, developed by Marron et al. (2004) is an improvement upon

the Support Vector Machine in HDLSS contexts. For a recent application of DWD

to microarray gene expression analysis, see Benito et al. (2004). Suppose two classes

are separable, which is very likely for HDLSS data. Again, suppose the separating

hyperplane is f(x) = wT x + b. DWD finds the hyperplane that minimizes the sum of

the inverse distances. This gives larger influence to those points which are close to the

hyperplane relative to the points that are farther away from the hyperplane (unlike

SVM, where only the points closest to the separating hyperplane have important

influence). For separable classes, the DWD method is the solution of the following

optimization problem,

minimizew,b

∑n
i=1

1
ri

subject to yif(xi) ≥ 0; i = 1, . . . , n, (3.24)

where ri is the distance of xi from the separating hyperplane. As shown in Figure

3.10, DWD finds a hyperplane (green) to separate the two classes (blue circles and

red pluses) as well as possible, in the sense of minimizing the sum of the inverse

distances from the samples to the hyperplane. The normal to the hyperplane is

called the DWD separating direction. The computation of this hyperplane can be

formulated as a Second-Order Cone Programming (SOCP) problem and is solved

using the software package SDPT3 (for Matlab), which is web-available at Toh et al.

(2006).

In the following section, an extension of DWD is proposed.
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Figure 3.10: DWD hyperplane (broken green line) to separate two classes, represented by
crosses and pluses. The purple vector is the DWD direction of separation.

3.4.2 Iterative Tangent Plane DWD (ITanDWD)

In this subsection, we generalize DWD to manifold data by implementing standard

DWD on multiple tangent planes, which are carefully chosen by an iterative approach.

The algorithm is the same as proposed for ITanSVM in Section 3.3.2, except for the

fact that in step 2, instead of SVM, the standard DWD method (described in 3.4.1)

is implemented. The resulting method is called Iterative Tangent Plane DWD or

ITanDWD.

3.4.3 The Manifold DWD (MDWD) method

Analogous to the ITanSVM method, ITanDWD also works by continual approx-

imation of the data by projections on to the tangent plane. This makes ITanDWD

unappealing. MDWD aims to be the first approach where all calculations are done

on the manifold. Following the framework of Section 3.4.1, MDWD determines a pair

of control points that minimizes the sum of the inverse distances from the training

data to the separating boundary. The mathematical formulation of the method and

the resulting optimization problem are given below.
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As given in equation (3.1), the decision function fc1,c−1(x) is

fc1,c−1(x) = d2(c−1, x) − d2(c1, x)

The zero level set of fc1,c−1(·) defines the separating boundary H(c1, c−1) for a

given pair (c1, c−1). We would like to solve for some c̃1 and c̃−1 such that

(c̃1, c̃−1) = argmin
c1,c−1

n∑

i=1

1

d(xi, H(c1, c−1))
(3.25)

In other words, we want to minimize the sum of the inverse distances from the

training data to the separating boundary. Recall, from Chapter 2, that as in the

classical SVM literature, we denote yi to be the class label taking values -1 and 1.

By Lemma 3.1.1, in Euclidean space, note that the distance of any point x from

the separating boundary H(c1, c−1) is

d(x,H(c1, c−1)) =

∣∣∣∣
fc1,c−1(x)

2d(c1, c−1)

∣∣∣∣ (3.26)

Therefore, for a separable training set (see Section 3.1), using (3.3) and (3.12), we

can write the distance from the training points to the separating surface as

d(x,H(c1, c−1)) =
yfc1,c−1(x)

2d(c1, c−1)
, (3.27)

where y = ±1 is the class label for x. Relation (3.27) will be used as an approximation

that is reasonable for data on manifolds lying in a small (convex) neighborhood as

this is directly computable for manifold data. Then, using (3.27) in (3.25) we would

like to solve for some c̃1 and c̃−1 such that

(c̃1, c̃−1) = argmin
c1,c−1

n∑

i=1

2d(c1, c−1)

yifc1,c−1(xi)
(3.28)
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Now, in order that the training points are correctly classified by H(c1, c−1), the

following constraints should be satisfied:

∀i = 1 . . . n,

yif(xi) ≥ 0

⇒ −yi{d2(xi, c−1) − d2(xi, c1)} ≤ 0 (3.29)

⇒ hi ≤ 0

where hi = −yi{d2(xi, c−1) − d2(xi, c1)}.

Combining the constraints (hi < 0 ∀ i = 1 . . . n) with (3.28), the optimization

problem becomes

min
c1,c−1

n∑

i=1

2d(c1, c−1)

yifc1,c−1(xi)
s.t. hi ≤ 0 (3.30)

Rather than solving the constrained optimization problem in (3.30), we consider

the penalized minimization problem as defined below:

Minimize
gλ(c1, c−1) =

n∑

i=1

d(c1, c−1)

yifc1,c−1(xi)
+

λ

n

n∑

i=1

(hi)+

or,
gλ(c1, c−1) =

n∑

i=1

d(c1, c−1)

yi{d2(xi, c−1) − d2(xi, c1)}
+

λ

n

n∑

i=1

[
−yi{d2(xi, c−1) − d2(xi, c1)}

]

+

(3.31)

where λ is the penalty for violating the constraints given by (3.29).

Equation (3.31) gives the function to be minimized in the separable case. Note

that the second term in (3.31) penalizes misclassification. In the non-separable case,

the form of the function gλ(c1, c−1) to be minimized is given by:

gλ(c1, c−1) =
n∑

i: correctly classified

d(c1, c−1)

yi{d2(xi, c−1) − d2(xi, c1)}
+

+
λ

n

n∑

i=1

[
−yi{d2(xi, c−1) − d2(xi, c1)}

]

+

(3.32)
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or,

gλ(c1, c−1) =
n∑

i=1

[
d(c1, c−1)

yi{d2(xi, c−1) − d2(xi, c1)}

]

+

+
λ

n

n∑

i=1

[
−yi{d2(xi, c−1) − d2(xi, c1)}

]

+

(3.33)

A gradient descent approach was attempted to solve the above optimization prob-

lem, but serious difficulties were encountered. Fig. 3.11 shows the MDWD objective
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Figure 3.11: Figure showing the discontinuous nature of the MDWD objective function as
a function of the step size along the negative gradient direction.

function as a function of the step size along the negative gradient direction (with

respect to c−1). Note that the curve has several ‘spikes’, which indicates that the

objective function is discontinuous at several points. This phenomenon prevents the

negative gradient descent approach from working properly. The discontinuities are

due to the denominator in the first term of the objective function given in Eq. (3.33).

As soon as one of the misclassified points becomes properly classified, the denominator

assumes a very small value and thus the objective function explodes.

Hence, the MDWD method was not implemented. Therefore, in the next sec-

tion, we only discuss the performance of TDWD (standard Euclidean DWD imple-

mented on the data projected to the tangent plane at the overall geodesic mean) and
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ITanDWD and compare them with their SVM counterparts.

3.4.4 Results

In this section, we compare the performance of ITanDWD, TDWD, ITanSVM and

TSVM. First, the real data set of hippocampi is revisited. The training errors and

cross validation errors are calculated the same way as in Section 3.3.4.

3.4.4.1 Application To Hippocampi Data

Fig. 3.12 shows the performance (training error (left panel) and cross-validation

error(right panel)) of the different methods. We note that the training errors of all
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Figure 3.12: Comparison of methods for Hippocampus data. Left: Training errors against
cost log15 λ. Right: Cross-validation errors against cost log15 λ. TDWD and ITanDWD
have lower cross validation errors than their SVM counterparts.

the methods go to zero for higher values of λ. The cross validation errors of both

TDWD and ITanDWD are less than their SVM counterparts (for higher values of

λ ≥ 154). This can be attributed to the fact that DWD is known to be more robust

to noise, especially in HDLSS situations. In fact, Figure 3.13 suggests that structural

change shown by TDWD and ITanDWD are stronger than their SVM counterparts.
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ITanDWD

TSVM

ITanSVM

Figure 3.13: Diagram showing the structural change captured by the different methods.
Red, green, and blue are inward distance, zero distance, and outward distance respectively.
TDWD and ITanDWD capture stronger changes than their SVM counterparts.

3.4.4.2 Application To Generated Ellipsoid Data

Fig. 3.14 shows the performance (training error (left panel) and cross-validation

error(right panel)) of the different methods. We note that the performances of

TDWD and TSVM are very similar, while ITanDWD and ITanSVM are similar. It

appears that relative to ITanSVM, ITanDWD is more robust to the choice of higher

values of λ (the cross validation error for ITanDWD remains low for λ ≥ 154 while

that of ITanSVM increases).

Figure 3.15 shows the shape change shown by each of the methods. It is noted

that both TDWD and ITanDWD show tapering/shrinking effect at the ends, just like

TSVM and ITanSVM. It seems that these two methods also fail to capture the true

mode of separation (twisting) owing to the fact that they work on tangent planes.
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Figure 3.14: Comparison of methods for Ellipsoid data. Left: Training errors against cost
log15 λ. Right: Cross-validation errors against cost log15 λ. ITanDWD has lower cross
validation error than ITanSVM for higher values of λ.

3.4.4.3 Discussion

In both the examples considered here, it seems that the DWD based methods

tends to give lower cross validation errors, especially for higher values of the tun-

ing parameter λ. While in the real data set of hippocampi, there was a stronger

structural difference captured by TDWD and ITanDWD, there was no such improved

performance in the generated ellipsoids case. However, as pointed out earlier, the

noise level in the hippocampi data set is much more than in the simulated example

of deformed ellipsoids. These preliminary results suggests that it will be interesting

to study the performance of the MDWD method.

In the next section we present a modified version of MSVM, which aims at making

the method more robust.
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Projected Patient Extreme Mean of Projections Projected Control Extreme

TDWD

ITanDWD

TSVM

ITanSVM

Figure 3.15: Structural change shown by TDWD, ITanDWD, TSVM and ITanSVM. They
show tapering/shrinking effect at the ends and is unable to capture the true mode of differ-
ence (twisting), which is captured by the MSVM direction (see Fig. 3.9).

3.5 MSVM with Enhanced Robustness

The MSVM method was suggested in Section 3.3.3. From the results obtained

in Section 3.3.4, we have seen that GMD tends to show maximum structural change

while its discriminating power is not very good. MSVM was found to have a nice

balance between capturing the shape changes and classifying the data properly. We

introduce constraints in the algorithm which will restrict the solution of MSVM to

be close to the geodesic means of corresponding classes. The method is described in

the next section and results are compared in Section 3.5.2.
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3.5.1 Shrinking the Control Points towards the Means

Equation (3.22) gives us the objective function gλ(c1, c−1) to be minimized to

construct the MSVM classification rule:

gλ(c1, c−1) = d2(c1, c−1) +
λ

n

n∑

i=1

[
k − yi{d2(xi, c−1) − d2(xi, c1)}

]

+

The first term in the equation maximizes the margin while the second term penalizes

misclassified training data and data which are too close to the separating boundary

H(c1, c−1). Let M1 and M−1 be the geodesic means. In order to shrink the control

points c1, c−1 towards the respective class geodesic means, we introduce a term which

attempts to minimize d2(c1,M1) + d2(c−1,M−1). The introduction of this criterion

will prevent the solved control points from being too close to each other (provided

the geodesic means are not too close to each other). Thus, this approach is expected

to prevent overfitting and the potential finding of spurious directions of separation.

