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Abstract

The general problem addressed in this thesis is the description of the form
of an m-dimensional manifold embedded in IR". A planar curve, e.g., is a
one-dimensional manifold in two-dimensional space, hence m = 1,n = 2.
And m = 1,n = 3 stands for a space curve. But the case of particular
interest is m = 2,n = 3, i.e. a surface in 3D. We achieve the description in
two steps. First a continuous one-to-one mapping between the manifold
and an appropriate m-dimensional parameter space U is constructed.
This step is called parametrization; it defines n functions z; : U — IR, or
one vectorial function z : U < IR". Then each of the functions z;(u) is
expanded into a series of a fixed set of basis functions defined on U. The
coefficients in the series expansions form a descriptor of the shape.

The surface of a simply connected 3D object is a closed surface home-
omorphic to the sphere. The unit sphere suggests itself as the parame-
ter space, and spherical harmonics are suitable as basis functions. The
parametrization establishes true area ratios in parameter space and mini-
mizes distortions. Standardization yields generic shape descriptors which
are invariant to pose and size of the object. Due to the nature of the basis
functions, spherical harmonic descriptors capture shape in a global way.

The new methods are illustrated with both simple and complex 3-
D test objects. Potential applications are recognition, classification and
comparison of convoluted surfaces.



Zusammenfassung

Diese Arbeit beleuchtet das allgemeine Problem der Formbeschreibung
einer m-dimensionalen Mannigfaltigkeit, die im Raum IR" eingebettet
ist. Fur m = 1,n = 2 ist dies eine zweidimensionale Kurve, und m =
1,n = 3 steht fiir eine Kurve im Raum. Der interessanteste Fall aber
ist m = 2,n = 3, d.h. eine Flache in 3D. Es sind zwei Schritte zu un-
terscheiden. Zuerst wird eine stetige eineindeutige Abbildung zwischen
der Mannigfaltigkeit und einem geeigneten m-dimensionalen Parameter-
raum konstruiert. (Es ist nicht immer moglich, U auf einen Teil von R™
abzubilden.) Dieses definiert n skalare Funktionen z; : U — IR oder eine
vektorielle z : U <— IR". Danach wird jede der Funktionen z;(u) in eine
Reihe entwickelt, wobei der selbe Satz von auf U definierten Basisfunk-
tionen zur Anwendung kommt. Die Koeffizienten der Reihenentwicklung
bilden einen Deskriptor der Form.

Die Oberflache eines einfach zusammenhangenden 3D Objektes ist
eine geschlossene, zur Kugel homoomorphe Flache. Die Einheitskugel
bietet sich als Parameterraum an, und die sphéarischen harmonischen
Funktionen bilden eine geeignete Basis. Eine Standardisierung der Ko-
effizienten ergibt invariante Formdeskriptoren, welche unabhingig von
der Grosse und Lage des Objektes sind. Aufgrund der Natur der Basis-
funktionen erfassen spharische harmonische Deskriptoren Form auf eine
globale Art.

Sowohl einfache 3D Testobjekte als auch Beispiele komplizierterer For-
men aus der Medizin illustrieren die neuen Methoden. Mogliche Anwen-
dungen liegen in der modellbasierten Erkennung, der Klassifikation und
im quantitativen Formvergleich auch verschlungener Oberflachen.



Chapter 1

Introduction

1.1 3D shape

With the proliferation of high quality volumetric image data, especially
for the medical community, and new segmentation methods for multidi-
mensional image data, segmented 3-D objects become available and are
ready for structural analysis. Most often, volumetric objects are rep-
resented by a binary voxel representation or by a triangulation of the
surface. Although these representations allow a 3-D rendering for visu-
ally capturing the object properties, both lack descriptive power as they
are based on huge lists of voxels or surface elements. Characterizing
and understanding shape properties, however, requires a representation
which captures global and local shape features with a small number of
parameters. Such a concise description could be useful for a comparison
of various objects, for finding dissimilarities, for matching objects to pre-
defined models and for an efficient reconstruction and manipulation of
objects.

A shape descriptor must be general enough to handle very different
shapes, but should be capable of representing accurately global as well as
local features of objects. Shape analysis favors object-centered volume or
surface descriptions, e.g. using polynomials, triangulation meshes, gener-
alized cylinders, medial manifolds or spherical harmonics. Object posi-
tion, orientation, and size should be separated from the object-centered
shape description. Hierarchy can organize the description into varying
levels of detail, from coarse to fine.

The surface based approach gets most attention in this paper. Some



shape description methods based on mesh-like surface models rely on
a robust and reproducible surface parametrization in a two-coordinate
space. While tracking a contour in 2-D images is easily done, the exten-
sion to higher dimensions is non-trivial and requires the development of
new concepts. Thus far, representation methods for mapping an object
surface onto a sphere have been limited to represent only star-shaped
or convex objects, as they start from an initial radial surface function
r(0,¢) [1] [22]. Staib and Duncan [37] discuss the use of a parameter
space with torus topology, which can be deformed into a tube by squash-
ing the torus cross-section to a thin ribbon. Closed surfaces are obtained
by considering tubes whose ends close up to a point. This approach illus-
trates clearly some principal difficulties which can also be found in other
parametrization techniques.

e The idea of warping a torus to a closed surface poses the problem
that the parameters have different meanings. One parameter de-
fines a kind of spine along which cross-sections are stacked up. The
choice of the end-points of this spine decisively determines the so-
lution and even determines whether an object can be parametrized
or not.

e Squeezing a circle to a line (as done with the tubular torus cross-
section) results in a nonhomogeneous distribution of parameters on
the object surface. Although continuous, the representation of a
line by harmonic functions results in a clustering of parameters near
the turning points of the tracing direction. Furthermore, closing
a cylinder at both open ends causes a further distortion of the
parameter net.

e Warping a torus to a tube and finally to a “closed” surface shows
that the parametrization does mot result in a one-to-one mapping
of surface points to parameters. The walls of the tube are traced
up and down in order to avoid discontinuities at the open edges,
visiting each surface point twice.

Our new approach tries to overcome these limitations. We present a
new method that allows a uniform mapping of an object surface into a
two-coordinate space with spherical topology. Our aim is the parametriza-
tion of arbitrarily shaped objects which are simply connected and contain
intrusions and protrusions. As a mapping of convoluted surface structures
onto surfaces of minimal curvature introduces distortions, optimization



of the distribution of nodes in parameter space becomes necessary. This
problem is solved by a nonlinear optimization.

Parametrized surfaces can be expanded into spherical harmonics, hi-
erarchically describing global and local shape properties by spatial fre-
quency constituents [7]. A new method for the generation of descriptors
which are invariant to translation, rotation and scaling is developed. In-
variance is crucial for a comparative analysis of different structures.

1.2 Alternative approaches

Approaches to shape characterization can be divided coarsely into two
categories. They are characterized by concentrating either on the space
the object takes up, or on its border. The two viewpoints can be termed
volume or region based on one hand, and surface or contour based on the
other hand. They are dual in the sense that the surface is the boundary
of the volume, and the volume is the fill of the surface. Surface based
techniques are discussed in more detail below.

Skeletons or medial manifolds are important representants of the re-
gion or volume based shape model. They go back to Blum’s medial axis
[6], and they are closely related to the Voronoi Diagram [28]. The skele-
ton of a 2D (3D) object is the set of all centers of disks (spheres) that lie
completely inside the objet, but touch the border in at least 2 (2 or 3)
points. It is a subset of all local symmetry axes (surfaces) of the object.
In [27], the medial manifold is developed into a hierarchically structured
descriptor for 2D shapes.

Moments form another class of region — or volume — based descriptors
[21, 38]. Their extension to 3D has been investigated [32, 25, 11], although
invariances of the descriptors are somewhat more intricate than in 2D.

1.3 Swurface based approaches

In rendering applications, triangulated surfaces (or, more generally, poly-
gon meshes) are a popular representation. While they fit the purpose of
computer graphics well, they do not describe the object. They lack the
conciseness of an object description, and they do not help the task of
comparing two objects.



Superquadrics can describe a certain class of objects very concisely.
The surface defined by

ag sin®t (6) cos®2(phi)

z(0,9) = a1 sin“* (0) sin® (phi) (1.1)
as cos! (0)
0 < 6 <«
0 < ¢ < 2x

is the superquadric with size parameters ag,a; and as and squareness
parameters €; and e3. One of the benefits of superqadrics is that there is
a straight-forward inside-outside function.

£2

F(z) = ((z;’)_ + ('ZD_) Ty (Zz>_ <1 (12

Inequality (1.2) holds for all points inside the object, with equality
on the surface. For ¢; = e2 = 1 the surface is an ellipsoid. In all other
cases the surface reflects the strong alignment of the definition with the
coordinate axes. The cross section will always show a four ray symmetry,
which may be stretched to a two ray symmetry if ag # a;. The x5 axis
is treated differently than the axes z¢ and z;. Objects with sharp edges
can be generated by appropriate selection of the exponents, but the user
cannot control where the edges appear. The scheme lacks generality.

Global deformations of a superquadric [36], like tapering, bending,
and twisting greatly enhance the set of representable shapes. But each of
these deformations has its own mathematical formulation. For every class
of shapes that we wish to represent, a new deformation must be invented.
The representation of the shape gets complicated and heterogenic; the
beauty of a concise and elegant mathematical definition (of (1.1) or (1.2))
is lost.

Thirion proposes a new concept for the description of smooth surfaces
[39]. Two principal curvatures exist in any point of the surface, and the
concept relies on their local extrema. Lines where one curvatuvature is
extremal link points where both curvatures are extremal. The ezxtremal
mesh is the graph of these extremal lines and points.

The topological dual of a triangulation of the surface is the simplex
mesh [9]. It typically consists of mostly hexagons and a few pentagons,
quadrilaterals or triangles. Unlike deformable surfaces defined on regular
grids, it can have its topology altered locally.



Chapter 2

Manifolds

2.1 A General Model for Characterizing

Manifolds

2.1.1 The basic idea

The objects of our interest can be characterized as m-dimensional sub-
manifolds in an n dimensional object space.
continuous one-to-one maps from an m-dimensional parameter space to

the object space IR". Typically, 1 <m <n < 3.

2.1.2 Definitions and Notation

R=R'
Rk

the set of real numbers.

k dimensional Euclidean space, or

the set of all ordered k-tuples of real numbers.
object space

point or vector in object space

object space coordinates (Cartesian)
dimension number of object space

parameter space

point or vector in parameter space

Cartesian parameter space coordinates

polar parameter space coordinates

dimension number of parameter space

the set of unit vectors (the “sphere”) in R™*!.

They are defined as bi-



2.1.3 Various concrete cases

A planar curve is described in parametric form as a vector valued function
z(ug), i.e. by two scalar functions zg(ug) and zy(ug), where ug is the
parameter.

y(t)

5a X(1)

-0.5}F

Figure 2.1: An open planar curve, defined as two scalar functions of one
real parameter.

Example 1 Figure 2.1 presents an example of an open planar curve. The
curve is defined as the two scalar functions xo(uo) = up — uo and z1(uo) =
e4 uQ 8 8

: S5mu : : _
o+ sm(ﬁgug). The parameter space is the real interval U = [—=, =].

An alternative interpretation is a single vector-valued function, mapping U —
IR?. The plots of the individual functions xo(uo) and z1(up) are combined in
Figure 2.2.

Similarly, a space curve z(ug) is given by three functions zg(ug), 1 (ug),
z2(ug).

Example 2 An open space curve, i.e. a function R — R>, appears in Fig-
ure 2.3. The function is z(uo) = (0.46 + uo — uj, —0.1 — u3,0.75 + ug — ﬁ)T,

3
and uo ranges over the interval U = [—1.1,1.1].