This change is also expected to improve the identifiability of the solved control points

c1 and c−1. The objective function to be minimized is:

gλ,ν(c1, c−1) = d2(c1, c−1) +
λ

n

n∑

i=1

[
k − yi{d2(xi, c−1) − d2(xi, c1)}

]

+

+

+ ν[d2(c1,M1) + d2(c−1,M−1)] (3.34)

where ν is a tuning parameter in addition to λ.

Note that as ν → ∞, the solution to (3.34) will converge to the GMD solution.

When ν = 0, it will reduce to the MSVM method suggested in Section (3.3.3). We

intend to find the right trade-off between ν and λ and examine whether it improves

generalizability.

The resulting objective function in equation (3.34) is solved by the negative gradi-

ent descent approach, assuming that the data lie in a small neighborhood. The same
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approach was used to solve for the MSVM method, and the algorithm was described

in detail in Section 3.3.3.1. The gradients of the function gλ,ν have been provided

below.

Given c1 = m1 and c−1 = m2, let us denote by ∆1(m1,m2) and ∆2(m1,m2), the

gradient of gλ,ν(c1, c−1) w.r.t. c1 and c−1 respectively. The gradients are given by:

∆1(m1,m2) =
∂gλ,ν

∂m1

= −2Logm1
(m2) − 2

λ

n

∑

(i:hi≥0)

(yiLogm1
(xi)) − 2νLogm1

(M1)

∆2(m1,m2) =
∂gλ,ν

∂m2

= −2Logm2
(m1) + 2

λ

n

∑

(i:hi≥0)

(yiLogm2
(xi)) − 2νLogm2

(M−1)

In the next subsection, we report the behavior of this method as ν changes and

compare it to MSVM.

3.5.2 Results

We will refer to the MSVM method with the additional parameter ν as MSVMν .

For example, when ν = 15, it will be referred to as MSVM15. We note that MSVM0 ≡

MSVM. In this section we will present a comparative study of the performances of

MSVMν for different values of ν (ν = 15k, k = 1, . . . , 5). The simulation study was

done in the same setup as in Section 3.3.4.

3.5.2.1 Training and Cross Validation Errors

Figures 3.16 and 3.17 show the training and cross validation errors (for different

values of ν) for the Hippocampi and Ellipsoid data respectively. Each curve represents

a particular MSVMν . We observe that with increasing ν, the method behaves more

like the GMD (dotted black line). This is expected, since, by construction, ν shrinks

the control points towards the respective means.

In both Figures 3.16 and 3.17, MSVM15 has a lower minimum (across λ) cross

validation error than MSVM. There are other values of ν which give lower cross

validation errors than MSVM, but they are not consistent across the two examples.
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Figure 3.16: Performance of MSVMν ’s for Hippocampi data. With increasing ν, the
MSVMν ’s behave more like the GMD. Almost all MSVMν ’s have lower minimum (across
λ) cross validation error than MSVM.

0 2 4 6

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Training Error VS λ

log
15

(λ)

Tr
ain

ing
 er

ro
r

GMD
ν=0 (MSVM)
ν=15

ν=152

ν=153

ν=154

ν=155

0 2 4 6

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Cross Validation Error VS λ

log
15

(λ)

CV
 E

rro
r

GMD
ν=0 (MSVM)
ν=15

ν=152

ν=153

ν=154

ν=155

Figure 3.17: Performance of MSVMν ’s for Ellipsoid data. With increasing ν, the MSVMν ’s
behave more like the GMD. MSVM15 has lower minimum (across λ) cross validation error
than MSVM.

3.5.2.2 Projections on Direction of Separation

Figures 3.18 and 3.19 shows the extreme projections on to the separating directions

for the Hippocampus and Ellipsoid data respectively. The projections for MSVM and
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MSVMν (ν = 15, 155) are shown. For the other values of ν, the projected models

look very similar.

Projected Patient Extreme Projected Control Extreme

ν = 0 (MSVM)

ν = 15

ν = 155

Figure 3.18: Diagram showing the structural change captured by the MSVMν directions.
Red, green, and blue are inward distance, zero distance, and outward distance respectively.
All the directions show similar changes, and the intensity of the changes are the same too.

In both Figures 3.18 and 3.19, there does not seem to be much difference in the

projected models. To further investigate the effect of ν on the MSVM algorithm, we

study the variation of training and cross validation errors over the simulation runs

(for each value of ν and λ) in Section 3.5.2.3.

3.5.2.3 Sampling Variation

In this subsection, a comparative study of the variances of the MSVMν solutions

is conducted. For each run of the simulation (as described in Section 3.3.4), we

have a pair of optimum (c1, c−1) values. For each pair of ν and λ, the quantity

V = V ar(c1) + V ar(c−1) is calculated. The quantity V is a measure of the sampling

variation of the MSVMν solutions across the different simulation runs. The lower the

value of V , the greater the robustness of the method.

Fig. 3.20 compares the sampling variation of the MSVMν method for different

values of ν (represented by different curves) for the Hippocampi data set. From Fig.
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Figure 3.19: Diagram showing the structural change captured by the MSVMν directions. All
of them show the actual mode of difference (twisting), and there is little change for different
values of ν.
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Figure 3.20: Sampling variation of MSVMν ’s for Hippocampi data. With increasing ν, the
MSVMν ’s have less variation. The change in variation is large when ν changes from 0 to
15 (for smaller values of λ).
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3.20 we note that as ν increases, the variation in the solution tends to decrease.

This is not surprising, since increasing ν forces the solution to be closer to the GMD

solution. We recall from previous discussions that taking ν = 15 results in improved

cross validation errors (Figures 3.16 and 3.17). Moreover, comparing the sampling

variation of the methods (Fig. 3.20), we also note that the decrease in sampling

variation is quite large when ν changes from 0 to 15 (for smaller values of λ).

Fig. 3.21 compares the sampling variation of the MSVMν method for different

values of ν (represented by different curves) for the deformed ellipsoid data set. The
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Figure 3.21: Sampling variation of MSVMν ’s for ellipsoid data. With increasing ν, the
MSVMν ’s have less variation. The change in variation is large when ν changes from 0 to
15 (for smaller values of λ).

observations from Fig. 3.21 are similar to those from the Hippocampi data set: the

sampling variation reduces when ν = 15. This suggests that a small value of ν helps

in improving both the cross validation error and the robustness of the MSVM method.

3.6 Summary

In this chapter, we have presented a general framework for classification of data

which lie on manifolds (Section 3.1). Geodesic distance has been used to formulate the

56



classifier. This framework has been used to extend the methods of Mean Difference

(Section 3.2), SVM (Section 3.3) and DWD (Section 3.4) for manifold data.

MSVM (Section 3.3.3) is the only method implemented in this dissertation which

works intrinsically on the manifold. It seems that by virtue of this property, it brings

about a nice balance of good classification power and informative separating direction.

In Section 3.5, we noted that when the MSVM control points are constrained to

lie close to the respective geodesic means, the sampling variation of the method

reduces. From the preliminary results (Section 3.4.4), it seems that the tangent

plane extensions of DWD have better generalizability properties than their SVM

counterparts.

In the following chapter, we study the HDLSS asymptotics of data on manifolds

and analyze the asymptotic behavior of MSVM as the dimension d → ∞.
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CHAPTER 4

Asymptotics of HDLSS Manifold Data

Understanding the geometric structure of HDLSS data is a challenging task due

to the limitation of the human perception in visualizing data in more than three

dimensions. In fact, some previous work has shown that they have quite different

geometry from low dimensional data. In the next section we review the geometric

representation of Euclidean HDLSS data.

4.1 Geometric Representation of Euclidean HDLSS

Data

Donoho and Tanner (2005), in their asymptotic study on simplices in high di-

mensional space, found out that the convex hull of n Gaussian data vectors in <d

looks like a simplex as the ratio d/n converges to γ ∈ (0, 1) (as d → ∞, n → ∞), in

the sense that all points are on the boundary of the convex hull. In our discussion,

we focus on the geometry of HDLSS data using the d-asymptotic approach, letting

only the dimension d tend to infinity, while fixing the sample size n. This asymptotic

domain was studied by Hall et al. (2005) and it gives interesting insights into HDLSS

situations. We review their observations in the following discussion.

Let X (d) = {X1(d), . . . , Xm(d)}, where Xi(d) ∈ <d, i = 1, . . . ,m be i.i.d ran-

dom vectors distributed as X(d) = (X (1), . . . , X(d)) with X(i) ∈ < following standard

Gaussian distribution. Therefore, each of the Xi(d)’s are d-dimensional random vec-



tors from the Gaussian distribution with mean zero and identity covariance matrix.

Note that:

(1) The squares of the entries of Xi(d) follows a χ2
1 distribution, for all i = 1, . . . ,m.

(2) The squares of the entries of
Xi(d)−Xj(d)√

2
follows a χ2

1 distribution, for all i, j =

1, . . . ,m; i 6= j.

Noting these two facts, and using delta method calculations, they showed that

||Xi(d)||√
d

= 1 + Op(d
− 1

2 ),

||Xi(d) − Xj(d)||√
d

=
√

2 + Op(d
− 1

2 ), (4.1)

angle(Xi(d), Xj(d)) = π/2 + Op(d
− 1

2 )

for all i, j = 1, . . . ,m; i 6= j.

Thus, they showed that as d → ∞, the data tend to form an m-simplex with equal

pairwise distances. Therefore, there is a deterministic structure in the data. All of

the randomness is manifested only through random rotations of the simplex.

Hall et al. (2005) also extended the above argument to the non-Gaussian case.

Suppose X (d) = {X1(d), . . . , Xm(d)}, where Xi(d) ∈ <d, i = 1, . . . ,m are identically

distributed random vectors from a d-dimensional multivariate distribution. Assume

the following:

(1) The fourth moments of the entries of the data vectors are uniformly bounded.

(2) For a constant σ,

1

d

d∑

k=1

var(X
(k)
i ) → σ2, for all i = 1, . . . ,m

(3) Viewed as a time series, X
(1)
i , . . . , X

(d)
i , . . . is ρ-mixing for functions that are
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dominated by quadratics. That is, for k, k′ = 1, . . . , d with |k − k′| > r,

sup
|k−k′|>r

|E(X
(k)
i X

(k′)
i )| ≤ ρ(r) → 0 as r → ∞, for all i = 1, . . . ,m. (4.2)

If the random vectors satisfy the conditions above, then the distance between Xi(d)

and Xj(d), i 6= j, is approximately (2σ2d)
1
2 , in the sense that

||Xi(d) − Xj(d)||/
√

d
P−→(2σ2)

1
2 . (4.3)

Thus after scaling by
√

d, the data vectors Xi(d)’s are asymptotically located at the

vertices of a regular m-simplex where all the edges are of length (2σ2)
1
2 .

Similar results were extended to the two sample case, where in addition to the

data set X (d), there is another data set Y(d) = {Y1(d), . . . , Yn(d)}. The results are

summarized below.

(A1) As d → ∞, X (d) forms an m-simplex where the scaled pairwise distances be-

tween the sample points is a constant (=l1).

(A2) As d → ∞, Y(d) forms an n-simplex where the scaled pairwise distances between

the sample points is a constant (=l2).

(A3) As d → ∞, the pairwise distances between sample points (one from X (d) and

another from Y(d)) are at a scaled distance l12 from each other.

The convergence holds in the sense of convergence in probability. This geometry was

then used in a novel way to study the asymptotic (as d → ∞) behavior of different

classification methods like SVM, DWD, Mean Difference and One-Nearest-Neighbor.

In the next subsection, we analyze the asymptotic behavior of the MSVM method

when applied to Euclidean data with the above geometric structure.

In section 4.2, similar deterministic behavior will be sought in the case when

data live in cartesian products of S2 (the unit sphere in <3), with the number of

61



such spherical components going to infinity. It appears that this idea will also be

generalizable to M(d), as d → ∞.

4.1.1 Behavior of MSVM under Euclidean HDLSS Geomet-

ric Structure

In this section we will analyze the MSVM method when applied to data sets of

this particular deterministic structure. To make things simple, it is assumed that

the data set has exactly the above geometrical representation (and not only in the

limiting sense). Moreover, since for a given dimension d, the scaling is done by a

constant factor
√

d, we do not show this factor in the calculations. This deterministic

structure is summarized as follows:

(B1) X (d) forms an m-simplex where the pairwise distances between the sample

points is a constant (=l1).

(B2) Y(d) forms an n-simplex where the pairwise distances between the sample points

is a constant (=l2).

(B3) All pairs of sample points (one from X (d) and another from Y(d)) are at a

distance l12 from each other.

Now, some notations are introduced. Let X (k) = {X(k)
1 , . . . , X

(k)
m } denote the set

containing the kth component of X (d). Similarly, Y (k) is defined. Let C
(k)
x and C

(k)
y

denote the respective sample geodesic means of the kth component (i.e., of X (k) and

Y(k) respectively). Let Cx and Cy be the sample geodesic means (in this section, they

are the same as the regular Euclidean means, since we are studying data in Euclidean

space) of X (d),Y(d) respectively, and Cx = (C
(1)
x , . . . , C

(d)
x ) and Cy = (C

(1)
y , . . . , C

(d)
y ).

In the following lemma we will study the distance of any new datum from Cx. Sm

denotes the m-simplex formed by X (d), while Sn denotes the n-simplex formed by

Y(d).
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Lemma 4.1.1. Let X (d),Y(d) be as defined above following the deterministic struc-

ture given by (B1)-(B3). Then

(i) The squared distance between Cx and a new point XN(d) from the X population

is given by

d2(Cx, XN (d)) =
l21
2

(1 +
1

m
) (4.4)

(ii) The squared distance between Cx and a new point YN(d) from the Y population

is given by

d2(Cx, YN(d)) = l212 −
l21
2

(1 − 1

m
) (4.5)

Proof. Cx is the mean of the m-simplex Sm. Without loss of generality, let the vertices

of the Sm be given by

X1 =
l1√
2
(1, 0, . . . , 0)

X2 =
l1√
2
(0, 1, 0, . . . , 0)

...

Xm =
l1√
2
(0, . . . , 0, 1)

This implies

d2(Cx, Xi(d)) = ‖ l1

m
√

2
1 − Xi‖2

=
l21
2

(1 − 1

m
) (4.6)

Now, let Z ∈ <d be at distance z from each of the sample points in X (d). There-

fore, each triangle formed by (Z,Cx, Xi), i = 1, . . . , n is a right-angled triangle with
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hypotenuse being the edge of length z (see Fig. 4.1). Therefore, by Pythagoras’

theorem, we have

d2(Cx, Z) = d2(Xi, Z) − d2(Cx, Xi)

= z2 − l21
2

(1 − 1

m
) (4.7)

If Z comes from the X population, z = l1. If Z comes from the Y population, z = l12.

This gives us the results (4.4) and (4.5) respectively.

Note. When a new datum XN is considered, the underlying geometry of the data

changes. In particular, we have a regular simplex Sm+1 (with m + 1 vertices), which

has the common pairwise distance l1. Similarly, when a new datum YN is considered,

the underlying geometric structure is given by a regular simplex Sn+1, with common

edge length l2.

X
1

X
2

C
x

Z

C
1

Figure 4.1: X (2) = {X1, X2}, X1, X2 ∈ <2. Cx is the mean of X (2). Z ∈ <2 is equidistant
from X1 and X2. Cx, Z, X1 form a right triangle with hypotenuse ZX1. C1, Z, X1 do not
form a right angled triangle. In fact, any point C1 (6= Cx) which lies on the line segment
X1X2 does not form a right angled triangle with X1 and Z. Consequently Z is closest to
Cx among all points on X1X2.

Remark. Fig. 4.1 shows that among all points in the simplex given by X (2), Cx

(the mean), is closest to a point Z which is equidistant from the sample points in

X (2). This holds true in the d-dimensional space.
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The following lemma states results similar to those of Lemma 4.1.1. Here we study

distances from Cy, the mean of Y(d).

Lemma 4.1.2. Let X (d),Y(d) be as defined above following the deterministic struc-

ture given by (B1)-(B3). Then

(i) The squared distance between Cy and a new point XN(d) from the X population

is given by

d2(Cy, XN(d)) = l212 −
l22
2

(1 − 1

n
) (4.8)

(ii) The squared distance between Cy and a new point YN(d) from the Y population

is given by

d2(Cy, YN(d)) =
l22
2

(1 +
1

n
) (4.9)

Using the above two lemmas, we can calculate the distance between Cx and Cy.

The following corollary gives us the result.

Corollary 4.1.3. Let X (d),Y(d) be as defined above following the deterministic struc-

ture given by (B1)-(B3). Then

d2(Cx, Cy) = l212 −
l22
2

(1 − 1

m
) − l22

2
(1 − 1

n
) (4.10)

Proof. From Eq. (4.8), Cy is equidistant from each of the vertices of the m-simplex

given by X (d) (the common distance being

√
l212 −

l22
2
(1 − 1

n
) ). Then, by Eq. (4.7),

the squared distance between Cx and Cy is given by l212 −
l22
2
(1− 1

m
)− l22

2
(1− 1

n
). Note,

that here we used Z = Cy and therefore z =

√
l212 −

l22
2
(1 − 1

n
).

As a remark to Lemma 4.1.1, we noted that if a point Z is equidistant from all

the vertices of Sm, then Cx is the point (among all points in Sm) which is closest to
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Z (see Fig. 4.1). Similar results are studied when there are two simplices (one given

by X (d), the other by Y(d)) in the following lemma.

Lemma 4.1.4. Let X (d),Y(d) be as defined above following the deterministic struc-

ture given by (B1)-(B3). Let C1(6= Cx) be any point in the m-simplex Sm formed by

X (d). Then

(i) Each vertex of the Sn (given by Y(d)) is at equal distance from C1. In other

words,

d(C1, Yi(d)) = U = U(C1),∀i = 1, . . . , n (4.11)

(ii) The common distance U(C1) is larger than the common distance between Cx

and any of the vertices of Sn. Or,

d(Cx, Yi(d)) =

√
l212 −

l21
2

(1 − 1

m
) < U(C1),∀i = 1, . . . , n (4.12)

Proof. Part(i). For i = 1, . . . , n, consider the (m + 1)-hedrons created by Yi and

vertices of X (d).The corresponding edges of these (m + 1)-hedrons are of the same

length. In particular, there is the common base constituting the m-simplex (due to

X (d)). In addition, the distance from Yi to the vertices of X (d) are the same (= l12).

Therefore, the n (m + 1)-hedrons are congruent to each other.

[Let us use Fig 4.2 as an example. Here X (3) = {X1, X2},Y(3) = {Y1, Y2},

for X1, X2, Y1, Y2 ∈ <3. The 3-hedrons (here, triangles) Y1X1X2 and Y2X1X2 are

congruent with common base given by the simplex X1X2.]

Consequently, the angle between the line segments joining any Yi and any Xj, and

the simplex due to X (d) are the same. In particular, for any point C1 (∈ m-simplex),

∠YiXjC1 is same for all i, j. (In Fig. 4.2, ∠Y1X1C1 = ∠Y1X2C1 = ∠Y2X1C1 =

∠Y2X2C1)
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Figure 4.2: Diagram showing two data sets X (3) = {X1, X2} and Y(3) = {Y1, Y2}, for
X1, X2, Y1, Y2 ∈ <3. Cx is the mean of X (3). Note that triangles Y1X1C1 and Y2X1C1 are
congruent and therefore, d(C1, Y1) = d(C1, Y2).

Now, consider any two triangles Y1X1C1 and Y2X1C1. They are congruent (since

(a) d(Y1, X1) = d(Y2, X1) = l12, (b) C1X1 is the common edge, and (c) ∠Y1X1C1 =

∠Y2X1C1). Therefore, d(C1, Y1) = d(C1, Y2) (being corresponding edges of congruent

triangles). Since Y1 and Y2 were arbitrary choices from Y(d), the relation holds for

all the n sample points in Y(d). Consequently, since the distance from C1 to any of

n vertices only depend on C1, we can write

d(C1, Yi(d)) = U = U(C1),∀i = 1, . . . , n

Thus Eq. (4.11) is proved.

Part(ii). From Eq. (4.5), it has been proved that d(Cx, Yi) =

√
l212 −

l21
2
(1 − 1

m
).

Note that each of the Yi’s are equidistant from X (d). By Lemma 4.1.1 and a remark

following it, we know that Cx is the point in the m-simplex which is closest to each of

the points in Y(d). In other words, d(Cx, Yi) < d(C1, Yi) ∀i = 1, . . . , n. Combining

these two facts along with part(i) we have

d(Cx, Yi(d)) =

√
l212 −

l21
2

(1 − 1

m
) < U(C1), ∀i = 1, . . . , n
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Remark. It can be also proved that each vertex of Sm (given by X (d)) is at

equal distance from C2(6= Cy) ∈ Sn. Also, this distance is greater than the common

distance from Cy to each of the vertices of the m-simplex.

Corollary 4.1.3 gives the distance between Cx, Cy. The following theorem shows

that the solution of the MSVM algorithm (discussed earlier) is (Cx, Cy), when the

deterministic structure in the data holds true. We consider the simple situation, where

the two data sets X (d),Y(d) are separable. We also assume that the permissible

candidates for the solution are restricted to the two simplices given by X (d) and

Y(d). Hall et al. (2005) pointed out that for Euclidean data, the SVM separating

hyperplane is the perpendicular bisector of the nearest points of the two convex hulls

formed by the data sets X (d) and Y(d). From that point of view, restricting the

choice of optimum control points for MSVM to the simplices Sn and Sm seems to be

natural.

Theorem 4.1.5. Suppose that X (d) and Y(d) are data sets as defined above following

the deterministic structure given by (B1)-(B3). Let the data sets be separable. In other

words, there exists a pair of control points (c1, c−1) such that H(c1, c−1) separates

them. Then, the pair of control points (restricted to the two respective simplices)

which define the MSVM separating surface are the means Cx, Cy.