A surface, which needs two parameters (ug, u1), is defined through three
functions zo(uo,u1), z1(uo,u1), T2(uo, u1).

Example 3 In Figure 2.4 we see a surface patch which is given by the vector
valued function

. 2 sin(ug) - 2 sin(ug) cos(ug)
z(u) = (“1 (2+ uo\/m)’ Uit T e w )
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Figure 2.2: Plot of the component functions zg(ug) and x1(ug) of the
Figure 2.1.

z(t)

Figure 2.3: Plot of a vector function z(ug) as a space curve. For clarity,
the projections of the space curve onto the planes xg = 0, x1 = 0 and
x9 = 0 are added in thin lines. The fine dashed lines indicate how the
endpoints of the curve project into these planes.
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Figure 2.4: A surface patch, defined as a functional mapping from the
rectangular parameter region U (left) to R® (right).

(or the three scalar component functions) evaluated on a region of R?. A
rectangle is the simplest region; for the figure I chose U = [0.4,3.5] x [-1,1] C
IR?. Graphing this function raises the question of how the rectangle should
be traversed. The most obvious answer is to vary each of the parameters in
constant increments independently. This results in the rectangular grid, that
is visible in the illustration.

The functions must be continuous. In most applications there is some
restriction on the values that the parameters may take. The set of pa-
rameter values are called the parameter space, denoted by U. It has m
dimensions, where m = 1 for lines and m = 2 for surfaces. The object
lies in IR", the object space, where n = 2 for the plane and n = 3 for
three-space. We combine the parameters in a vector u € U and the ob-
ject space coordinates xg, £1 and maybe x5 in a vector z € IR". When
u runs over U, x runs over an m-dimensional manifold embedded in IR".
We can write the general idea of a parametric description of manifolds
as the function

U= R":u— x(u). (2.1)

The parameter space should reflect the topology of the given manifold.
An interval on the real axis (e.g. [0,1]) is appropriate as the parameter
space for an open curve (as in examples 1 and 2). A circle (like €5) is
the proper parameter space for a closed curve. Although this parameter
space is one-dimensional, there is no continuous one-to-one mapping to
an interval on IR. Relation (7.3(appendix)) can map it to an interval of
length 27, like [0, 27), but this introduces a discontinuity at u = (1,0)%.



Figure 2.5: Plot of the curve z(u), where u = (ug,u1)” € U = Qo (left).

Example 4 A closed curve, as the one in Figure 2.5, is represented as a func-
tion Q2 < R?, in this case

z=((3+u1) cos(3uo), (3 + u1) sin(3up))”

But the representation can also take the form of a function [0,27) — IR?,
where v’ € U’ = [0,27) = u = (cosu/,sinu’)T € Qq. The resulting equivalent
representation is

cos 3 cos u')

sin 3cosu’

z(u') = (3 +sinu’) (

A function defined on any real interval might work equally well, if continuity
up to the needed order (Cp, C; or higher) was established artificially between
the endpoints of the interval, which coincide logically.

Example 5 Figure 2.6 shows a closed space curve, defined through the func-
tion u — (1.1 + sin(3up), —1.1 + sin(3u1 ), ud + 1)7.

The case is similar for the closed surface of a simply connected object,
which has the topology of Q3. Relation (7.4(appendix)) maps the pa-
rameter space Q3 C IR> to [0,7] x [0,27) C IR?, introducing a line of
discontinuity at ¢ = 0 = 27 (or u; = 0,up > 0) and two poles at 8 = 0, 7
(or u = (0,0,%1)T). Depending on the context, either representation
may be preferable.

Example 6 Figure 2.7 introduces the case that is most important for the work
presented in this thesis, a mapping from the sphere Q3 to R®>. The function



Figure 2.6: This closed space curve is defined by a function Qs < IR3.
The projections of the curve onto the coordinate planes give a better 3D
impression.

plotted — (u + “2—0,u‘;’ + %,u‘;’ + %)T — might be defined anywhere on R?,
but we deliberately restrict its domain to U = 3. Tiling the parameter space
is more debatable with the sphere than with a rectangle. There is no obvious
optimal tessellation. Polar coordinates (eq. 7.4(appendix)), as used in Fig. 2.7
are just one possibility, and they have the disadvantage that they introduce
poles at two arbitrary points on the sphere (and hence on the surface) that are
not intrinsically special in any way. A rotated grid in (23 leads to a different
subdivision of the surface in R?, as in Fig. 2.8. And a completely different
covering of the parameter space with triangles, as shown in Fig. 2.9, brings
along the corresponding triangular parcellation of the object surface. The
triangulation is based on the icosahedron, where each of the 20 triangles is
replaced by 64 small triangles. All three figures plot the same function, which
represents the same surface, and is parametrized identically. Just the polygonal
subdivision of the parameter space U varies.

For open surface patches, a region of IR? is an appropriate parameter
space (cf. example 3). In the case of the closed surface of an object
with a handle, which is not simply connected, a toroidal parameter space
is needed. As with the sphere, a rectangular part of IR? suffices, with
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Figure 2.7: Left: An arbitrary parcellation of the domain U = Q3 of
function U < R3. Right: The function maps the unit sphere to the
given surface, which is similar to an octahedron.

implied periodicity at the border: top wraps around to bottom, and left
to right. I will not discuss these surfaces in further detail.

There are many possibilities to define the same manifold, which differ
in the parametrization of the manifold. A re-parametrization is a different
mapping between the manifold and the parameter space. It may or may
not bring along a change of the parameter space. For an illustration,
assume the left diagram of Fig. 2.7 is the parcellation of U = €23 and the
right diagram of Fig. 2.8 is the corresponding surface in R>; the same
parameter space is used. In any case, re-parametrization will lead to
different functions and hence to a different representation of the identical
manifold. In section 3.4 I will present a method for a standardized,
reproducible parametrization of surfaces homeomorphic to 3.



Figure 2.8: The same function as in Figure 2.7. Left: the rotated parcel-
lation of 3. Right: The corresponding surface.

2.2 Series Expansion

Many applications define the function z(u) as a linear combination of a
collection of basis functions f;. The set of basis functions may be finite
or infinite (in which case an initial part of the series is used for practical
purposes). Their domain is the parameter space, i.e.

The individual (scalar) coordinate functions take the following form.

zo(u) = >, ciofi(u)
zi(w) = > cifi(u) (2.2)

All n functions zi(u) use the same set of basis functions. The scalar
coefficients ¢;g,c;1 (etc.) of one particular basis function f; constitute
an n-vector, ¢;. One vector equation can thus summarize the above
equations

z(u) = Zgifi (u) - (2.3)
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Figure 2.9: The same function as in Figure 2.7 with the surfaces facetted
in yet another way.

In most applications, the set of basis functions is fixed. In this case, the
collection of coefficient vectors determines the manifold completely: a list
of numbers captures the definition of the manifold, and hence its shape,
and even its parametrization. When the parametrization for an object is
well-defined (and thus reproducible) and invariant to certain geometric
transformations of the object, corresponding points on two transformed
copies of the same manifold will map to the same point in parameter
space. The resulting coefficient vectors can be transformed geometri-
cally to a standard coefficient set or descriptor. The same shape will
then invariably lead to the same descriptor, irrespective of any geometric
transforms.

2.3 Planar curves

With m = 1,n = 2, the scheme (2.3) takes the following form.

o) = ¥ (50) fitw (2.4

?



We have two-dimensional coefficient vectors ¢;, and the basis functions f;
take one scalar argument u. This situation defines a planar curve. Pop-
ular basis functions include polynomials in u, i.e. linear combinations of
powers u*. The powers themselves are not suited as a basis in general, as
they are ill conditioned, i.e. almost linearly dependent. The polynomials
can be designed with many interesting and useful properties; alas their

discussion is outside the scope of this text.

2.3.1 Splines

The basis functions of uniform cubic B-splines [2] take the form of piece-
wise cubic polynomials in (scalar) w.

( 0 u <0
u? 0<u<1
1) -3ud—12u2+12u—4 1<u<?2
Bo(u) = 6< 3ud — 24u? +60u —44 2<u<3 (2:5)
—ud — 1202 +48u—64 3<u<4
\ 0 4 <u

The individual basis functions f;(u) = B;(u) = Bo(u—1) are all translated
copies of this prototypic function. The generic function might also be
given in a centered form (see Figure 2.10):

(0 u < —2
(2 + u)3 -2< u <-1
4—6u?—-3u> —-1< u <0
Ba(u) = 1 4-6u+3ud 0< u <1 (2.6)
(2 —u)® 1< uw <2
L 0 2< wu

Many other kinds of B-splines, and of orders different from 3, can be
defined.

2.3.2 Bézier Curves

Bernstein polynomials [2] of degree d are the summands in the binomial
expansion of ((1 —u) +u)¢ = 1.

Prg— (f) wi(1 — ) (2.7)



B2(u)

3 5 o1 1 2 3 u

Figure 2.10: The prototype basis function of the uniform cubic B-splines.
The smooth curve consists of four different cubics, extended by a straight
line.

The parameter u must take a value in the interval [0,1]. These poly-
nomials (for some fixed d) can serve as basis functions f; = P; 4 in the
composition scheme (2.3) where v € [0,1] and z € R? or z € R>. The
resulting curves are called Bézier Curves [5] [4] [3]. Like the B-splines,
they have many other nice properties.

Polynomials in v and related basis functions find applications mostly
in graphics rather than in recognition. The definition of a reproducible
parametrization of curves given as point lists is not of great importance
in this area.

2.3.3 Elliptic Fourier Descriptors

The contour of a simply connected 2D region is a closed curve. (If the
region is not simply connected, it has several closed contour curves.) The
unit circle €25 is the adequate parameter space for a closed curve, and the
polar coordinate ¢ can parametrize it (7.3(appendix)). The position z(u)
on the contour is then a periodic function of ¢. This makes the harmonic
circle functions % - {V/2, cos ¢, sin ¢, cos 2¢, sin 24, ...} the preferred set
of basis functions (the Fourier basis). The method of elliptic Fourier
descriptors has been applied to object characterization and recognition
[29, 23]. Friedrich [14] used this method among others for the shape
characterization of particle collectives. He considered only the outline of
a 2D picture of the particles he investigated.

The method of elliptic Fourier descriptors receives a somewhat more
detailed discussion here. It plays a seminal role for the 3D surface de-



scription, and it introduces several concepts which are also relevant in
3D.

The basis consists of trigonometric functions — or complex exponen-
tials — when we specify the position in parameter space with the polar
coordinate ¢. But when the position is given in Cartesian coordinates,
the basis takes the simple form of polynomials. The link is again equation
(7.3). In the following list, the common normalizing factor 1/4/7 is left
out for readability.

cos ¢ = Ug sin ¢ = Uy
cos2¢ = u3 — u? sin2¢ = 2upug
cos3p = ud — 3ugu? sin3¢ = 3udu; — ud
cosd¢ = wug— 6uiu? +uj sindg = 4udu; — dugus

These relations are obtained through Euler’s relation, using cos n¢ +
jsin ng = ei"% = (/%)™ = (uy + ju;)®. The harmonic circle functions
of degree n in ¢ are polynomials of degree n in ug and u;. They can be
written as homogeneous polynomials, as in the above list. All of these
functions are orthogonal on the unit circle, and if all are divided by +/7,
the basis is orthonormal.

The construction of invariant descriptors for closed planar curves in-
troduces the problem of parametrization. Arclength is the simplest and
most straightforward choice. An arbitrary point on the contour is chosen
as the starting point. When the whole curve has the length L, the point
at arclength s from the starting point — say counterclockwise — is assigned
parameter ¢ = zLﬂ; s is a scalar.