Proof. Recall, the MSVM algorithm searches for a pair of control points (c̃1, c̃−1) such

that

(c̃1, c̃−1) = argmin
c1,c−1∈<d

{d2(c1, c−1) +
λ

n

n∑

i=1

[
k − yi{d2(xi, c−1) − d2(xi, c1)}

]

+

}

where λ is the penalty parameter for violating the constraints. Since, here we are

considering separable data sets, and the candidate solutions are restricted to the
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simplices, the MSVM problem formulation reduces to

(c̃1, c̃−1) = argmin
c1∈Sm&c−1∈Sn

d2(c1, c−1) (4.13)

Therefore, in order to prove the statement of the theorem, it is sufficient to prove

that

(Cx, Cy) = argmin
c1∈Sm&c−1∈Sn

d2(c1, c−1) (4.14)

In other words, it would be sufficient to prove that, of all pairs of points (one from the

m-simplex and the other from n-simplex) (Cx, Cy) is the pair which is closest to each

other. Now, let C1(6= Cx) belong to Sm and C2(6= Cy) belong to Sn. Note that Cy

is equidistant from all the points in X (d) (by Lemma 4.1.2). Therefore, by Lemma

4.1.4, we can say that

d(Cy, Cx) < d(Cy, C1) (4.15)

Again, note that C1 is equidistant from all the points in Y(d). Therefore, By Lemma

4.1.4, we can say that

d(Cy, C1) < d(C2, C1) (4.16)

Using Eq. (4.15) and (4.16) gives

d(Cy, Cx) < d(C2, C1)

This proves the theorem.

Remark. Theorem 4.1.5 implies that if there is a deterministic structure (given by

(B1)-(B3)) in the data, then the separating hyperplanes given by the Mean Difference
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method and the MSVM method are the same.

Though all calculations were done assuming conditions (B1)-(B3) holds exactly

true, we recall, in reality these conditions hold only in the limiting sense (in prob-

ability, as d → ∞). In the next subsection, it is shown that the MSVM solution

converges to the Mean Difference solution as d → ∞.

4.1.2 Asymptotic Behavior of MSVM for Euclidean Data

First, we show that the solution of MSVM can be interpreted as an M-estimate.

Then, the asymptotic behavior of MSVM is studied as d → ∞.

Suppose we are interested in a parameter θ related to the distribution of observa-

tions X1, . . . , Xn. A popular method of finding an estimator θ̂n = θ̂n(X1, . . . , Xn) is

to maximize a function of the type

Mn(θ) =
1

n

n∑

i=1

mθ(Xi), (4.17)

where mθ is a known function. The estimator which maximizes Mn(θ) over the

parameter space Θ is called an M-estimator (Huber, 1981; Hampel et al., 1986). For

example, a very frequently used M-estimator is the Maximum Likelihood Estimator

(MLE) where the mθ’s are the loglikelihood functions.

For example, let X1, . . . , Xn be independent samples from N(θ, 1). Then the MLE

θ̂n of θ ∈ < can be defined as a sequence such that

θ̂n = argmax
θ∈<

n∑

i=1

{−(xi − θ)2}. (4.18)

In the asymptotic study of MSVM, we recall that the choice of control points have

been restricted to convex combinations of the data. In other words, any candidate
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solution (cd
1, c

d
−1) can be written as

cd
1 =

m∑

i=1

αiXi(d), and

cd
−1 =

n∑

i=1

βiYi(d), (4.19)

where [α, β] ∈ Θ, and

Θ = {α, β : αi, βj ∈ [0, 1] and
m∑

i=1

αi =
n∑

i=1

βi = 1}. (4.20)

Note: For fixed sample sizes m and n, the dimension of the vectors α and β do

not change with d. Throughout our discussion, α is of dimension m, while β is of

dimension n.

Therefore, for the separable case, the optimal solution (c̃d
1, c̃

d
−1) of MSVM can be

written as

c̃d
1 =

m∑

i=1

α̃i
dXi(d), and

c̃d
−1 =

n∑

i=1

β̃i
d
Yi(d), (4.21)

where [α̃d, β̃
d
] ∈ Θ is such that d2

<d(c̃
d
1, c̃

d
−1) is minimum among all choices of (cd

1, c
d
−1)

defined in (4.19).

Note: Here we use the superscript d to indicate that the values of [α̃d, β̃
d
] will

depend on the dimension d. Again, we note that the dimensions of the vectors αd

and βd remain m and n throughout.

Now, using (4.19), and recalling that X (k) ∈ < is the kth component of a d-
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dimensional vector X(d) ∈ <d, we can write

d2
<d(c1

d, c−1
d) = d2

<d(
m∑

i=1

αiXi(d),
n∑

i=1

βiYi(d))

=
d∑

k=1

d2
<(

m∑

i=1

αiX
(k)
i ,

n∑

i=1

βiY
(k)
i ). (4.22)

Writing θ̃d = [α̃d, β̃d], we can say θ̃d ∈ Θ is a sequence of M-estimates, since it

maximizes a function Md(θ) given by

Md(θ) = −1

d
d2
<d(c1

d, c−1
d)

= −1

d

d∑

k=1

d2
<(

m∑

i=1

αiX
(k)
i ,

n∑

i=1

βiY
(k)
i )

=
1

d

d∑

k=1

mθ(X (k),Y (k)), (4.23)

where,

mθ(X (k),Y (k)) = −d2
<(

m∑

i=1

αiX
(k)
i ,

n∑

i=1

βiY
(k)
i ) (4.24)

and X (k),Y (k) are the collections of the kth components of the data X (d),Y(d) re-

spectively.

Lemma 4.1.6. Let mθ(·, ·) be as defined in (4.24). Let the following conditions hold:

(1) For a constant σ,

1

d

d∑

k=1

var(X
(k)
i ) → σ2, for all i = 1, . . . ,m (4.25)

72



(2) For a constant τ ,

1

d

d∑

k=1

var(Y
(k)
j ) → τ 2, for all j = 1, . . . , n (4.26)

Then mθ(X (k),Y (k)) is dominated by an integrable function for all k.

The proof is given in Section 4.4.

Lemma 4.1.7. Suppose that X (d) and Y(d) are data sets as defined above following

the deterministic structure given by (A1)-(A3). Let Md(θ) be as defined in (4.23).

Then, we have

Md(θ)
P−→M(θ), (4.27)

as d → ∞, where

M(θ) = −[l212 −
l21
2

(1 −
m∑

i=1

α2
i ) −

l22
2

(1 −
n∑

i=1

β2
i )], (4.28)

for all θ ∈ Θ.

The proof is given in Section 4.4. We note that M(θ) is maximized by θ = θ0 =

( 1
m

, . . . , 1
m

, 1
n
, . . . , 1

n
). In other words, the distance between any two convex combina-

tions (one from the X (d), another from Y(d)) is minimum when the corresponding

points are the means. Recall, that in Theorem 4.1.5, we have proved this fact following

a geometric argument also.

In the following theorem, it is shown that the sequence of estimates θ̃d ∈ Θ, defined

in 4.23, converges in probability to θ0 = ( 1
m

, . . . , 1
m

, 1
n
, . . . , 1

n
), as d → ∞. In other

words, the MSVM solution asymptotically behaves like the Mean Difference method

as dimension increases.
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Theorem 4.1.8. Let X (d) and Y(d) be separable data sets such that the following

conditions hold:

(1) As d → ∞, the data has an asymptotic deterministic structure given by the

conditions (A1)-(A3).

(2) Conditions given by Eq. (4.25) and (4.26) are true.

Let θ̃d = [α̃d, β̃d] be the sequence of estimates which defines the MSVM solution ( as

defined above in (4.21)). Then,

θ̃d P−→ θ0 = (
1

m
, . . . ,

1

m
,
1

n
, . . . ,

1

n
), (4.29)

as d → ∞.

The proof is given in Section 4.4. The above theorem states that under the

conditions in which the data asymptotically lie in the Euclidean HDLSS deterministic

geometric structure, the solution of the MSVM algorithm asymptotically behaves like

the Mean Difference method. This is not a purely new observation. Hall et al. (2005)

showed the equivalence of several classification methods when the dimension increases

and the data tends to follow a deterministic pattern. They have pointed out that

Euclidean SVM is equivalent to the Mean Difference method when the deterministic

structure holds. In this discussion, Theorem 4.1.8 studies the same phenomenon from

the viewpoint of control points. This approach will be useful when the asymptotic

behavior of the MSVM method is studied in the manifold setup. See next section for

details.
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4.2 Geometric Representation of Manifold HDLSS

Data

In the previous subsection, we studied the asymptotic behavior (as d → ∞) of

MSVM in the Euclidean case using the geometric structure in Euclidean HDLSS

data. Here, we first study the geometry of manifold HDLSS data and then study

some asymptotic properties of MSVM when data lie on a manifold. In particular, we

will consider data, the components of which are lying in S2.

Let X (d) = {X1(d), . . . , Xm(d)}, where Xi(d), i = 1, . . . ,m are i.i.d random vec-

tors distributed as X(d) = (X (1), . . . , X(d)) with X(i) ∈ S2. Similarly, let Y(d) =

(Y1(d), . . . , Yn(d)). Therefore, Xi(d), Yj(d) ∈ (S2)d ∀i = 1, . . . ,m; j = 1, . . . , n.

First, we recall some notational conventions. We denote the geodesic distance

between two points X (1), X(2) ∈ S2 by dS2(X(1), X(2)). The distance between two

points X1(d), X2(d) ∈ (S2)d is denoted by dS2(X1(d), X2(d)). In short, the geodesic

distance defined on S2 is denoted by dS2(·, ·), while the geodesic distance defined on

(S2)d is denoted by dS2(·, ·). The relation between these two distance measures is

given by

d2
S2(X1(d), X2(d)) =

d∑

k=1

d2
S2(X

(k)
1 , X

(k)
2 ), (4.30)

where Xi(d) = {X (1)
i , . . . , X

(d)
i } ∈ (S2)d and X

(k)
i ∈ S2, i = 1, 2 and k = 1, . . . , d.

Now, we state some results which will be used in our discussion.

Lemma 4.2.1. (1) Let Zd be a sequence of i.i.d. random variables with EZ2
d = µ2

and EZ4
d = σ2 < ∞. Then

√∑d
i=1 Z2

i√
d

= µ + Op(d
− 1

2 ). (4.31)
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(2) Let l be a constant. If Zd is a sequence of random variables such that the relation

Zd√
d

= l + Op(d
− 1

2 ) (4.32)

holds, then the following is true:

Z2
d

d
= l2 + Op(d

− 1
2 ). (4.33)

(3) If Zd is a sequence of random variables such that relation (4.33) holds, then

relation (4.32) holds true.

The proof is given in Section 4.4.

The following lemma studies some asymptotic properties of pairwise distances of

data ∈ (S2)d as d → ∞. We restrict our analysis to the case where the entries X (k)’s

in X(d) are i.i.d random variables. Similarly, Y (k)’s are assumed to be i.i.d. random

variables.

Lemma 4.2.2. Let X (d) = {X1(d), . . . , Xm(d)} and Y(d) = {Y1(d), . . . , Yn(d)} be

as defined above. Moreover, assume that the entries of the vectors in Xi(d)’s and

Yj(d)’s are i.i.d. Define l21 = Ed2
S2(X

(k)
1 , X

(k)
2 ), l22 = Ed2

S2(Y
(k)
1 , Y

(k)
2 ) and l212 =

Ed2
S2(X

(k)
1 , Y

(k)
1 ). Then, the following results hold:

(i) The scaled geodesic distance between any two points in X (d) is given by

dS2(X1(d), X2(d))/
√

d = l1 + Op(d
− 1

2 ). (4.34)

(ii) The scaled geodesic distance between any two points in Y(d) is given by

dS2(Y1(d), Y2(d))/
√

d = l2 + Op(d
− 1

2 ). (4.35)
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(iii) The scaled geodesic distance between any two points (one from X (d), another

from Y(d)) is given by

dS2(X1(d), Y1(d))/
√

d = l12 + Op(d
− 1

2 ). (4.36)

The proof of the lemma is given in Section 4.4.