The mathematical treatment is simpler in the complex plane, i.e. when
the parameter space is the circle U = {u € € | v* u = 1} and the mapping
z : U — ( represents the curve. The relation between s, ¢ and u is

u = ug+ju = € =eT ; (2.8)
j is the imaginary unit.

Fourier expansion

The function z(u) is represented as a series of complex exponentials.

z(u) = Z Zpu” (2.9)

n=—oo



We will refer to this central formula several times. We can express the
complex coefficient z,, in polar notation, i.e.

2y = Tpel¥n (2.10)

with r, € R, r, > 0, and ¢,, € R.

Determining the coefficients The calculation of z, for a given con-
tour z(u) of practical interest. The following deduction summarizes a
few general properties of Fourier series. As the parameter space is a sub-
set U C C of the complex numbers, an infinitesimal step du of length
|du| = d¢ must be restricted to the direction counterclockwise tangential
to U (or orthogonal to u), i.e.

2
du = juldu|= ju%ds (2.11)

In (2.9) we substitute m for the summation variable. We multiply
both sides with 4~™ and then integrate § |du|. The integral in the sum
evaluates to 270, n, Where .. denotes Kronecker’s Deltal. The value of
zpn, follows immediately.

z(u) = Z Zmu™ (2.12)
z(w)u ™" = Z ZmpumuT "t = Z Zpu™ "
j{z(u)u_"\dm = Z szum " dul|
= Z Zm 2T 0m.n = 272y,
1
Zn = — @ z(u)u "|dul (2.13)
2T

In most applications, z(u) describes a polygon and often we are not in-
terested in the center of gravity of the contour. In this case, it is simplest
to start from the derivative ﬁ of (2.9) and to derive a formula for z,

INote the difference between f ut|du| = 27d; 0 and f utdu = 27jo;, 1.



exactly as above.

d d -
2 (u) = WZ(U) = gu%z(u) = ju m;oo Zmmu™ 1t (2.14)
= Z imzm u™
1 !/ —n
Zn, = — ¢ Z(s)u”"|du| (2.15)

an

Computing the Fourier descriptor for a closed polygon When
the curve is given as a polygon (e.g. by its Freeman-code [13]), it can be
written as a sum of straight line pieces. In the same way the integral
(2.15) breaks up into a sum of partial integrals. The M sample points
z(ug), k =0...M of the Freeman curve (the corners of the M-gon) define
the transitions between the partial integrals. The arclength parametriza-
tion of the curve implies that the point z(u) traverses the curve with
constant speed; on each individual straight line piece this leads to

Az LAz
|Au| 27 |Aul

2 (u) = const .

We anticipate that this relation will simplify the expression for z, signif-
icantly. We note

ug = 1
uy = e*™ =1
z(ug) = z(un), closed polygon
Az[k] = z(uAk+[1]) — z(ug)
! . L Azk
Z'[k] = 2 [Az[k]]
Z'(u) Z'[k], for u between s; and sk
and get
1 !/ —-n
Zn = — ¢ 2 (w)u""|dul
jn

= — z' (u)u™"|du|
I =0 /“k

M-1

k=0

2 Tk] /u

Uk+1

k

u” " |dul
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2y = Z ZkJum [0 (2.16)

Ug

To evaluate this sum, it is enough to calculate one complex exponential
for each term. As the lower bound of each term is equal to the upper
bound of the previous term, the value of u~™ can be re-used.

In the case of the Freeman-code, Az can only take eight different
values, namely 1,1+ 75,7,—14+j,—1,—1—3,—j and 1 —j. The same holds
for 2/: these as well are completely determined by the code 0...7 (and
L). The representation as an array of constants is probably preferable,
although we can find the following closed expressions for a given code c.

Z = £e%
Y
As=|Az] = V1+cmod?2
Az = 1+ cmod?2 e T

Harmonic contributions to the contour In equation (2.9) we match
terms with opposite indices in pairs

z(u) = zo+ Z 2" + Zz_pu" (2.17)

>

n=1 elli:(u)

All harmonic contributions — except zg — describe an ellipse when taken
by themselves. The ellipse elli, (u) is covered n times when u runs over
the circle U. The vertex of the ellipse, i.e. the maximum of the absolute
value of elli,, is reached where both terms of the sum have the same
phase; at this point the triangle inequality

lellin(u)] < |znu®| + |2—qu™"| (2.18)

holds with equality.

Dependence from the starting point The notation |V marks the
quantities that result from shifting the starting point by A = #9 on the



contour. We note the following relations.

s = sV 4+ (2.19)
u = ulVe? (2.20)
z(u) = z(ul¥ e = Z Zn (u|Vej9)n (2.21)

_ VIV — jnb (, (VAT
_ . - . 2.22
" (u]”) Z zne’™ (ul") (2.22)

n=—oo |V

2|V = 2z, ™ (2.23)

Eqn. 2.10 leads to z,|V = r,e?¥+79)  With the choice of # (or \), we
can move the starting point to an arbitrary position on the contour, e.g.
to the vertex of elli;:

ellir|V(u=1) = redWrt0) 4 eio1=0) Vellex (4 0 yeig oy

The second equation holds only at the vertex, i.e. when the phases match;
the common phase 1 is left to determine. From the equality of the phases
we conclude

hi1+0 = Y1-0 = ¢ (2.25)
20 = Y_1—-1 2.26

6 = Y1 =% 2_ ¥1 and hence (2.27)

W % (2.28)

Thus 0 defines the necessary shift of the starting point, and 1 gives the
(unchanged) position of the main axis of elli;. One can also view the
shifting of the starting point as a rotation of the object in parameter
space U, the unit circle. The notion of rotating in parameter space will
extend naturally to 3D surfaces in section 5.2.2.

The half main axes of elli,, have the lengths r, +r_, and |r, —r_,|.
Only the long main axis of elli; will be used in the following.

Dependence from the rotational position of the object We ro-
tate the coordinate system about the angle ¥ or we rotate the object
about —, which is equivalent. In the complex notation, a rotation is



simply a multiplication and applying (2.9) immediately reveals the coef-
ficients of the rotated object.

2Bu) = z(u)e ¥ = Z Zne Yy (2.29)
n=—oo
| = zpe Y (2.30)
All coefficients are multiplied by the same complex number. This achieves
a rotation in object space. We have anticipated the special choice of the

rotation angle by naming it “»” — it rotates the main axis of elli; to the
horizontal real axis.

Scale dependence The scale factor «, in analogy to (2.29), leads to

2I%(w) = az(u) = Z a zZpu" (2.31)

1
ritr—_1’

To normalize half the major axis of elli; to 1, we set a =

Invariant Fourier descriptors

Ignoring zg, that is setting 2p|7 = 0, achieves translation invariance. We
sum up all standardizations; the invariant coefficients are denoted z,, for
brevity:

J(nb—1p)
2| VST = 5 = zne— (2.33)
rL+r_—a
zo = 0 (2.34)
In particular, we observe the first degree coefficients.
3(0—) :
21 = 67’1"16‘71#1 = 7"71 (235)
r1T+r_q rL+r_1
J(=6—1) :
5, o= S et T (2.36)

’f’1—|—’l”_1 7’1+7‘_1



In addition we consider the number of degrees of freedom we can eliminate
by standardizing, and how they reflect in properties of the coefficients.

Translation 2 20 =0

Rotation P 1] 21,21 €R
. . _ Lo

Starting point A =35> |1

Scale 11 z1+2-1=1

Both z; and Z_; are positive, but this does not correspond to a whole
degree of freedom, but so to speak only to one bit for each assertion. One
last bit of freedom remains though: 6 and ¢ together are only determined
modulo 7. This corresponds to the fact that an ellipse has two vertices,
and there is no reason to prefer either one when only considering elli; .
Taking higher harmonics into account could resolve this ambiguity. The
other possibility is to consider both instances in the comparison. It fol-
lows from equation (2.33) that the coefficients with even index change
their sign when 6 and v both flip about .

The aggregate of all Z,, constitutes a shape based descriptor or feature
vector, which can serve for object recognition.

Truncating the expansion If only for practical reasons, the infinite
sum (2.9) must be truncated at some maximum degree, say N. We define
the partial sum Z and the complex-valued deviation f(u) as follows.

Z(u) = Z Zpu” (2.37)

n=—N

flu) = z(u)—2u)= Z Zpu” (2.38)

|n|>N

The maximal z or y deviation €, which is sometimes analyzed in the
literature, can also be defined in our complex notation.

€ = max (sup |[Ref(u)|, sup |Imf(u)|) (2.39)
Yu Yu

But the mean square error €9 is better suited to the theory of orthogonal
functions. We define its square.

2 = f £ ()2 |dul (2.40)
= 21 Y |zmf=2r ) 1l (2.41)

In|>N |n|>N



The nice relation (2.41) results from applying (2.38) after a short calcu-
lation. It is also known as Parseval’s theorem.

Of all standardizations, only scaling affects the above considerations.
It multiplies the error € or €2, respectively, by a. (Rotation can slightly
change ¢, by a factor of /2 at most, but €3 never changes.)

Classification of objects

Model based object recognition is an important application of shape de-
scriptors. For each model object g, a descriptor, i.e. a collection {Z, }[g],
is computed in the so-called training phase. In the same way a descriptor
{2,} is determined for the unknown object. We define a classification
distance (or its square, respectively).

Dlgl= > |zalg] - zal’ (2.42)

We decide for the model g with minimal D|g].

Relations to real-valued notation

In the expression for elli,, we collect real and imaginary parts, which
correspond to the z and y coordinate. The argument %, which is the
same for all trigonometric functions, is omitted for brevity.

ellin(s) = zpu"™ +2z_,u™"

= (Rez, +jImz,)(cos+j sin) (2.43)
+(Rez_, +jImz_,)(cos —7j sin)

= (Rez, + Rez_p) cos+(Imz_,, — Im z,) sin
+j ((Im 2z, + Im 2_,, ) cos+(Re z, — Re z_,,) sin)(2.44)

We define
a, = Rez,+Rez_, (2.45)
b, = -Imz,+Imz_, (2.46)
¢, = Imz,+Imz_, (2.47)
d, = Rez,—Rez_, (2.48)

and write
z,(s) = Re(elliy(s)) = ay,cos+b,sin (2.49)

yn(s) = Im(ellin(s)) = ¢y cos+d,sin (2.50)



or, in matrix notation,

T a, by, ) <sin %)
It becomes obvious that elli,, as an affine image of the unit circle, is an

ellipse.
We can solve the definitions (2.45...2.48) for z, and z_,,.

) |

2n = S(an+da)+5(ca—bn) (2.52)
; .

tn = Slan—dn)+ %(cn +by) (2.53)

Finally, the following relations hold for the special case n = 0.

zo = ap+7Jco (2.54)
ap = Rez (2.55)
co = Imzy . (2.56)

2.4 Space Curves

When the coefficient vectors in (2.4) are three-dimensional instead of two-
dimensional, we get space curves. Their treatment is almost identical to
that of plane curves. The same basis functions may be used. And as
in 2D, there can be open and closed curves, with IR and (2o as their
respective, one-dimensional parameter spaces.

In the case of the Fourier basis, the first degree reconstruction is
an ellipse (as in 2D) and hence planar, but it can have an arbitrary
orientation in space. The rotation in parameter space (shift of the starting
point) is identical to that in the 2D case. The rotation in object space
has now three degrees of freedom instead of one. But it could take place
much the same way as above after rotating the plane of the first order
ellipse into the zg-x; plane.



Chapter 3

Surfaces: Representation
and Parametrization

3.1 Open and closed Surfaces

The superficies of a 3D voluminous object is a closed surface; these are the
objects of research of this thesis. There exist closed surfaces which cannot
be the surface of any object because they self-intersect. These include
the non-orientable surfaces. They will not receive further attention here.
In the following discussion we will concentrate further on the surfaces of
simply connected objects or, equivalently, the ones with trivial topology,
e.g. a ball. Only piecewise smooth surfaces are considered in this thesis.

Surfaces are two-dimensional manifolds. When standing at a point
on a surface, there are two independent directions in which we can walk
without leaving the surface. Correspondingly, it takes two real numbers
to specify a point uniquely on a surface, if this is to be done in a bi-
continuous way. The two numbers are called the parameters of the point.
The requirement of bi-continuity means intuitively that points that lie
close to each other in the surface must have similar coordinates, and
vice versa. In some applications piecewise bi-continuity is sufficient. The
task of assigning a parameter pair to all points of a given surface in this
fashion is referred to as parametrization of the surface.

In contrast to the closed surfaces there are bordered surfaces. They
shall be called surface patches. They can result from cutting a region from
the closed surface of some object. When patches are simply connected,



they have only one connected border. Of course there are “patches” with
much fancier topology, e.g. unresolvable knots in 3D, but they are not
dealt with here.

A rectangular portion of IR? as parameter space U is often sufficient
for a discussion of (2.3) with n = 3 and m = 2 for open surfaces. If neces-
sary in an application, U is trimmed to a subregion of the rectangle, which
yields a part of the surface with the same topology (connectivity) as the
subregion, except for self-intersections. The products of one-dimensional
Bézier and B-spline basis functions form a basis for Bézier and B-spline
patches, respectively. For Bézier patches the following basis functions
result,

Pio,do;il,fh (u07 ’U,1) = Pio,do (UO) : Pil,dl (ul) . (31)

In one patch, dy and d; are fixed. The (dp + 1)(dy + 1) different basis
functions result from varying i¢ from 0 to dg and 4; from 0 to dy. More
complicated surfaces are patched together from several patches; condi-
tions for smooth joints have been set up.

Section 3.5 elaborates on the parametrization of surface patches of
discrete volumetric objects.

3.2 Closed surfaces in 3D

Let zg, 1 and zo denote Cartesian object space coordinates and 6 and
¢ polar parameter space coordinates. The parametrization gives us three
explicit functions defining the object surface as follows:

When the free variables § and ¢ run over the whole sphere (e.g. § =
0...m,¢=0...27), the point (0, ¢) runs over the whole surface of our
object. The sphere 23 is considered a perfectly symmetric surface without
any singular points or preferred directions. The specification (e.g. by two
polar coordinates) of a point u in parameter space is not important: the
characterization of the surface lies completely in the mapping from the
parameter space Q3 to the object space IR, that is, in the function z(u),
which leads back to the general definition of manifolds (2.1).



3.3 The surface data structure

Medical CT or MRI images are examples of volumetric data. For each
cuboidal cell (volume element or voxel) in a certain volume we have one
or more measurements. When segmentation succeeds, one anatomical
unit can be characterized by a binary data volume, in which every voxel
contains either 1, which means it belongs to the unit, or 0, meaning it
is in the background. The object is then the set of “1” voxels and can
be pictured as a collection of small cubes. As stated above, we assume
simple connectedness. In addition we exclude the singular or bad points
where voxels touch on an edge or vertex only, without a 6-path between
them of length three or four, respectively (see Figure 3.1)!. Section 2 of

Figure 3.1: In a binary data volume, singular configurations of edge type
(left) and of vertex type (middle and right) can occur.

[24] contains a good discussion of singular points in binary images. The
surface of a voxel object is a set of unit squares, all parallel to one of the
three coordinate planes xiz2, xoxg or zgz1. The edges and vertices that
bound the faces are also parts of the surface.

Our input data is a single simply 6-connected object. It is represented
as a 3-D binary image. We adopt the cuberille notion[19]. The surface
of the object must be represented as a data structure that reflects the
geometry as well as topological relations. This allows working effectively
with the surface. The data structure stores information about all the
square faces separating object and background voxels, and all the edges
and vertices bounding these faces. This initial data structure constitutes

1The first implementation simply rejected a data set that contained any singular-
ities. An improved algorithm that handles all possible configurations correctly has
been developed [34].



a complete representation of the object surface; similar structures are
often used for 3-D display purposes [17].

For a ng, by ng, by n;, data volume, the integer voxel coordinates
have the ranges 0 < zg < ng,, 0 < 21 < ng, and 0 < 2 < ngy,. We
interpret each voxel as a cube extending from zg to g + 1, from z; to
z1+1 and from x5 to zo+1, where (xg, 1, z2) are the nominal coordinates
of the voxel. The voxel center is placed at (zg + %,xl + %,xz + %) to
retain integer coordinates for the corners.

The surface data structure is organized around the vertices. Each
surface vertex is listed once in the structure, which gives it a unique
identifying number (an id). The entry of a vertex specifies its Cartesian
coordinates (xg,x1,22) and the list of its direct and diagonal neighbors.
The neighbors are given in counterclockwise sequence around the ver-
tex when viewed from outside the object; therefore, direct and diagonal
neighbors alternate (see Figure 3.2).

Figure 3.2: Left: A two-voxel example object illustrating the surface data
structure, which focuses on the vertices. The numbers of the vertices
are shown in circles (vertices 3 and 4 are hidden). The data structure
entry for a vertex represents its Cartesian coordinates and a list of neigh-
boring nodes. The entry for vertex 7 is {{zg =10, x; =14, zo =7},
neighbors={6, 0, 1, 2, 8, 11, 10, 9}}. The table below lists the
complete surface data structure of this object. — Right: A flat diagram
of the surface net for the same object.



3.3.1 An example of the basic surface data structure

The “two-voxel” object (cf. Figure 3.2) is used here and in the examples
for the initial parametrization of section 4.1. The surface data structure
of this object is given in Table 3.1.

node o ®1 T2 neighbors

nr.

0 {{{ 9, 14, 6}, {1,7,6,9, 3, 4}},

1 {{ 10, 14, 6}, {0,3,4,5,2,8,7,6}},
2 {{ 11, 14, 6}, { 1,4, 5, 11,8, 7}},

3 {{ 9, 15, 6}, {4,1,0,6,9, 10}},

4 {{ 10, 15, 6}, { 3,9, 10,11, 5,2,1,0}},
5 {{ 11, 15, 6}, { 4, 10, 11, 8, 2, 1}}

6 {{ 9, 14, 7}, {7,10,9,3,0, 1}}

7 {{ 10, 14, 7}, {6,0,1, 2, 8 11, 10, 9}},
8 {{ 11, 14, 7}, {7,1,2,5, 11, 10}},

9 {{ 9,15,7},{1043067}}

10 {{ 10, 15, 7}, {9,6,7,8, 11,5, 4, 3}},
11 {{ 11, 15, 7}, {10, 7,8, 2, 5, 4}}}

Table 3.1: The complete surface data structure of the two cube object.

The following algorithm generates the surface data structure. Object
voxels touching the border of the data volume would require a special
treatment; therefore, we make sure that all border voxels belong to the
background. We define an interior verter as the common corner of eight
voxels of the data volume. The 2 x 2 x 2 voxels form the neighborhood
of the interior vertex. The neighborhood contains six half-neighborhoods,
as Figure 3.3 illustrates. Two half-neighborhoods of the same vertex are
orthogonal if they share exactly two vertices, like e.g. NORTH and WEST.
In three nested loops we visit all the interior vertices. Let the z2-loop be
the outermost, so that o numbers the current plane. If the neighborhood
of a vertex is homogeneous, i.e. all eight voxels are in the object or all
are in the background, the vertex is ignored. Otherwise (if the incident
voxels are mixed), a new surface vertex has to be entered into the data
structure. A surface vertex in plane zo may have neighboring surface
vertices in the planes zo — 1, z2 and zo + 1. Therefore surface vertices
must be detected and assigned identifying numbers one plane ahead of
time, and the ids of the current (z2) and previous (z2 — 1) plane must



Figure 3.3: A vertex has six half-neighborhoods. Each one of them con-
sists of four voxels. The vertex is marked with a black dot.

be kept at hand as well. When assigning ids, singular points should be
checked for. If any half-neighborhood is checkered, this signals an edge
type singularity. If two diagonally opposite voxels are the only object or
background voxels in the neighborhood, there is a vertex type singularity.

Figure 3.4: Left: Numbering of the voxels incident at a vertex. Voxel 2
is hidden at the lower back. Coordinates are relative to the vertex being
examined. Middle: The neighborhood of a vertex where five object and
three background voxels meet; an example. Right: The five surface facets

that meet at the vertex are traced counterclockwise in the order E, N, T,
S, B (,E).

For each surface vertex in the current plane, the Cartesian coordinates
are put into the entry of the vertex. Starting at a 6-neighbor surface
vertex, we cycle around the central vertex, going over all incident faces
until we are back at the starting neighbor vertex. Figure 3.4 (middle and
right) illustrates this procedure. The half-neighborhoods are inspected to
find a starting direction. A 6-neighbor is a surface vertex, if and only if
the corresponding half-neighborhood is not homogeneous. In the example
in Figure 3.4, the “West” half-neighborhood is homogeneous, but “East”
is not, so this is the starting direction. Table 3.2 controls advancing to



adjacent directions. The left diagram in Figure 3.4 defines the numbering
of the neighborhood voxels. When facing any direction, the four adjacent

Direction | half space | voxels | adjacent
West 0 <0 0,2,4,6 | B,N,T,S
East xg >0 1,3,5,7 | S, T,N,B
South x1 <0 0,1,4,5 | BW,T.E
North x1 >0 2,3,6,7 | E,T,W,B
Bottom 9 <0 0,1,2,3 | E,N,W.S
Top xo >0 4,5,6,7 | S;W,N,E

Table 3.2: The six main directions are each associated with a direct
neighbor vertex, a half space, a half-neighborhood of voxels (cf. Fig. 3.4
left), and four orthogonal adjacent directions

directions are always arranged counterclockwise. For example, when we
face north, we see E,T,W,B in counterclockwise succession.

The key step of the algorithm is advancing from one direction to the
next. The center vertex remains the same, we just face another neighbor
(direction). The step from the current to the new direction must advance
counterclockwise (seen from outside) on a facet of the object. Equiva-
lently, the intersection of the object voxels in the full neighborhood, the
old half-neighborhood and the new half-neighborhood must be equal to
the intersection of the old half-neighborhood, the new one and the one
cyclically next in the old direction’s “adjacent” list. The latter is the in-
tersection of three mutually orthogonal half-neighborhoods, so it always
consists of a single voxel. Thanks to the exclusion of edge singularities
(see footnote on page 31), there is exactly one successor direction for each
direction reached by this scheme, and the direction always returns to the
starting direction after 3 to 6 steps. The exclusion of vertex singularities
guarantees that there is only one such loop.

The first move in the example is from direction “East” (4+zg) to
“North” (+z1). The neighborhood {0,2,3,4,6} intersected with old E
{1,3,5,7} and new N {2,3,6,7} is {3}, the same as the intersection of E,
N and B {0,1,2,3}, the successor of N.

The diagonal neighbor between two direct neighbors is reached by
adding the vectors pointing to the direct neighbors. The list of the ids
of all visited direct and diagonal neighbor vertices completes the entry of
the central vertex.



Only vertices are stored in the data structure, but information about
edges and faces of the surface is also present in the lists of neighbors. For
instance, vertex 7 in Figure 3.2 has the neighbor list {6, 0, 1, 2, 8,
11, 10, 9}. Taking every second number in this list — 6, 1, 8, 10 — reveals
that edges to nodes 6, 1, 8 and 10 emanate from node 7. Overlapping
triples of neighbors — {6, 0, 1}, {1, 2, 8}, {8, 11, 10} and {10, 9, 6} (by
wrapping around to the first neighbor) — give the four faces {7, 6, 0, 1},
{7, 1, 2, 8},{7, 8, 11, 10} and {7, 10, 9, 6}, all written counterclockwise.
In this way, every face of the surface is mentioned four times, once by each
corner. QOur algorithm, however, requires an additional table that lists
every face exactly once. We generate it by visiting all vertices, putting a
face in the table only when it is defined from the corner with the smallest
id, i.e. when it is mentioned for the first time.