Lemma 4.2.2 states that under the given conditions, the geodesic distance (scaled

by
√

d) between pairs of points from X (d) (or, Y(d)) is asymptotically a constant,

which equals l1 (or, l2). Moreover, the scaled pairwise distance between one point in

X (d) and one from Y(d) is also asymptotically a constant (= l12). This implies that a

deterministic structure, similar to that in the Euclidean case (Hall et al., 2005), also

exists when data lie on (S2)d as d → ∞.

We will approach the analysis of the asymptotic behavior of MSVM by studying

the structure of the data on tangent planes at particular points on the manifold. We

develop the theory in the following discussion. Given a point p ∈ S2, and the tangent

plane Tp at p, we will denote by dTp
(X,Y ) the Euclidean distance between Logp(X)

and Logp(Y ) ∈ Tp.

In general,

dS2(X,Y ) 6= dTp
(X,Y ). (4.37)

Equality holds true when p = X or Y .

Though it is pointed out that equality in Eq. (4.37) does not hold in general, we

can write

d2
Tp

(X,Y ) = d2
S2(X,Y ) + δ(p,X, Y ), (4.38)

where δ(p,X, Y ) is the error committed in approximating the squared distance on Tp
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by the squared distance on S2. Note that δ(p,X, Y ) is a function of p,X, Y ∈ S2.

We recall some notations. X (k) = {X(k)
1 , . . . , X

(k)
m } denotes the set containing

the kth component of X (d). Similarly, Y (k) is defined. Let C
(k)
x and C

(k)
y denote

the respective sample geodesic means of the kth component (i.e., of X (k) and Y (k)

respectively). Let Cx and Cy be the sample geodesic means of X (d),Y(d) respectively.

Cx = (C
(1)
x , . . . , C

(d)
x ) and Cy = (C

(1)
y , . . . , C

(d)
y ).

The following lemma describes a set of conditions under which the deterministic

structure exists in the tangent planes TCx
and TCy

.

Lemma 4.2.3. Let X (d) = {X1(d), . . . , Xm(d)} and Y(d) = {Y1(d), . . . , Yn(d)} be

as defined above. Let the definitions of Lemma 4.2.2 hold. Define the following

quantities:

lx0.1δ = EX (k)δ(C
(k)
x , X

(k)
1 , X

(k)
2 ),

lx0.2δ = EX (k),Y(k)δ(C
(k)
x , Y

(k)
1 , Y

(k)
2 ),

lx0.12δ = EX (k),Y(k)δ(C
(k)
x , X

(k)
1 , Y

(k)
1 ),

ly0.1δ = EX (k),Y(k)δ(C
(k)
y , X

(k)
1 , X

(k)
2 ),

ly0.2δ = EY(k)δ(C
(k)
y , Y

(k)
1 , Y

(k)
2 ) and

ly0.12δ = EX (k),Y(k)δ(C
(k)
y , X

(k)
1 , Y

(k)
1 ), for all k.

The following relations hold:

(i) On the tangent plane TCx
, the scaled distance between any two points in X (d)

is given by

dTCx
(X1(d), X2(d))/

√
d =

√
l21 + lx0.1δ + Op(d

− 1
2 ), (4.39)

78



(ii) On the tangent plane TCx
, the scaled distance between any two points in Y(d)

is given by

dTCx
(Y1(d), Y2(d))/

√
d =

√
l22 + lx0.2δ + Op(d

− 1
2 ), (4.40)

(iii) On the tangent plane TCx
, the scaled distance between any two points (one from

X (d), another from Y(d)) is given by

dTCx
(X1(d), Y1(d))/

√
d =

√
l212 + lx0.12δ + Op(d

− 1
2 ), (4.41)

(iv) On the tangent plane TCy
, the scaled distance between any two points in X (d)

is given by

dTCy
(X1(d), X2(d))/

√
d =

√
l21 + ly0.1δ + Op(d

− 1
2 ), (4.42)

(v) On the tangent plane TCy
, the scaled distance between any two points in Y(d)

is given by

dTCy
(Y1(d), Y2(d))/

√
d =

√
l22 + ly0.2δ + Op(d

− 1
2 ), (4.43)

(vi) On the tangent plane TCy
, the scaled distance between any two points (one from

X (d), another from Y(d)) is given by

dTCy
(X1(d), Y1(d))/

√
d =

√
l212 + ly0.12δ + Op(d

− 1
2 ). (4.44)

The proof is given in Section 4.4.

Lemma 4.2.3 shows that on the tangent planes at Cx and Cy, there exists a

deterministic relation between data, similar to the Euclidean case (Hall et al., 2005).
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On the tangent plane at Cx, we will call the simplex formed by X (d) and Y(d) as

Sm,Cx
and Sn,Cx

respectively. Similarly, the simplices at TCy
will be called Sm,Cy

and

Sn,Cy
respectively.

Now, let us concentrate on the tangent plane at Cx. From results (i)-(iii) in the

previous lemma, we can conclude that the mean of the m-simplex Sm,Cx
on TCx

is

nearest to every point on the n-simplex Sn,Cx
. Note, here Cx is the mean of the points

in Sm,Cx
∈ TCx

. This implies that, on TCx
, Cx is the point (among all other points in

Sm,Cx
) which is closest to all points in Sn,Cx

(by Lemma 4.1.4). In addition, Lemma

4.1.1 gives the scaled distance of Cx from any vertex Xi ∈ Sm,Cx
and Yi ∈ Sn,Cx

. The

relations are given below:

dTCx
(Cx, Xi(d))/

√
d =

√
1

2
(l21 + lx0.1δ)(1 − 1

m
) + Op(d

− 1
2 ) and, (4.45)

dTCx
(Cx, Yj(d))/

√
d =

√
d2

TCx
(Xi(d), Yj(d)) − d2

TCx
(Cx, Xi(d))

d

⇒ dTCx
(Cx, Yj(d))/

√
d =

√
l212 + lx0.12δ −

1

2
(l21 + lx0.1δ)(1 − 1

m
) + Op(d

− 1
2 ),

(4.46)

for all i = 1, . . . ,m and j = 1, . . . , n. This implies

dS2(Cx, Xi(d))/
√

d =

√
1

2
(l21 + lx0.1δ)(1 − 1

m
) + Op(d

− 1
2 ) and, (4.47)

dS2(Cx, Yj(d))/
√

d =

√
l212 + lx0.12δ −

1

2
(l21 + lx0.1δ)(1 − 1

m
) + Op(d

− 1
2 ). (4.48)

for all i = 1, . . . ,m and j = 1, . . . , n.

Similarly, the scaled distance of Cy from any point Yi ∈ Y(d) is given by

dS2(Cy, Yj(d))/
√

d =

√
1

2
(l22 + ly0.2δ)(1 − 1

n
) + Op(d

− 1
2 ), (4.49)
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and the scaled distance of Cy from any point Xi ∈ X (d) is given by

dS2(Cy, Xi(d))/
√

d =

√
l212 + ly0.12δ −

1

2
(l22 + ly0.2δ)(1 − 1

n
) + Op(d

− 1
2 ), (4.50)

for all i = 1, . . . ,m and j = 1, . . . , n.

Equation (4.48) states that on (S2)d, the distance between Cx and any Yi(d) ∈

Y(d) is asymptotically a constant. Equation (4.50) states that on (S2)d, the distance

between Cy and any Xi(d) ∈ X (d) is also asymptotically a constant. Now, using

equation (4.38), we can write

d2
T

C
(k)
y

(C(k)
x , Y

(k)
1 ) = d2

S2(C(k)
x , Y

(k)
1 ) + δ(C(k)

y , C(k)
x , Y

(k)
1 )

for all k = 1, . . . , n. This implies

d2
TCy

(Cx, Y1(d)) = d2
S2(Cx, Y1(d)) +

d∑

k=1

δ(C(k)
y , C(k)

x , Y
(k)
1 ). (4.51)

Define ly0.x02δ = EX (k),Y(k)δ(C
(k)
y , C

(k)
x , Y

(k)
1 ) ∀k = 1, . . . , d. Then, by the Central

Limit Theorem, the following result holds:

1

d

d∑

k=1

δ(C(k)
y , C(k)

x , Y
(k)
1 ) = ly0.x02δ + Op(d

− 1
2 ). (4.52)

Using equations (4.48), (4.51), (4.52) and Lemma 4.2.1, we have

d2
TCy

(Cx, Y1(d))/d = l212 + lx0.12δ −
1

2
(l21 + lx0.1δ)(1 − 1

m
) + ly0.x02δ + Op(d

− 1
2 ). (4.53)

The above equation, along with equation (4.49) states that on the tangent plane at

Cy, the points of Y(d) form a regular simplex Sn,Cy
(with their mean as Cy). In

addition, the geodesic mean Cx (of X (d)) is equidistant (w.r.t. dTCy
) to each of the
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vertices of Sn,Cy
. Therefore, we can use the Euclidean results proved in the previous

subsection. In particular, we observe that on the tangent plane TCy
, LogCy

(Cx) is

normal to Sn,Cy
.

An important consequence of the normality of LogCy
(Cx) to Sn,Cy

is the fact that

of all points ∈ Sn,Cy
, the geodesic mean Cy is the closest to Cx (by Lemma 4.1.1 and

4.1.4). In other words,

Cy = argmin
v∈Sn,Cy

d2
TCy

(v, Cx) (4.54)

Similar analysis on the tangent plane at Cx will prove that of all points ∈ Sm,Cx
,

the geodesic mean Cx is the closest to Cy. In other words,

Cx = argmin
v∈Sm,Cx

d2
TCx

(v, Cy) (4.55)

The above two results will now be used to prove that among restricted pairs of

points (c1, c−1), the pair given by the geodesic means (Cx, Cy) are closest (w.r.t. the

geodesic distance) to each other. In particular, for c1, the restricted set is taken to

be the image (via Exp) of the convex hull of the LogCx
Xi(d)’s. There is a similar

restricted set for c−1. The sets are defined as follows:

ECx
(X (d)) = {p ∈ (S2)d : p = ExpCx

(
m∑

i=1

αiLogCx
(Xi(d))); αi ≥ 0;

m∑

i=1

αi = 1}.(4.56)

ECy
(Y(d)) = {p ∈ (S2)d : p = ExpCy

(
n∑

i=1

βiLogCy
(Yi(d))); βi ≥ 0;

n∑

i=1

βi = 1}.(4.57)

This representation of control points offers a convenient extension of the idea of a

convex hull for manifold data. It allows us to use Euclidean results on tangent planes

at Cx and Cy, as will be seen in the following discussion.

The following proposition states the results.
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Proposition 4.2.4. Let X (d),Y(d) be as defined before such that the conditions of

Lemma 4.2.2 hold. Let the sets ECx
(X (d)) and ECy

(Y(d)) be as defined in Eq. (4.56)

and (4.57) . Assume that the data X (d) ∪ Y(d) belong to a small neighborhood.