As the object lies completely within our data volume, we always find a
closed surface. All vertices in the list are inner vertices of the surface, and
therefore they all have an even number of neighbors. The data structure
generalizes in a very natural way to the case of open surfaces, or surface
patches, where vertices on the border of the surface have an odd number
of neighbors. This possibility is not exploited here, but only later in the
parametrization of surface patches (cf. section 3.5).

The correspondence between the surface net and a graph becomes
clear when a vertex is interpreted as a node in the graph, an edge as an
arc, and a face as a mesh (four-cycle)[40]. For a simply connected object
we get a planar graph with the following topological properties: Four
edges bound each face, and each edge bounds two faces and is bounded
by two vertices. Depending on the local connectivity, each vertex bounds
three to six edges. There are exactly two more vertices than faces; this
follows from Euler’s relation.

A surface with its two degrees of freedom is characterized by a polyg-
onal description based on vertex coordinates with three spatial coordi-
nates. Seeking for an appropriate parametrization, however, requires a
description based on two parameters.

3.4 Parametrization of closed surfaces

A key step in the description of the form of a surface is the mapping of
the surface to the parameter space, in our case the sphere. A one-to-
one mapping must be constructed, i.e. any point on the surface has to
map to exactly one point on the sphere, and vice versa. The location on



the sphere corresponding to a surface point defines the parameters of the
point. It can be represented in a computer as two polar or three Cartesian
coordinates. Mapping a surface to the sphere assigns parameters to every
surface point; therefore I also call it parametrization. The mapping must
be continuous, i.e. neighboring points in one space must map to neighbors
in the other space. It is possible and desirable to construct a mapping that
preserves areas. The use of the cuberille notion gives special importance
to case of square facets, which map to spherical quadrilaterals. Figure 3.5
symbolically illustrates this mapping of a selected facet from the object
surface to a portion of space U. We recall from subsection 2.1.3, and in
particular from example 6, that the parameter space U = (23 is a subset
of of R3, but that it could be related to the rectangle [0, 7] x [0, 27) C R?
through the bijection (7.4(appendix)). It is not possible in the general
case to map every surface facet to a spherical square. Distortions cannot
be avoided, but they should be minimal.

It emerges that the parametrization, i.e., the embedding of the ob-
ject surface graph into the surface of the unit sphere, is a constrained
optimization problem. The following paragraphs define the meaning of
variables, objective (goal function), constraints and starting values in this
context.

Variables The coordinates of all vertices can vary in the optimization.
Using two (e.g. spherical) coordinates per vertex would be the most eco-
nomic representation with respect to storage space, but this would make
the equal treatment of all spatial directions difficult and pose the prob-
lem of discontinuity and singularities in the parameter space. Therefore
we prefer Cartesian coordinates (ug,u1,us) for representing a location
on the sphere, introducing one virtual degree of freedom per vertex. The
number of variables is three times the number of vertices.

Constraints Two kinds of equalities and one kind of inequalities con-
strain the values that the variables can take.

1. The Euclidean norm of the coordinates of any vertex must be 1.
This constraint compensates for the virtual degree of freedom and
forces every vertex to lie on the unit sphere in parameter space.

2. We ask for area preservation, which in our context means that any
object surface region must map to a region of proportional area on
the sphere. To satisfy this requirement, we include one constraint



Figure 3.5: Every single face on the object’s surface is mapped to a
spherical quadrilateral. The sides of a spherical polygon are geodesic
arcs on the sphere surface. As the sphere has unity radius, the length
of a side s; is equal to the corresponding center angle (in radian). The
quadrilateral in this illustration is special in that its four sides sg - - - s3 are
equal and its four angles ag - - - ag are equal: it is the spherical analogue
of a square.

for each elementary facet (see Figure 3.5): the area of the corre-
sponding spherical quadrilateral must be 47 divided by the total
number faces.

3. No angle aj of any quadrilateral on the sphere must become nega-
tive or exceed .

Objective Function The goalis to minimize the distortion of the sur-
face net in the mapping. It is conceptually similar to angle preservation,
and it must tend to make the shape of all the mapped faces as similar
to their original square form as possible. To fulfill this goal perfectly, a
facet should map to a “spherical square” (see Figure 3.5). This can never
be reached exactly for all faces except when the object has a very special
form, e.g., consists of one single voxel. There are several ways to trade off
between the distortions made at different vertices. We observe that the
ideal shape of any face, a spherical square, minimizes the circumference
Z?:o s; of any spherical quadrilateral with a given area. At the same

. : . 3 .
time it maximizes ) ;_,coss;. These two measures are similar, but not



equivalent if summed over the whole net, as they trade off among distor-
tions differently. The second measure punishes too long sides more and
honors too short sides less than the first one, which is a desirable effect.
It is also simpler to calculate; the cosine of a side - and of the respective
central angle - is the dotproduct of the vectors from the sphere center to
the endpoints of the side.

Starting Values The variables in our optimization are the positions on
the unit sphere to which the vertices are mapped. Therefore, initial values
in this context means an first rough mapping of the object’s surface to
the sphere. It is important for the optimization algorithm that the sphere
be completely covered with faces and none of them overlap, even in the
beginning.

Chapter 4 describes the construction of an initial parametrization
satisfying the last requirement, and it elaborates on the technical details
of the optimization procedure. Figure 3.6 anticipates the parametrization
result for the small object from Figure 3.5, called “duck” in the sequel.

-cos6

Figure 3.6: The parametrization achieved by the optimization is visual-
ized three different ways. (a) The surface net is plotted on the spherical
parameter space. Thick lines depict the edges of the original square faces.
The equidistance for both § and ¢ is §. (b) Cartesian interpretation of
(¢, cosB) gives an equal-area cylinder projection. The horizontal lines at
+1 are the poles. (c¢c) Conversely, the polar coordinate grid is drawn over
the object.

For comparison, one vertex is marked with a black dot in all diagrams.



3.5 Parametrization of surface patches

In many applications we are not interested in the closed surface of a whole
object but in an open surface. Unfolding the human cerebellar cortex is
an active topic of research, simply to name one. An open surface has
at least one border. It does not enclose a defined volume. A circular
(or square) surface patch has one border. When a hole is cut in such a
patch, we get one with two borders; it is topologically the same as the
outer curved surface of a cylinder. This last example illustrates that in
three dimensions we cannot in general identify a border as an “outer” or
“inner” contour: nothing discriminates the top and bottom rim of the
cylinder surface. Orientable connected surface patches are treated in the
following; this excludes, e.g., the Moebius strip. The set of permissible
surfaces is even a bit more restricted; patches that have “handles” are
not fit for embedding in R?. A surface patch can have any number of
borders which are all considered equivalent. When the patch is mapped
to a planar parameter space, one arbitrarily chosen border will be the
outer boundary and the other ones will appear as holes.

The surface data structure is suitable also for the representation of
surface patches, as explained above in section 3.3. It retains the notion
of an “inner” and “outer” side of the surface. A vertex on the border of
the patch is distinguished by its odd number of neighbors. Both the first
and the last one in the list of neighbors are direct neighbors, and they
are border vertices as well. Several consistency checks are done based
on this observation. Figure 3.7a shows a small surface patch with only
one border as an example. It has five interior vertices and sixteen border
vertices. The following procedure maps the surface patch to the inner of
a regular polygon, the corners of which lie on €2s.

All vertices are inspected sequentially. As soon as one of them has an
odd number of neighbors the search stops and the border containing that
vertex is considered the “outer” border. This choice is arbitrary if there
is more than one border; having one selected in advance and specified
by one of its vertices would be another possibility. The first neighbor in
the neighbor list of a boundary vertex is the “previous” vertex, and the
last neighbor is the “next” vertex. This convention is indicated by the
arrows in Figure 3.7a. It induces a unique sense for cyclically travers-
ing the border(s) of the patch. Starting at the start vertex and always
proceeding to the next border vertex, the procedure eventually returns
to the start vertex and collects a list of all vertices on the outer bound-
ary. In the example we would start at vertex 1 and collect the boundary



Figure 3.7: (a) This tiny surface patch consists of 21 vertices, 12 facets
+ 1 border, and 32 links. The interior vertex 2 has the neighbors {0, 1,
3, 14, 13, 10}. The border vertex 9 has nine neighbors ({8, 4, 5, 6, 10,
13, 12, 18, 17}), an odd number. Its successor is vertex 8, its predecessor
17. Arrows illustrate the previous—next relation. (b) The same patch
flattened, i.e. mapped to a circular portion of R2.

cycle {1, 3,14,16,15,20,19,18,17,9,8,4,5,6,7,11}. These vertices take
fixed positions at equal distances on {25 in the ug,u; parameter space.
If there are length vertices on the border, the vertex ¢ gets coordinates
ugli] = cos lei@ih and wu[i] = sin lef:;ih, where 0 < ¢ < length. These
points form a regular length-gon. The ug and u; parameters for all other
vertices follow from these boundary values in the same way as 6 does in
the initial parametrization of closed surfaces (cf. subsection 4.1.1). Border
vertices which are not part of the outer boundary receive no special treat-
ment; they will line inner holes. The parameter of each non-boundary
vertex must equal the average of the parameters of the direct neighbors.
All conditions form a sparse symmetric system of linear equations, which
is solved by PILs. Exactly the same steps — with the respective bound-
ary conditions — independently yield ug and w;. Figure 3.7b presents the
result.

Patches from medical objects will serve as less trivial examples for the
patch parametrization. Admittedly the origin of the data does not really
matter for the patch sizes I cut out for the following illustrations. But



Figure 3.8: (a) A patch from the surface of the patella that appears in
the top left diagram of Figure 5.22. The patch is at the top right end in
that projection. (b) The parametrization assigns a unique u coordinate
pair to every vertex. Small circles indicate the vertices. The flat net does
not fold over or otherwise overlap itself.

they show that the method works on natural data. I chose small patches
to produce readable diagrams with enough resolution to distinguish in-
dividual vertices. Figure 3.8a presents a small patch from the surface of
a patella. Figure 3.8b illustrates the parametrization of this patch, i. e.
its mapping to the unit circle in the ug-u; plane.

Figure 3.9a introduces the case of a surface patch with more than one
border. One would probably consider the longest of the three borders as
the outer border and the other two as holes, as indicated in the graphics.
This choice is actually arbitrary; when a surface in 3D has more than
one border, they all are equivalent. The parametrization works for this
surface without modification; Figure 3.9b displays the result. As before,
every vertex in the planar embedding of the net in JR? is the center of
gravity of its neighbors, except for the vertices of the chosen exterior
border, which are fixed on €25. It follows that the other borders — or the



vy

e

0
N

;
:

Figure 3.9: (a) A patch with three borders (holes). It is cut out from
the surface of a brain dataset. The longest one of the three borders is
arbitrarily selected as the “outer” border. White balls mark it, and a
chain of arrows traces it. The other two borders are, by consequence,
treated as “inner” holes. (b) The same patch parametrized, i.e. mapped
to the unit circle. The holes map to convex polygons.

holes — map to convex polygons, just as the ordinary faces, which map
to convex quadrilaterals.

Figure 3.10 elaborates on the arbitrary choice of one “outer” bound-
ary. A different boundary was chosen this time, resulting in a different
possible parametrization. It apparently suffers from more distortion than
the one of Figure 3.9, but it is nevertheless a valid planar embedding of
the surface net.

The spreading out of the patch can be useful in several ways. It can
be used to present a property that varies over the surface in an overview.
The whole patch can thus be presented at one glance. This is of particu-
lar interest in investigations of the cerebral cortex. Mental activities are
going on in all of the grey cortex, including the sulci and their ramifica-
tions, not just the outer parts of the surface we see when watching a whole
brain as a solid 3D object from outside. It is generally assumed that the
folding of the brain surface was driven by the need for more processing
ability and hence cortex area. Most of the new area lies hidden in the
sulci and structures like the insula. Parametrization of surface patches



(b)

Figure 3.10: (a) The same patch as in Figure 3.9. This time the shortest
of the three borders plays the role of the “outer” border. (b) Again, the
surface patch maps to a part of IR?, inside the regular 28-gon representing
the “outer” border.

can help to create or refine a map of the cortex. Parametrization has the
potential to reproduce proximity in the cortex surface, which is related
to functional proximity, in contrast to spatial closeness in 3D. One might
depict properties like curvature of the surface, deepness of the sulci (to
make orientation easier), or activity of the corresponding region of the
cortex. As a very simple example, the distance of the corresponding
surface element from the observer paints the facets in Figure 3.11.

The mapping also defines the vector-valued function U < R® : u —
z(u) from the unit circle disk (possibly with holes) to object space. The
three component functions zg(u), z1(u), and zo(u) are plotted in Fig-
ure 3.12. The parametrization of Figure 3.9 was used.

To approximate the data with by a smooth function, we can determine
a least-squares fit to the empirical function z(u) as a linear combination
of some set of basis functions. The coefficients of the linear combination
are vectors of IR®. The aggregate of these vectorial coefficients forms a
descriptor for the shape of the surface patch. If the patch has more than
one border, the fit extrapolates a value to the regions of R? corresponding
to the resulting holes: the holes are filled. This happens in Figure 3.13
where a Bézier patch (Eq. 3.1) fits the functions from Figure 3.12 (and
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Figure 3.11: Displaying a surface property in parameter space: The grey
level represents the distance of the corresponding surface element from
the observer. Bright means close and dark means further away. The re-
sults with both parametrizations are presented. In (a) the longest border
is selected as outer border, in (b) the shortest one.

Figure 3.12: The parametrization from Figure 3.9 implies a function
z : U — IR®. These three diagrams plot the three components of the
function z(u). The function is undefined on the holes.
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Figure 3.13: Reconstruction of the surface from the fit function. (a) u
varies over the disk ||u||o = 1 in JR®>. The parameter grid shows on the
surface: it consists of the iso-lines of uy and ;. (b) The parameter
grid is suppressed. Instead, the original 3D patch is superimposed as a
wireframe. The thick lines result from evaluating the fit function at the
parameter values assigned to the borders of the patch.

3.9). The fit uses products of Bernstein polynomials up to degree 5 in ug
and ui. We see a parametric plot of the fit function, to the left with the
ug, u1 coordinate grid, to the right with a superimposed wireframe of the
original data and the lines to which the fit function maps the parameter
values of the borders.

When the surface patch is topologically sound, i.e. planar, no two
points of the surface will map to the same place in the unit circle disk;
there can be no overlap. A planar embedding of the surface graph is thus
found, but it may have significant distortions. Any protrusion of the sur-
face maps to a small image graph squeezed together in the image of the
foot of the protrusion. It is not obvious how the net should be allowed to
relax towards a more even state. Stating the task as a minimization prob-
lem faces more difficulties than in the case of closed surfaces If we made
all facets work towards equal (e.g. unit) area and shape as square-like as
possible, some surface nets would tend to self-overlap. Such overlaps can
happen between distant parts of the net and are not locally detectable. If
they were detected, elaborate schemes for their prevention would need to
come into action. Their discussion exceeds the scope of this publication.



Chapter 4
Optimization

The discretization of Laplace’s equation on a given surface net and the so-
lution of the corresponding Dirichlet problem constructs an initial parametriza-
tion. The differences between closed and open surfaces are limited to the
border conditions. This approach is explained in Section 4.1. The op-
timization itself is a demanding task, due to the size of the problem.
Section 4.2 discusses solutions, details of the most successful approach,
and strategies that had to be developed to cope with various problems
that can arise.

This chapter may be a bit technical in some parts. The later chapters
will not rely on the material presented here.

4.1 Initial parametrization

An earlier version of the procedure is described in [8].

The first mapping or parametrization is done in polar coordinates.
The two polar coordinates 6 and ¢ are determined for all vertices in
two separate steps. Two vertices have to be selected as the poles for
this process. The choice of these poles is not critical, as the subsequent
optimization process will remove all its influences except a rotation in
parameter space. Selecting two poles which lie close together, however,
results in a poor initial parametrization. The optimization will converge
to the same solution, but it takes more iteration steps. We select the two
vertices with lexically maximal and minimal (z2, 21, zo) coordinates in
object space; i.e. x5 is weighed most and z¢ least. The poles are the first



and the last vertex in our numbering of the surface vertices. When nyert
denotes the total number of vertices, the north pole has number 0 and
the south pole has number nyer — 1.

4.1.1 Co-latitude from diffusion.

Co-latitude 6 should grow smoothly from 0 at the north pole to 7 at the
south pole. In this context, # is not a free variable but rather an unknown
function (of the location on the object) that we are looking for. To assign
a co-latitude value with the desired property to every node, we formulate
the corresponding continuous problem as Laplace’s equation V20 = 0
(except at the poles), with Dirichlet conditions #(northpole) = O,ortn =
0 ,f(southpole) = Osousn = 7 for co-latitude [31]. A physical analogy
is heat conduction: we heat the south pole up to temperature 7 , cool
the north pole to temperature 0 and ask for the stationary temperature
distribution on the heat-conducting surface. As usual in the discrete
case, the Laplacian is approximated by finite second differences of the
available direct neighbors, which in our case implies that every node’s
co-latitude (except the poles’) must equal the average of its neighbors’
co-latitudes. These conditions form a sparse set of linear equations, which
can be written in the form A’ = b’, where A’ is a Nyert X Nyert MAtrix,

0" = (80,01...0,,..,—1)T and b’ is an nyery vector of constants. The
border conditions supply two equations and the average property defines
n' := nyert — 2 equations. Applying the border conditions 8y = Oyorth

and 6, .1 = Osouth results in the reduced n' x n' system A = b, where
A=(a11,a12...ap 5 ) is symmetric and 0 := (61 ...6,/)T

The algorithms that are used to set up the matrix A and the right
hand side vector b make use of the well-organized surface data structure,
as illustrated below in pseudo-code notation. The sparsity of the matrix
is exploited; only the few non-zero entries (4 to 7 per row) are stored.
This saving is essential to be able to handle larger objects.

Set up matrix A:
for vertex = 1...n
Oyertex,verter - = DumMber of direct neighbors;
for the direct neighbors of wertez
if the neighbor is not a pole

Qyertex,neighbor * = -1;



Set up constant vector b:
set all entries of b to 0O;
for the direct neighbors of south_pole

bneighbor =T

This sparse symmetric linear system of equations is solved with the
Pils package [30]. The solution has the important property that co-
latitude 6 varies monotonically between the poles, since there can be
no local extremum by virtue of the maximum principle [26]. Figure 4.1a
shows the resulting # for the simple test object named “duck”.

Figure 4.1: The simple object “duck” consisting of nine voxels is used for
illustrating the initial parametrization. The north pole is at the lower
left, the south pole at the upper right. Co-latitude is mapped on the
object’s surface as a grey value in q; iso-latitude lines are drawn every

1. Longitude is shown in b; iso-longitude lines (“meridians”) are §

apart.

4.1.2 Determining co-latitude in the example

A fully worked example with the “two-voxel” object of Figure 3.2 is
presented here. It serves as a concrete and detailed illustration of the
general concepts exposed above. The border conditions

00 = enorth =0



911

and the average properties

Osouth = T

6 = (Bo+0s+62+67)/4
0, = (91—|—95+98)/3
0; = (94+90+09)/3
0, = (93+910+95+91)/4
6o = (094074611 +64)/4

can be arranged in matrix notation.

(.

-1

0 0
4 -1
-1 3

-1
-1

3 —1
-1 -1 4 -1
-1

0

(enortha 07 07 07 07 Oa 07 07 0) 07 07 esouth)T

-1

—1

)

3 —1
4 -1
-1 3

-1
-1
-1
3 —1
-1 4 -1

0 o 1) \6u)

-1

(4.1)

Eliminating the first and the last row (boundary conditions) leads to the

following reduced, symmetric system.

0
4 —1 —1 -1 6 north\
(—1 3 —1 ~1 ) 0;\ { 0
3 —1 -1 03 Onorth
-1 -1 4 -1 -1 04 0
-1 -1 3 05 _ Osouth
3 -1 -1 96 enorth
-1 -1 4 -1 -1 6, 0
- 1 1 o 3 1 ZS routh
_ _ _ . 0
\ -1 —1 -1 4/ \910} \esouth/

(0,0,0,0,7,0,0,7,0,7)"

(4.2)



The solution is § = (%’r, 3?7‘, %, Ly %, ?i—g, L3 %, %”, %)T, or ' = 7-(0,4,
6,3,5,7,3,5,7,4,6,10)T, where the first and last value correspond to the

poles.

4.1.3 Longitude from diffusion.

Unlike latitude, longitude is a cyclic parameter: When we walk around a
sphere counterclockwise (seen from the north), longitude keeps increasing
monotonically all the time, but there must be a place where longitude
leaps back by 27. A global longitude parameter always has a discontinu-
ous line running from pole to pole, and the step height is 27. Consider,
as an analogy, local time on every spot of the globe; the date line is a 24
hour discontinuity, but not a meridian. In our problem, the choice of the
date line is immaterial: it just has to connect the two poles. The date line
is chosen as a path with steepest co-latitude ascent in each of its nodes.
The values crossing the date line from west to east are decremented by
27, values propagated to the west are incremented by 27. The poles and
all links to them are removed from the net, making the topology of the
net that of a tube. Longitude remains undefined for the poles. The cyclic
Laplace equation V2¢ = 0 (with date line) again corresponds to a system
of linear equations in the discrete case.

The new system of linear equations is structurally identical to the one
for co-latitude. Typically, only a small part of the equations is different.
The matrix for longitude ¢ differs from the one for co-latitude 6 only by
the values of six diagonal entries, corresponding to the three neighbors
of each pole. This similarity simplifies setting up and solving the new
system.

Due to the cyclic boundary conditions, the solution ¢ is defined only
up to an additive constant. The linear equations are dependent, and the
system is singular. To make it regular, we have to specify the longitude
of one vertex. We set 2phi_1 = 0 arbitrarily. This equation can be added
to any row of the system. We add it to the first row.

The following portions of pseudo-code update the matrix and generate
a new right hand side vector.

Modify matrix A:
for both poles
for the direct neighbors of pole cut link to pole

Qneighbor,neighbor ~= 1;
ap,0 += 2; add ¢1 =0



Set up constant vector b:
for row:= 1...n do

brow:= 0;
previous := north pole;
here := 1; any nbr of north pole
maximum := 0.0;
while (here != south pole) walk on date-line

for the direct neighbors of here
if Oneighbor > mazimum then

mazimum = Opeighbor 3

nextpos := position of mneighbor;
if neighbor == previous then

prevpos := position of mneighbor;

for all direct neighbors € {prevpos clockwise nextpos} do
add 27 to bneighbor;
subtract 27 from bpere;

previous := here;

here := neighbor of here indicated by neztpos;

In spherical coordinates, longitude is undefined at the poles. We
arbitrarily set ¢north = Psouth = 0. Figure 4.1b illustrates the resulting
¢ for the “duck” test object.