(i) Among all points in ECx
(X (d)), Cx is closest to Cy. In other words

Cx = argmin
c1∈ECx (X (d))

d2
S2(c1, Cy). (4.58)

(ii) Among all points in ECy
(Y(d)), Cy is closest to Cx. In other words

Cy = argmin
c−1∈ECy (Y(d))

d2
S2(c−1, Cx). (4.59)

Proof. Part(i). We note that on TCx
, the projection of the set ECx

(X (d)) (denoted by

LogCx
ECx

(X (d))) is the convex hull of the LogCx
(Xi)’s. Therefore, by construction,

LogCx
ECx

(X (d)) = Sm,Cx

Since ECx
(X (d)) is the restricted set in which c1 can lie, note that the allowable set

of points in TCx
is given by Sm,Cx

. Therefore, to prove that Cx is a critical point of

the function d2
S2(c1, Cy), we will have to show that the directional derivative (along

any direction in Sm,Cx
) of d2

S2(c1, Cy) is equal to zero.

The directional derivative of a function f(u) along a given direction v is given by

Dvf(u) = ∇uf(u)′v, (4.60)

where ∇uf(u) is the derivative of f(u) w.r.t. u.

When data lies in a small (convex) neighborhood, we have

∇cd
2
S2(c, Z) = −2Logc(Z) (4.61)
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Now, let us consider a direction v ∈ Sm,Cx
. Let c = Cx and Z = Cy in equation

(4.61).

Therefore, using (4.60) and (4.61), we have the directional derivative (along any

direction in Sm,Cx
) of the function d2

S2(c, Cy) at c = Cx as

Dvd
2
S2(c, Cy)|c=Cx

= −2LogCx
(Cy)

′v

= 0, (4.62)

since, we have earlier shown that LogCx
(Cy) is normal to Sm,Cx

, and hence to all

v ∈ Sm,Cx
.

This proves that Cx is a critical point. However, under the same assumption of

data lying in a sufficiently small neighborhood, we can say that Cx is the minimizer.

Part(ii). The proof follows similar logic as in part (i). Considering the tangent

plane TCy
at Cy, we have to note that LogCy

ECy
(Y(d)) = Sn,Cy

and LogCy
(Cx) is

normal to Sn,Cy
.

The next set of results study the deterministic structure on the tangent planes

at any point in ECx
(X (d)) or ECy

(Y(d)). For notational convenience, any point in

ECx
(X (d)) is denoted by Cxα, while a point in ECy

(Y(d)) is denoted by Cyβ.

Lemma 4.2.5. Let X (d) = {X1(d), . . . , Xm(d)} and Y(d) = {Y1(d), . . . , Yn(d)} be

as defined above. Let the definitions of Lemma 4.2.2 hold. Define the following

quantities:

lxα.1δ = EX (k)δ(C
(k)
xα , X

(k)
1 , X

(k)
2 ),

lxα.2δ = EX (k),Y(k)δ(C
(k)
xα , Y

(k)
1 , Y

(k)
2 ),

lxα.12δ = EX (k),Y(k)δ(C
(k)
xα , X

(k)
1 , Y

(k)
1 ),

lyβ.1δ = EX (k),Y(k)δ(C
(k)
yβ , X

(k)
1 , X

(k)
2 ),
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lyβ.2δ = EY(k)δ(C
(k)
yβ , Y

(k)
1 , Y

(k)
2 ) and

lyβ.12δ = EX (k),Y(k)δ(C
(k)
yβ , X

(k)
1 , Y

(k)
1 ), for all k.

The following results hold:

(i) On the tangent plane TCxα
, the scaled distance between any two points in X (d)

is given by

dTCxα
(X1(d), X2(d))/

√
d =

√
l21 + lxα.1δ + Op(d

− 1
2 ), (4.63)

(ii) On the tangent plane TCxα
, the scaled distance between any two points in Y(d)

is given by

dTCxα
(Y1(d), Y2(d))/

√
d =

√
l22 + lxα.2δ + Op(d

− 1
2 ), (4.64)

(iii) On the tangent plane TCxα
, the scaled distance between any two points (one from

X (d), another from Y(d)) is given by

dTCxα
(X1(d), Y1(d))/

√
d =

√
l212 + lxα.12δ + Op(d

− 1
2 ), (4.65)

(iv) On the tangent plane TCyβ
, the scaled distance between any two points in X (d)

is given by

dTCyβ
(X1(d), X2(d))/

√
d =

√
l21 + lyβ.1δ + Op(d

− 1
2 ), (4.66)

(v) On the tangent plane TCyβ
, the scaled distance between any two points in Y(d)

is given by

dTCyβ
(Y1(d), Y2(d))/

√
d =

√
l22 + lyβ.2δ + Op(d

− 1
2 ), (4.67)
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(vi) On the tangent plane TCyβ
, the scaled distance between any two points (one from

X (d), another from Y(d)) is given by

dTCyβ
(X1(d), Y1(d))/

√
d =

√
l212 + lyβ.12δ + Op(d

− 1
2 ). (4.68)

The proof is given in Section 4.4.

The next proposition extends the results of Proposition 4.2.4 to any pair of points

from ECx
(X (d)) and ECy

(Y(d)).

Proposition 4.2.6. Let X (d),Y(d) be as defined before such that the conditions of

Lemma 4.2.2 hold. Let the sets ECx
(X (d)) and ECy

(Y(d)) be as defined in Eq. (4.56)

and (4.57) . Assume that the data X (d) ∪ Y(d) belong to a small neighborhood.

(i) Among all points in ECx
(X (d)), Cx is closest to any Cyβ ∈ ECy

(Y(d)). In

other words

Cx = argmin
Cxα∈ECx (X (d))

d2
S2(Cxα, Cyβ). (4.69)

(ii) Among all points in ECy
(Y(d)), Cy is closest to any Cxα ∈ ECx

(X (d)). In

other words

Cy = argmin
Cyβ∈ECy (Y(d))

d2
S2(Cxα, Cyβ). (4.70)

The proof uses similar arguments as in Proposition 4.2.4 and is given in Section

4.4.

The following proposition states that under the deterministic conditions, the

MSVM method (when the choice of the control points (c1, c−1) is restricted to the

sets ECx
(X (d)) and ECy

(Y(d)) respectively) is equivalent to the GMD method.
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Proposition 4.2.7. Suppose that X (d) and Y(d) are data sets as defined above fol-

lowing the deterministic structure discussed above. Let the data sets be separable. In

other words, there exists a pair of control points (c1, c−1) such that H(c1, c−1) sep-

arates them. Then, the pair of control points (restricted to the sets ECx
(X (d)) and

ECy
(Y(d)) respectively) which define the MSVM separating surface are the geodesic

means Cx, Cy. In other words, MSVM is equivalent to GMD under the stated condi-

tions.

Proof. Recall the MSVM algorithm searches for a pair of control points (c̃1, c̃−1) such

that

(c̃1, c̃−1) = argmin
c1,c−1∈(S2)d

{d2
S2(c1, c−1) +

λ

n

n∑

i=1

[
k − yi{d2

S2(xi, c−1) − d2
S2(xi, c1)}

]

+

}

(4.71)

where λ is the penalty parameter for violating the constraints. Since, here we are

considering separable data sets, and the candidate solutions are restricted to the sets

ECx
(X (d)) and ECy

(Y(d)) respectively, the MSVM problem formulation reduces to

(c̃1, c̃−1) = argmin
c1∈ECx (X (d))&c−1∈ECy (Y(d))

d2
S2(c1, c−1) (4.72)

Therefore, in order to prove the statement of the proposition, it is sufficient to prove

that

(Cx, Cy) = argmin
c1∈ECx (X (d))&c−1∈ECy (Y(d))

d2
S2(c1, c−1) (4.73)

In other words, it would be sufficient to prove that, of all pairs of points (one from the

ECx
(X (d)) and the other from ECy

(Y(d))), (Cx, Cy) is the pair which is closest to each

other. Now, let C1(6= Cx) belong to ECx
(X (d)) and C2(6= Cy) belong to ECy

(Y(d)).
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By Proposition 4.2.6, we can say that

d2
S2(Cx, Cy) < d2

S2(Cy, C1) (4.74)

Again, note that C1 ∈ ECy
(Y(d)). Therefore, by Proposition 4.2.6,

d2
S2(Cy, C1) < d2

S2(C2, C1) (4.75)

Using Eq. (4.74) and (4.75) gives

d2
S2(Cx, Cy) < d2

S2(C2, C1)

This proves the proposition.

Proposition 4.2.7 shows that when the deterministic geometric structure exists in

the data, the MSVM solution and the GMD solutions are the same.

4.2.1 Asymptotic Behavior of MSVM for Manifold Data

In this subsection, it is shown that the MSVM solution asymptotically behaves like

the GMD solution as data tend to follow the deterministic structure with increasing

dimension. We proceed in a way similar to Section 4.1.2, where we interpret the

MSVM solution as a sequence of estimates as the dimension d → ∞.

Recall, that the choice of control points has been restricted to the sets ECx
(X (d))

and ECy
(Y(d)). Therefore, similar to the Euclidean case, we can represent the control

points with the vector θ = [α, β], using the definition of ECx
(X (d)) and ECy

(Y(d)). In

other words, any candidate solution (cd
1, c

d
−1) can be written as

cd
1 = ExpCx

(
m∑

i=1

αiLogCx
(Xi(d))), and
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cd
−1 = ExpCy

(
n∑

i=1

βiLogCy
(Yi(d))), (4.76)

where [α, β] ∈ Θ, and

Θ = {α, β : αi, βj ∈ [0, 1] and
m∑

i=1

αi =
n∑

i=1

βi = 1}. (4.77)

Note: For fixed sample sizes m and n, the dimension of the vectors α and β do

not change with d. Throughout our discussion, α is of dimension m, while β is of

dimension n.

Therefore, for the separable case, the optimal solution (c̃d
1, c̃

d
−1) of MSVM can be

written as

c̃d
1 = ExpCx

(
m∑

i=1

α̃i
dLogCx

(Xi(d))), and

c̃d
−1 = ExpCy

(
n∑

i=1

β̃i
d
LogCy

(Yi(d))), (4.78)

where [α̃d, β̃
d
] ∈ Θ is such that d2

S2(c̃d
1, c̃

d
−1) is minimum among all choices of (cd

1, c
d
−1)

defined in (4.76).

Note: Here, we use the superscript d to indicate that the values of [α̃d, β̃
d
] will

depend on the dimension d. Again, we note that the dimensions of the vectors αd

and βd remain m and n throughout.

Now, using (4.76), and recalling that X (k) ∈ S2 is the kth component of X(d) ∈

(S2)d, we can write

d2
S2(c1

d, c−1
d) = d2

S2(ExpCx
(

m∑

i=1

αiLogCx
(Xi(d))), ExpCy

(
n∑

i=1

βiLogCy
(Yi(d))))

=
d∑

k=1

d2
S2(Exp

C
(k)
x

(
m∑

i=1

αiLog
C

(k)
x

(X
(k)
i )), Exp

C
(k)
y

(
n∑

i=1

βiLog
C

(k)
y

(Y
(k)
i ))),

(4.79)
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Writing θ̃d = [α̃d, β̃d], we can say θ̃d ∈ Θ is a sequence of M-estimates, since it

maximizes the function Md(θ) given by

Md(θ) = −1

d
d2

S2(c1
d, c−1

d))

= −1

d

d∑

k=1

d2
S2(Exp

C
(k)
x

(
m∑

i=1

αiLog
C

(k)
x

(X
(k)
i )), Exp

C
(k)
y

(
n∑

i=1

βiLog
C

(k)
y

(Y
(k)
i )))

=
1

d

d∑

k=1

mθ(X (k),Y (k)), (4.80)

where,

mθ(X (k),Y (k)) = −d2
S2(Exp

C
(k)
x

(
m∑

i=1

αiLog
C

(k)
x

(X
(k)
i )), Exp

C
(k)
y

(
n∑

i=1

βiLog
C

(k)
y

(Y
(k)
i )))

(4.81)

and X (k),Y (k) are the collections of the kth components of the data X (d),Y(d) re-

spectively.

Lemma 4.2.8. Suppose that X (d) and Y(d) are data sets such that the conditions of

Lemma 4.2.2 hold. Let Md(θ) be as defined in (4.80). Then, we have

Md(θ)
P−→M(θ), (4.82)

as d → ∞, where

M(θ) = −[l212 + lxα.12δ −
1

2
(l21 + lxα.1δ)(1 −

n∑

i=1

α2
i ) +

+ lyβ.xα2δ −
1

2
(l22 + lyβ.2δ)(1 −

m∑

i=1

β2
i )] (4.83)

for all θ, where lyβ.xα2δ = EX (k),Y(k)δ(C
(k)
yβ , C

(k)
xα , Y

(k)
1 ).

The proof is given in Section 4.4.
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We note that M(θ) is maximized by θ = θ0 = ( 1
m

, . . . , 1
m

, 1
n
, . . . , 1

n
) (proved in

Proposition 4.2.7), under the condition that data lie in a small neighborhood. In

other words, the geodesic distance between any two points (one from ECx
(X (d)),

another from ECy
(Y(d))) is minimum when the corresponding points are the geodesic

means.

The following proposition states that the sequence of estimates θ̃d ∈ Θ, defined in

4.78, converges in probability to θ0, as d → ∞. In other words, the MSVM solution

behaves asymptotically like the GMD method as the dimension increases.

Proposition 4.2.9. Suppose that X (d) and Y(d) are data sets such that the con-

ditions of Lemma 4.2.2 hold. Let θ̃d = [α̃d, β̃d] be the sequence of estimators which

defines the MSVM solution ( as defined above in (4.78)). If the data lie in a small

neighborhood, then

θ̃d P−→ θ0 = (
1

m
, . . . ,

1

m
,
1

n
, . . . ,

1

n
), (4.84)

as d → ∞.

The proof is given in Section 4.4.

By Proposition 4.2.9, we note that when there tends to be a deterministic structure

(see Lemma 4.2.2) in the data lying in (S2)d with increasing dimension, the MSVM

solution asymptotically behaves like the GMD solution. This is an extension of the

analysis of the asymptotic behavior of MSVM in the Euclidean case (see Theorem

4.1.8) for manifold data.

4.3 Summary

In this chapter, we studied the asymptotic behavior the MSVM method for both

Euclidean data (Section 4.1) and data in (S2)d (Section 4.2). We observed that the

MSVM solution behaves like the GMD solution with increasing dimension when data
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tend to follow the HDLSS deterministic pattern. Hall et al. (2005) has shown that

methods such as DWD, Nearest Neighbor Classifier have similar behavior for Eu-

clidean data. In particular, they showed that all methods asymptotically behave like

the Mean Difference method. In order to draw similar conclusions for manifold data,

we also need to study the asymptotic properties of MDWD and Nearest Neighbor

Classifier for manifolds. This is an interesting area of future research.

4.4 Technical Details

Proof of Lemma 4.1.6. Using Jensen’s inequality, and noting that 0 ≤ αi, βi ≤ 1,

we can write

|mθ(X (k),Y (k))| = d2
<(

m∑

i=1

αiX
(k)
i ,

n∑

i=1

βiY
(k)
i )

= (
m∑

i=1

αiX
(k)
i −

n∑

i=1

βiY
(k)
i )2

≤ 2[(
m∑

i=1

αiX
(k)
i )2 + (

n∑

i=1

βiY
(k)
i )2]

≤ 2[
m∑

i=1

αi(X
(k)
i )2 +

n∑

i=1

βi(Y
(k)
i )2]

≤ 2[
m∑

i=1

(X
(k)
i )2 +

n∑

i=1

(Y
(k)
i )2] (4.85)

Conditions given by (4.25) and (4.26) imply that E(X
(k)
i )2, E(Y

(k)
j )2 < ∞ for all k

and for all i = 1, . . . ,m and j = 1, . . . , n. This implies that E|mθ(X (k),Y (k))| < ∞

for all k and this completes the proof.

Proof of Lemma 4.1.7. Without loss of generality, by appealing to the asymptotic

behavior of the pairwise distances between points (as given by (A1)-(A3)), the data

can be represented as

X1/
√

d =
l1√
2
(1, 0, . . . , 0)
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X2/
√

d =
l1√
2
(0, 1, 0, . . . , 0)

· · ·

Xm/
√

d =
l1√
2
(0, . . . , 0, 1, 0, . . . , ....)

and

Y1/
√

d =
l2√
2
(0, . . . , 0, 1, 0, . . . , 0) + µ

Y2/
√

d =
l2√
2
(0, . . . , 0, 0, 1, 0, . . . , 0) + µ

· · ·

Yn/
√

d =
l2√
2
(0, . . . , 0, 0, . . . , 0, 1, 0, . . . , 0) + µ,

where µ = µ(1, . . . , 1, 0, . . . , 0). Noting that µ is such that d<d(X1, Y1)/
√

d−→P l12,

we have

l21/2 + l22/2 + µ(l1 − l2)/
√

2 + µ2(m + n) = l212. (4.86)

Using this representation, for any θ ∈ Θ we have

m∑

i=1

αiXi(d)/
√

d =
l1√
2
(α1, . . . , αm, 0, . . . , 0), and

n∑

i=1

βiYi(d)/
√

d =
l2√
2
(0, . . . , 0, β1, . . . , βn, 0, . . . , 0) + µ, (4.87)

where the relations hold asymptotically. Using Equations (4.86) and (4.87), we have

Md(θ) = −1

d
d2
<d(

m∑

i=1

αiXi(d),
n∑

i=1

βiYi(d))

−→P

m∑

i=1

(l1αi/
√

2 − µ)2 +
n∑

i=j

(l2βj/
√

2 + µ)2
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= −[l212 −
l21
2

(1 −
m∑

i=1

α2
i ) −

l22
2

(1 −
n∑

i=1

β2
i )]

= M(θ). (4.88)

This completes the proof.

The following is a theorem which will be used to prove Theorem 4.1.8.

Theorem 4.4.1 (Theorem 5.7 of van der Vaart (1998)). Let Md be random functions

and let M be a fixed function of θ such that for every ε > 0

sup
θ∈Θ

|Md(θ) − M(θ)| P−→ 0, (4.89)

sup
θ:d(θ,θ0)≥ε

M(θ) < M(θ0), (4.90)

Then any sequence of estimators θ̂
d

with

Md(θ̂
d
) ≥ Md(θ0) − op(1) (4.91)

converges in probability to θ0.

The above theorem gives us a set of conditions under which a sequence of estimates

converge to a particular value.

Proof of Theorem 4.1.8. We shall verify that the conditions of Theorem 4.4.1

holds true. First, it should be noted that θ0 = ( 1
m

, . . . , 1
m

, 1
n
, . . . , 1

n
) is the unique

minimizer of M(θ) (defined in Eq. (4.28)). Therefore, we have the condition (4.90)

is satisfied.

The condition (4.91) ensures that θ̃d’s nearly maximize the Md’s. By definition of

θ̃d = [α̃d, β̃d] in Eq. (4.21), we have that satisfied.

A sufficient set of conditions for Eq. (4.89) to hold true is given below (van der

Vaart (1998)):
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(a) Θ is compact.

(b) mθ : <m+n 7−→ < is continuous.

(c) mθ is dominated by an integrable function.

We note that Θ = {α, β : αi, βj ∈ [0, 1]and
∑m

i=1 αi =
∑n

i=1 βi = 1}. Therefore, Θ

is compact and thus (a) holds. Since mθ is a quadratic polynomial, it is continuous,

and thus (b) holds. By Lemma 4.1.6, we have condition (c) satisfied.

All conditions for Theorem 4.4.1 has been verified and hence θ̃d −→P θ0. This

completes the proof.

Proof of Lemma 4.2.1.

Part (1). Given the conditions, the Central Limit Theorem can be applied to the sequence

of variables Z2
d . This implies

√
d(

1

d

d∑

i=1

Z2
i − µ2)/σ1 ∼ N(0, 1)

as d → ∞, where σ2
1 = σ2 − µ4. Therefore, using the Delta method we can

write,

2µ
√

d(
√

1
d

∑d
i=1 Z2

i − µ)/σ1 ∼ N(0, 1) as d → ∞,

or, 2µ
√

d(
√

1
d

∑d
i=1 Z2

i − µ)/σ1 = Op(1)

or,

√∑d
i=1 Z2

i√
d

= µ + Op(d
− 1

2 ).

Hence, relation (4.31) holds.

Part (2). It is given that Zd is a sequence of random variables such that

Zd√
d

= l + Op(d
− 1

2 ).
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This implies

Z2
d = l2d + Op(1)

2 + 2l
√

dOp(1)

⇒ Z2
d

d
= l2 + Op(d

−1) + 2lOp(d
− 1

2 )

⇒ Z2
d

d
= l2 + Op(d

− 1
2 ).

Hence, relation (4.33) holds.

Part (3). It is given that the relation (4.33) holds. This implies

Z2
d√
d

= l2
√

d + Op(1)

or,
Zd

d1/4
= {l2

√
d + Op(1)}

1
2

= ld1/4 +
1

2ld1/4
Op(1) −

1

8l3d3/4
Op(1) + . . .

or,
Zd√

d
= l +

1

2ld1/2
Op(1) −

1

8l3d
Op(1) + . . .

= l + Op(d
− 1

2 ).

Hence, relation (4.32) holds.

Proof of Lemma 4.2.2. Lemma 4.2.1 is used to prove the statements of the three

parts.

For part (i), Zk is substituted by dS2(X
(k)
1 , X

(k)
2 ) and µ by l1. We note that the

finite fourth moment condition is satisfied since |dS2(·, ·)| ≤ π. Therefore using part

(1) of the lemma and the relation (4.30) gives us

√∑d
k=1 d2

S2(X
(k)
1 , X

(k)
2 )

√
d

= l1 + Op(d
− 1

2 )

or,

√
d2

S2(X1(d), X2(d))

d
= l1 + Op(d

− 1
2 )
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or, dS2(X1(d), X2(d))/
√

d = l1 + Op(d
− 1

2 )

This proves part (i).

For part (ii), Zk is substituted by dS2(Y
(k)
1 , Y

(k)
2 ) and µ by l2.

For part (iii), Zk is substituted by dS2(X
(k)
1 , Y

(k)
2 ) and µ by l12.

Proof of Lemma 4.2.3. Lemma 4.2.1 is used to prove the statements of this lemma.

For part (i), Zk is substituted by dT
C

(k)
x

(X
(k)
1 , X

(k)
2 ) in part (1) of Lemma 4.2.1.