4.1.4 Determining longitude in the example

The path 0, 1, 2, 5, 11 is used as
the date line; it is indicated by a
row of small black triangles. Links
extending from the date line to the
west are 1 — 4 and 5 — 4; they are
marked with white triangles. The
poles, “N” (vertex 0) and “S” (ver-
tex 11), are no longer part of the
net. The following equations re-
sult.

301 = (¢a—27)+ p2+ &7
3p2 = ¢1+ @5+ P



203 = Qs+ g
4ps = ¢3+ P10+ (d5 +27) + (¢1 + 27)

3010 = ¢9+ P7+ P4

These equations, together with 2¢; = 0, can be put into matrix notation
as follows.

5 -1 —1 -1 é _or
/—1 3 -1 -1 \ ( ;\ ( 0 \
2 —1 -1 ?3 0
1 -1 4 -1 —1]| ¢, A
1 -1 2 os | | —2n
2 1  —1 o | = | 0 |G
1 1 4 -1 —1]||en 0
1 19 be 0
1 1 3 —1 | & 0
\ -1 1 -1 3/ \4u) W,

The solution is ¢ = (0,0, ‘%r, 37”, = 3{, I T )T

For every node of the net, we now have computed a co-latitude # and
a longitude ¢. This defines a continuous, unique mapping from the sur-
face of the original object to the surface of a sphere, which is illustrated
by Figure 4.2. Instead of specifying a location on €23, the spherical pa-
rameters ¢ and 6 can also be used in a flat Cartesian coordinate system
as shown in Figure 4.2b, which gives an overview of the whole unfolded
net. The right border wraps around to the left border, and vice versa.
The top and bottom borders stand for the poles. The 6 axis points up
to produce the same orientation as in the other figures; the south pole is
at the top. The polar coordinates are transformed to 3D Cartesian by

(7.4(appendix)) and yield starting values for the optimization.

4.2 Optimization methods

Powerful methods for nonlinear constrained minimization are known[16].
But the commonly available optimization routines can not be used for
larger objects because they are not suited for such a large problem, as
they do not take advantage of its sparsity and information available about



Figure 4.2: Diffusion yields the initial parametrization, which is plotted
in the same three ways as the final result in Figurefig:opt. (a) The surface
net is plotted on the spherical parameter space. The thick lines depict the
edges of the original square faces. The equidistance for both § and ¢ is 3.
(b) ¢ and cos @ are interpreted as Cartesian coordinates. The monotonic
cosine function is applied to give a true-area cylindrical projection. The
horizontal lines at +1 are the poles. (¢) Conversely, the globe coordinate
grid is drawn over the object. For comparison, one vertex is marked with
a black dot in all diagrams.

the constraints. I had to develop and implement my own optimization
algorithms. They are a key part of surface parametrization, and receive
some more detailed discussion here.

The sparse linear solver package PI1Ls[30] is used for solving the linear
systems of equations that arise inside a minimization algorithm. I have
implemented two algorithms. One is a Lagrange-Newton method[12],
also known as sequential quadratic programming (SQP). The other one is
based on Conjugate Gradients [31] for finding a minimum and the Newton
(or Newton-Raphson) scheme for satisfying the constraints. This second
method has been more successful in solving the kind of optimization
problems that arise from surface parametrization.

Both algorithms use a form of the Newton scheme for finding a zero
z* of a nonlinear function f(z): f(z*) = 0. The Newton scheme follows
from the Taylor series of order 1 of f about x:

Repeat
=z~ f'(z)7" f(z)

Until convergence



An initial £ must be supplied by guessing. When z and f(z) are scalars,
f' is the derivative of f. But z and f may also be vectors of the same

dimension n. In this case f’ is the n x n Jacobian matrix V - 7 of f.

As the goal function, the constraints, and their derivatives have to be
calculated repeatedly, it is important that we can use an efficient data
structure that holds information about adjacency (for the goal function
and matrix sparsity) and surface facets (for the area constraints). The
solution of the nonlinear program defines the optimal parametrization of
our object’s surface.

4.2.1 Notation

Let z be the variables of the optimization, in our case a vector of length
3nyers- The goal function f(z) is scalar. And ¢(z) denotes the vector of
constraints; its length is not always the same; see below. The general
problem is
NEP: minimize f(z)
z € R3™vert
subject to  ¢é(z) =0,
and the solution is denoted as z*.
The corresponding Lagrangian function is defined as

L(z, ) = f(z) — A" c(z) .

The augmented Lagrangian function includes a penalty term, the sum of
the squares of the active and equality constraints multiplied by a penalty
factor p.

La(z, ) p) = f(z) — AT c(z) + pe(z)” - c(2)

At the solution (z*,\*), L(z, ) is stationary with respect to z and \.

Let V be the gradient with respect to z only, and V the gradient with
respect to both z and A. We define the objective gradient g = V f(z) as
well as A = V-cT'(z), the Jacobian of ¢, which is the matrix of constraint
normals. At the solution no component of the gradient can be tangent to
the constraints, i.e. the gradient is a linear combination of the constraint
normals: g+ A\ = 0. Let 9,=9— A be the gradient projected to the
tangent subspace.

4.2.2 A Lagrange-Newton algorithm

The idea of this optimization method is presented in [12], so the following
is a brief summary. The condition that (z*,\") is a stationary point of



L(z,)) can be written in the form VL(z,A) = 0. Finding a zero of
these equations with the Newton method leads to the updates dz and
0, defined by the following equation, where the matrix on the left is the

Hessian of L,
v (22) = —ve
oA) '

This can be transformed to the equivalent system

(e 1) 0)=(2): 1

W =VVTfz)-> \VVTé(z)

where

is the Hessian VVTL. Now § is the z increment, and ) is the new
Lagrange multiplier estimate.

There are ny et vector length constraints, keeping all vertices in €23,
and mgce — 1 area constraints, so ¢(z) has length nyery + Ngace — 1. The
matrix in (4.4) is square of dimension 37 yert +7vert +face — 1 = BNface — 3,
symmetric, and sparse.

The algorithm in its simplest form accepts an initial guess for x and
A. Then it repeatedly solves the system (4.4) and updates z := z + 9,
until some convergence criterion is satisfied.

I use the sparse linear solver P1ns[30] to exploit the sparsity of the
system. But this solver cannot work if any element of the diagonal is zero.
Many such elements exist in the lower right of the matrix by definition.
Therefore columns of the matrix have to be permuted to put only non-
zeroes on the diagonal. The inverse of this permutation must be applied
to the result vector after solving to get the true result. An ad hoc strategy
decides which columns should change places; it uses specific knowledge
about the sparsity structure of the matrix, which is influenced by the
connectivity structure of the object surface net.

Without preventive measures, the iteration becomes unstable, with
rapidly diverging A and the constraints being violated ever worse. Two
measures can often overcome the problem. When |/g 2 ||? exceeds a certain
threshold, the current estimate A is considered unreliable, and the least
squares solution of the overdetermined system A.A = —g is a better
estimate for A\. The threshold 10'® turns out to work reasonably well.
To make sure the constraints will eventually be satisfied, occasionally an
iteration step only tries to satisfy the constraints better. Doing this every
8 iterations turned out to work best.



4.2.3 Constrained optimization in orthogonal spaces

Two things must happen concurrently; the constraints have to be satis-
fied, and the goal function needs to be minimized. The first means solving
a system of nonlinear equations. This system is typically underdefined,
i.e. there are more variables than equations. The remaining degrees of
freedom are all used for picking among the many solutions one where the
goal function is minimal. Linearizing the constraints yields a first order
Taylor series: c(z + dz) ~ c(z) + AT - dz. It reveals that the two pro-
cesses operate in two locally orthogonal subspaces, in the column space
of A and in its orthogonal complement, the corresponding null space of
vectors orthogonal to the columns of A. The matrix A is not fixed over
all iterations, it rather depends on z, and so do the two vector spaces.
The linearization is only valid in a neighborhood of z.

The Newton method can solve a nonlinear system of equations; it
moves in the column space of A. The Conjugate Gradient scheme is ef-
fective for minimization; it works in the null space of A. Both methods
merge to a constrained optimization algorithm. The combined method
performs a single step of either method alternatingly and converges to-
wards the solution.

Three types of constraints come into play, equality constraints on
vector lengths and areas, and inequality constraints on angles (see 3.4).

Vector lengths are handled separately by continuous projection. The
need for a vertex to remain in €23 is not explicitly represented as a con-
straint but is silently enforced in any changes to z. Whenever a displace-
ment from z to z + dx is requested, the new position of every vertex is
projected onto €23; each triple t of coordinates from the new z is divided
by ||t]|2, i.e. normalized.

All faces must have equal area. The surface of 3, which is 47, must
be equally partitioned, and each face gets %. Imposing this area for
all faces would be redundant; the areas of the faces always sum to 4=x. It
suffices to specify the area of all faces but one, and this last one will get

the remaining area, also —27—
nf

ace

To determine the area of a spherical quadrilateral Q : ABCD, we
may pretend to cut it in two triangles 77 : ABD and T : BC'D. The
angle at B is split, 8 = /ABC = 81 + s = /ABD + /DBC, and so is
0 = 01 4+ 2. The area of a spherical triangle on €23 equals its spherical
excess, the quantity by which the sum of its three angles exceeds 7 (the
angle sum in a planar triangle). The area of T1 is A1 = a+ (1 + 61 — ;
for To we have Ay = s + v + 02 — m. The diagonal BD joins 7T and



T5 to @ without overlap or gap, and ) has the area Ag = A; + A =
a+bi+6—n1+Pr+yv+—nmT=a+B+v+— 27

C

Figure 4.3: A spherical triangle, and how I label its parts. The three
vertices A, B, and C' are at unit distance from O.

For calculating one specific angle it is enough to consider a triangle,
ABC (see Fig. 4.3). The name of a vertex shall denote at the same time
the vector pointing from O — the origin and the center of {23 — to that
vertex. The side of a spherical triangle is the same as the corresponding
center angle, i.e. a = /BOC,b= /COA,c = /AOB. We use the law of
cosines of spherical trigonometry.

cosa = cosbcosc+ sinbsinccosa (4.5)

T def cosasinbsine = cosa— cosbcose (4.6)
= BT'C-A"CA"B

Another relation stems from the proof of the law of sines[15].
Yo & sinasinbsine = AT(Bx C)=(A,B,C) (4.7)

Neither sin b nor sin ¢ can be negative, because a distance on (23 is never
negative and it can never exceed m. In a non-degenerate case, where both
sin b and sin ¢ are positive, z,, and y, determine a uniquely, e.g. with the



C math library function atan2(y,,z,). In our application no angle of
any quadrilateral must become negative or exceed w. This claim leads to
one inequality constraint y, > 0, for each angle .

An inequality constraint may be active or inactive at a specific point,
and this depends on whether violating the constraint is an issue. Inequal-
ities may switch from inactive to active or back a number of times in the
course of the optimization. The constraints that influence the direction
in which the optimization proceeds at any time are the equalities and the
active inequalities.

The Newton method, as explained above, takes a step towards a solu-
tion of ¢ = 0, where ¢ comprises all equalities and the active inequalities.
The function é(z) takes the place of f in the generic method, and its Ja-
cobian A corresponds to f’. We assume the matrix A has full rank. The
system AT (z)dz = —c(z) has many solutions, and we need only one of
them. A pertinent choice is to take the shortest dx; this choice restricts
dz to the column space of A. Any component of dx orthogonal to this
space would not change the validity of the solution, but make it longer.
dx can then be written as dr = Ady, and dy is determined from the result-
ing square symmetric positive definite system ATdz = AT Ady = —c(z).
After tentatively moving (which includes projecting) by the step dz sug-
gested by the Newton method, all constraints are re-evaluated. If any
of the inactive inequalities was violated, or the violation of any equality
or active inequality increased more than a small threshold value, then
the length of dz is halved and the move is repeated from the previous
position with this shorter step size until an acceptable step is found. Of
course, the improvement on ¢ = 0 is poorer in this case.