Therefore, using (4.38)

µ2 = EZ2
k

= EX (k)d2
T

C
(k)
x

(X
(k)
1 , X

(k)
2 )

= EX (k)d2
S2(X

(k)
1 , X

(k)
2 ) + EX (k)δ(C(k)

x , X
(k)
1 , X

(k)
2 )

= l21 + lx0.1δ.

Now, using part (1) of Lemma 4.2.1 we have,

√∑d
k=1 d2

T
C

(k)
x

(X
(k)
1 , X

(k)
2 )

√
d

=
√

l21 + lx0.1δ + Op(d
− 1

2 )

or,

√
d2

TCx
(X1(d), X2(d))

d
=

√
l21 + lx0.1δ + Op(d

− 1
2 )

or, dTCx
(X1(d), X2(d))/

√
d =

√
l21 + lx0.1δ + Op(d

− 1
2 )

This proves part (i).

Parts (ii)-(vi) can be proved using similar arguments.

Proof of Lemma 4.2.5. Lemma 4.2.1 is used to prove the statements of this lemma.

For part (i), Zk is substituted by dT
C

(k)
xα

(X
(k)
1 , X

(k)
2 ) in part (1) of Lemma 4.2.1.
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Therefore, using (4.38)

µ2 = EZ2
k

= EX (k)d2
T

C
(k)
xα

(X
(k)
1 , X

(k)
2 )

= EX (k)d2
S2(X

(k)
1 , X

(k)
2 ) + EX (k)δ(C(k)

xα , X
(k)
1 , X

(k)
2 )

= l21 + lxα.1δ.

Now, using part (1) of Lemma 4.2.1 we have,

√∑d
k=1 d2

T
C

(k)
xα

(X
(k)
1 , X

(k)
2 )

√
d

=
√

l21 + lxα.1δ + Op(d
− 1

2 )

or,

√
d2

TCxα
(X1(d), X2(d))

d
=

√
l21 + lxα.1δ + Op(d

− 1
2 )

or, dTCxα
(X1(d), X2(d))/

√
d =

√
l21 + lxα.1δ + Op(d

− 1
2 )

This proves part (i).

Parts (ii)-(vi) can be proved using similar arguments.

Proof of Proposition 4.2.6. Using the results in Lemma 4.2.5, and the resulting

geometric representation of the data (see the proof of Lemma 4.1.7), we have

dTCxα
(Cxα, Y1(d))/

√
d =

√√√√l212 + lxα.12δ −
1

2
(l21 + lxα.1δ)(1 −

n∑

i=1

α2
i ) + Op(d

− 1
2 )

or , dS2(Cxα, Y1(d))/
√

d =

√√√√l212 + lxα.12δ −
1

2
(l21 + lxα.1δ)(1 −

n∑

i=1

α2
i ) + Op(d

− 1
2 )

Therefore, we have

dTCy
(Cxα, Y1(d))/

√
d =

√√√√l212 + lxα.12δ −
1

2
(l21 + lxα.1δ)(1 −

n∑

i=1

α2
i ) + ly0.xα2δ + Op(d

− 1
2 ),
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where ly0.xα2δ = EX (k),Y(k)δ(C
(k)
y , C

(k)
xα , Y

(k)
1 ).

Recall, that Y(d) forms the regular simplex Sn,Cy
and by the above equation, each

vertex Yi is equidistant from Cxα. Therefore, using Lemma 4.1.1, we can say that

LogCy
(Cxα) is normal to Sn,Cy

. This implies,

Dvd
2
S2(c, Cxα)|c=Cy

= −2LogCy
(Cxα)′v

= 0,

where v ∈ Sn,Cy
. This, along with the assumption that data the lie in a small

neighborhood, implies part (ii) of the lemma.

For part (i), we study the data at TCx
and note that LogCx

(Cyβ) is normal to

Sm,Cx
. This completes the proof.

Proof of Lemma 4.1.7. Using the results in Lemma 4.2.5, and the resulting geo-

metric representation of the data (see the proof of Lemma 4.1.7), we have

dTCxα
(Cxα, Y1(d))/

√
d =

√√√√l212 + lxα.12δ −
1

2
(l21 + lxα.1δ)(1 −

n∑

i=1

α2
i ) + Op(d

− 1
2 )

or , dS2(Cxα, Y1(d))/
√

d =

√√√√l212 + lxα.12δ −
1

2
(l21 + lxα.1δ)(1 −

n∑

i=1

α2
i ) + Op(d

− 1
2 )

Therefore, we have

dTCyβ
(Cxα, Y1(d))/

√
d =

√√√√l212 + lxα.12δ −
1

2
(l21 + lxα.1δ)(1 −

n∑

i=1

α2
i ) + lyβ.xα2δ + Op(d

− 1
2 ),

where lyβ.xα2δ = EX (k),Y(k)δ(C
(k)
yβ , C

(k)
xα , Y

(k)
1 ).
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From Lemma 4.2.5, part (v), we have

dTCyβ
(Y1(d), Y2(d))/

√
d =

√
l22 + lyβ.2δ + Op(d

− 1
2 ).

Therefore, using the resulting geometric representation of the data (see the proof

of Lemma 4.1.7), we have

dTCyβ
(Cxα, Cyβ)/

√
d = [l212 + lxα.12δ −

1

2
(l21 + lxα.1δ)(1 −

n∑

i=1

α2
i ) +

+ lyβ.xα2δ −
1

2
(l22 + lyβ.2δ)(1 −

m∑

i=1

β2
i )]

1
2 + Op(d

− 1
2 ).

(4.92)

Therefore, noting that dTCyβ
(Cxα, Cyβ) = dS2(Cxα, Cyβ) and using Eq. (4.92), we have

Md(θ) = −1

d
d2

S2(Cxα, Cyβ)

−→P −[l212 + lxα.12δ −
1

2
(l21 + lxα.1δ)(1 −

n∑

i=1

α2
i ) +

+ lyβ.xα2δ −
1

2
(l22 + lyβ.2δ)(1 −

m∑

i=1

β2
i )].

This completes the proof.

Proof of Proposition 4.2.9. We shall verify that the conditions of Theorem 4.4.1

holds true. First, it should be noted that θ0 = ( 1
m

, . . . , 1
m

, 1
n
, . . . , 1

n
) is the unique

minimizer of M(θ) (defined in Eq. (4.83)). Therefore, we have the condition (4.90)

is satisfied.

The condition (4.91) ensures that θ̃d’s nearly maximize Md’s. By definition of

θ̃d = [α̃d, β̃d] in Eq. (4.78), we have that satisfied.

A sufficient set of conditions for Eq. (4.89) to hold true is given below (van der

Vaart (1998)):

100



(a) Θ is compact.

(b) mθ : <m+n 7→ < is continuous.

(c) mθ is dominated by an integrable function.

We note that Θ = {α, β : αi, βj ∈ [0, 1]and
∑m

i=1 αi =
∑n

i=1 βi = 1}. Therefore, Θ is

compact and thus (a) holds.

When data lie in a small neighborhood, dS2(·, ·) is a continuous function. Not-

ing that
∑

αiLogCx
Xi(d) and

∑
βiLogCy

Yi(d) are continuous functions of α and β

respectively, we can say that mθ is a continuous function of θ. Thus (b) holds.

Note that |dS2(·, ·)| ≤ π. Therefore, mθ is dominated by an integrable function

and thus condition (c) holds.

All conditions for Theorem 4.4.1 has been verified and hence θ̃d −→P θ0. This

completes the proof.
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CHAPTER 5

Discussion and Future Work

In this chapter, some avenues of future work is discussed, which involves unresolved

questions and possible application of the developed methods in new areas.

5.1 Implementing MDWD

In Section 3.4.3, we extended the method of DWD for manifold data. The resulting

optimization problem was given by Eq. (3.33). Our attempt to solve the optimization

problem via a negative gradient descent approach (described in 3.3.3) failed. It seems

a more sophisticated nonlinear optimization technique needs to be employed. Results

in Section 3.4.4 suggest that the tangent plane methods, ITanDWD and TDWD work

better than their SVM counterparts. Therefore, it will be of interest to implement

MDWD by solving the optimization problem given by Eq. (3.33).

5.2 Role of the Parameter k in MSVM

In Section 3.3.3, we extended SVM to manifold data by presenting an optimization

problem which minimizes the objective function given by

gλ(c1, c−1) = d2(c1, c−1) +
λ

n

n∑

i=1

[
k − yi{d2(xi, c−1) − d2(xi, c1)}

]

+

,



where the parameter k is such that

ŷc1,c−1fc1,c−1(x̂(c1,c−1)) = k.

Here x̂c1,c−1 is the training point nearest to H(c1, c−1) and ŷc1,c−1 is its class label. It

will be of interest to see how different choices of k and λ interact with each other.

5.3 Asymptotic Behavior of Manifold Data under

Milder Conditions

In our study of the asymptotic behavior of data lying on (S2)d (Section 4.2), we

assumed that the entries in each of the dimensions are independent and identically

distributed. This is a strong assumption. There is scope for relaxing these conditions.

For example, the assumption about identically distributed entries can be relaxed if the

Lindeberg condition is imposed on the moments of d2
S2(X

(k)
1 , X

(k)
2 ) and d2

S2(Y
(k)
1 , Y

(k)
2 ).

Moreover, it will be of interest to see how assumptions similar to those used by Hall

et al. (2005) (described in Section 4.1) can be used to study the geometric structure of

the data. This approach treats the entries of the vectors as a time series and requires

them to be almost independent. However, these are much weaker assumptions than

requiring the entries to be i.i.d. random variables.

It should be noted that in order to relax the i.i.d. condition, we will also need

several additional assumptions on the error term δ() (defined in Eq. (4.38)). This

is because our treatment of the asymptotic behavior involves studying the pairwise

distances both on the manifold (S2)d and on several tangent planes. Every time we

use properties of the data on the manifold to study the behavior on a tangent plane

(or vice versa), the variable δ() is used.
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5.4 Application to DT-MRI

Diffusion tensor magnetic resonance imaging (DT-MRI) is emerging as an im-

portant tool in medical image analysis of the brain. DT-MRI, developed by Basser

et al. (1994), measures the random 3D motion of water molecules, i.e., the diffusion

of water. It produces a 3D diffusion tensor, i.e., a 3 × 3, symmetric, positive-definite

matrix, at each voxel of a 3D imaging volume.

Fletcher and Joshi (2004) show that the space of diffusion tensors is a type

of curved manifold known as a Riemannian symmetric space. They expanded the

method of principal geodesic analysis to symmetric spaces and applied it to the com-

putation of the variability of diffusion tensor data.

The classification methods proposed in this dissertation can be developed for DT-

MRI data using the mathematical foundation due to Fletcher and Joshi (2004).

5.5 Generalizing Proposed Methods to Multiclass

In this study, the classification methods developed are applicable to data from

just two classes. There is scope to extend these methods to multi-class situations

(K being the number of classes). In general, instead of having two control points c1

and c−1, we will have a set c = {c1, c2, . . . , cK} of control points, representing the K

classes. Given a set of control points, a new datum x will be assigned to that class,

whose corresponding control point is closest (in the geodesic sense) to x. In other

words, the datum x will be assigned to class lx if

lx = argmin
l∈{1,...,K}

dM(cl, x),

where dM(·, ·) is the geodesic distance on the manifold M . The challenge lies in

identifying the criteria which produces control points with desirable properties.
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