Finite differences estimate all the derivatives for the constraint Jaco-
bian A. The continuous projection takes place when each component of
z, one at a time, moves a little bit by §, where the relevant constraints
are re-evaluated, and then the component assumes its previous value
again. The difference in the constraint values, divided by J, yields an
estimate for the derivative. As motions out of {23 are silently suppressed,
each triple of any estimated constraint normal is orthogonal to the corre-
sponding triple of z. (And thus all constraint normals are orthogonal to
z.) The gradients of the constraint functions can be derived analytically.
This has been done in the previously sketched method, but it leads to
very complicated expressions, that fill several pages of source code and
are expensive to evaluate.

The objective function is simply a quadratic form, and as such has a



straightforward analytic gradient.

f@ = > ), v'm (4.8)

Y penbr(v)

Vof(@) = ), n, (4.9)

B nenbr(v)

where v runs over all vertices, i.e., all triples of coordinates in x, and
neighbors(v) is the set of neighbors of vertex v. Each triple ¢, of this gra-
dient is again projected into the subspace orthogonal to the corresponding
triple ¢, of z, as in ty— =t - t;* - tg.

Projecting g to g in the null space of A involves the estimation of
the Lagrange multlphers The objective gradient g is explained as well as
possible as a linear combination of constraint normals. To this end, we
solve the overdetermined system A\ = g in the least squares sense. The

solution is defined by AT A\ = ATg, it minimizes the Euclidean norm
g ZH2 of the residual g, = g — A). The sign of a Lagrangian multiplier
A; is an important mdlcator of the role the corresponding constraint is
playing, when it is an inequality. When the multiplier is positive, the
objective gradient would tend to move z into the “forbidden” region
and positive “force” is being applied to stop it from doing so. On the
other hand, a negative multiplier )\; indicates that & would move into
the allowed region ¢; > 0 if we released the constraint, that keeps c¢;
close to 0. If the corresponding constraint ¢ is not violated too badly,
i.e. if the current value c;(z) is above some slightly negative threshold,
it is inactivated at this point. When any constraint is inactivated, that
iteration terminates prematurely and the conjugate gradient step is not
carried out.

The conjugate gradient method constructs a new search direction in
a multidimensional minimization problem from the current gradient and
from the information from all previous gradients, which is condensed in
the previous search direction. It does not require the storage of a matrix
and will find the minimum of a quadratic form in a finite number of steps
(assuming exact mathematics). It is described in [35], in [31] (pages 316
ff.), in [16] (pages 144 ff.), in [30] (pages 29 ff.) and in [20]. Usually
it is applied to the case of unconstrained optimization. I adapt it to
the constrained case by supplying the projected gradient g, as the new
gradient (in the subspace) in every iteration. Projecting the old search
direction into the zero space of the current constraint gradients might
improve the performance of the optimization. This has not yet been



tested out.

The vector p that the conjugate gradient scheme supplies defines the
direction in which the new line search is to proceed. The line search tries
to find on the straight line £+ ap the point that minimizes the augmented
Lagrangian function £4(a) = La(z + ap, A, p). The scalar o is the step
length. The minimum point must not violate any inactive inequalities.
A binary search finds the minimum. It starts at @ = 0 and initializes
the step size s to the final step size of the previous search, multiplied
by the constant factor stepiarge, which is larger than 1, e.g. 1.6. The
initial figure of merit is £L(a = 0). Repeatedly, the left figure of merit
L(a— step) and the right one L(a+ step) are evaluated. Among the left,
middle and central position the one with the minimal figure of merit, but
not violating any inactive constraint, becomes the new a. At the central
position a none of the inactive constraints is violated, by construction.
If a negative inactive constraint ¢; < 0 prevents the selection of an outer
position, it is flagged as stopping progress, until a deliberate (smaller)
step in the opposite direction is taken. After the step (or staying in
place) the step size is halved. This is repeated until the step size falls
below the tolerance line_tol and the minimum of £4 or the zero ¢; = 0 is
defined with sufficient accuracy. An invariant during line search is that
the final alpha can reach a point in the interval [a — 2s..a +25s], narrowed
at most by line_tol. As a safeguard against shrinking the step size too
much, the retained copy for the next iteration may not be reduced by
more than the factor stepsman, which is smaller than 1, e.g. 0.08. If
progress of the line minimization was stopped by an inactive inequality
becoming negative, then this inequality is activated, i.e. added to the
active set.

The penalty factor p in £4 ideally should adapt itself according to
the success of satisfying c¢(z) = 0. The following scheme turned out to
work satisfactorily, but is certainly not optimal. Initially p has the value
Po, and after each line search it is updated if the current point x changed
(if @ # 0). Define badness as the maximum increase in the square of any
active or equality constraint ¢; during line search (a different definition
of badness may be superior, e.g. based on ||c||3). Constraints are not
considered seriously violated when the violation is less than c_tol. The
constant pjmit stops p from going towards zero; p will always stay above
this limit. Then p is replaced by

c_tol - c1p

P + €25) + Plimit -

‘e tol - cop — badness



During the typical optimization, p is decreasing most of the time, first
faster, then asymptotically approaching pimit/(1 — c1,/cop — €2p)-

At a solution of the constrained minimization problem, all constraints
are satisfied, and there is no descent direction in the subspace tangent
to the constraints, i.e. the goal function is stationary. These are two
necessary conditions for a minimum: ¢(z*) = 0 and Qz@) = 0. In
practical experiments, ||c|| goes towards zero approximately proportional

to the square of [|g,[|. Thus cost def llell? + 19,1l is a valid measure
of the overall progress of the optimization. When cost drops below a
fixed threshold, like 107¢ or 1071, the optimization is assumed to have
terminated successfully. Obviously a reasonable scaling of the problem
functions is important for the validity of this termination criterion.

Influences of parameters on performance

A number of constants, or parameters, controls the optimization. A good
set of parameters will work robustly on a wide range of problems. The
constants were tuned so that several different objects are parametrized ef-
fectively. To judge the performance by means of comparable figures, one
further object (see Figure 4.4) as parametrized with the controlling con-
stants found before as “typical” values. The nonnegative cost captures
the achievements of the optimization. Figure 4.5 shows the decrease of
cost in the course of the optimization with the typical parameters. The
optimization takes a few iterations to get started. This includes the iden-
tification and activation of the constraining inequalities. One inequality
becomes active in the first iteration and inactive again in the third iter-
ation. The fourth iteration activates a different constraint, which stays
active until the fifteenth iteration. An iteration that inactivates one or
more constraints does not define a cost, therefore a gap results in the
graph. After this initial phase, cost decreases steadily to a level of about
107'°. A look at the individual data reveals that ||g, || and [|¢|| decrease
in parallel and equally contribute to the progress. The progress of the
optimization stagnates after about 60 iterations, apparently because of
the limited precision of the calculations. Switching to symmetric differ-
ences for the estimation of gradients might defer the problem and allow
a little further progress. For our object, no inequality is active at the
solution.

A quantitative measure of the performance is the value of cost after a
fixed number of iterations. Allowing a fixed amount of CPU time might
be more adequate, but is harder to control in a multi tasking environment.



Figure 4.4: The object used in the evaluation of the optimization param-
eters. In the segmented CT data set of a human knee, the patella was
selected. To reduce the computation load, the data was subsampled by
a factor of 3 in all three dimensions. This blob-like object is the result.

As the diagram (Fig. 4.5) indicates, 40 iterations were allowed for each
optimization. The optimization is stopped in the middle of the effective
phase, to get the most expressive figures. In the following diagrams, the
final cost after forty iterations is plotted against the one parameter being
varied; the other parameters are kept fixed. It is desirable to attain a
small value for cost as fast as possible. The parameter value we pick
should lead to a low cost (after 40 iterations) for efficiency and it should
lie in a flat region for robustness, so that a change in the problem won’t
spoil the efficiency.

If the finite difference step ¢ (cf. Fig. 4.6 left) is too large, the secant

is not a good approximation to the tangent, because higher order terms
disturb the estimation of the derivative. On the other hand a step that
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Figure 4.5: The progress of a small, but otherwise typical optimization.
The cost quantifies the discordance of the current approximation with
the necessary conditions for a solution. It decreases over the iterations,
and would ideally become zero. The ordinate has a logarithmic scale.

is too short leads to almost equal function values at both sample points
and hence to a loss of precision due to cancellation. But there is a wide
middle range of  settings that can be used with confidence.

Constraint tolerance (Fig. 4.6 right) limits badness of any step in the
line search. A tolerance that is too tight can lead to very small steps in
the line search due to nonlinearities in the constraints, and hence to slow
progress. The preset value appears reasonable based on experiments.

The graph of line_tol shows plateaux because it determines the num-
ber of steps taken in the binary search, which is [2log %1. A tol-
erance that is too large will lead to an inexact line search and will de-
teriorate the overall performance. A narrow tolerance will do an exact
line search, but no improvement is gained from an extremely precise line
search, so this leads to a waste of time.

The quantity badness is defined as the maximal increase in the square
of the violation of any equality or active inequality constraint. The tol-
erance for “badness” in the Newton step (Fig. 4.7,right) should not be
chosen too small lest it stop the steps towards é(z) = 0 unnecessarily. A
large tolerance does no harm; we wouldn’t need this safeguard if we only
wanted to solve the model problem. But it can provide some robustness
in particularly difficult problems with highly nonlinear constraints.

Activation and inactivation of constraints is done with hysteresis. Ac-
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Figure 4.6: The value of cost after 40 iterations, plotted against each one
of the four selected parameters, which are, however, held constant during
one optimization run.
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Figure 4.7: The value of cost after 40 iterations, plotted against the
inequality activation hysteresis thresholds.

tivation occurs at the upper threshold of violation, ineq_high (Fig. 4.7
left). Inactivation is only allowed when the violation —c;(z) has dropped
below ineq_low (Fig. 4.7 middle). With the current settings of the other
parameters, ineq_low has no big influence on overall performance, unless
it is increased a lot. When ineq_high is set very tolerant then no inequal-



ity will ever become active. This gives a low figure for cost, which does
not take inactive inequalities into account. But it is not desirable to al-
low arbitrary violation of inequality constraints - that would be ignoring
them. ineq_high might be set a bit lower (to be more strict) than the
currently preset value. A narrow span between ineq_high and ineq_low
can cause a constraint to rapidly switch from inactive to active and back
again, which is inefficient because the dimension and the connectivity
graph of the system matrix change, and the system has to be set up
again each time. I hope a reasonable gap between the two thresholds will
provide some hysteresis and a more continuous behavior.

In very large or difficult problems it can be impossible to make any
significant progress towards minimizing the goal function or satisfying
the equality constraints without setting ineq_high to a rather lenient
value. The following adaptive scheme allows the optimization to begin
with a tolerant value of ineq_high, reducing it gradually, and rigorously
enforcing all inequality constraints in the end. The variable ineq_high
is initialized to ineq_init. At each accepted position (all inequalities >
—ineq_high) the value min_ineq of the most violated inactive inequality
is determined. Then ineq_high is reduced to the extent that min_ineq
permits; it takes the following new value.

max(min(ineq_high, —ineq_slack - min_ineq), ineq_final)

The scheme ensures that ineq_high can never drop below ineq_final or
increase again above the value it has reached. At some point, the opti-
mization may need to move slightly against the worst inactive inequality.
The factor ineq_slack > 1 avoids blocking progress in this case.

The three parameters subtly control the adaptation of p, which trades
off between reductions of £(z) and ||é(z)||2. The ratio c1,/co, is more
important than the values. This can be seen from the definition of the
adaption scheme, and it shows in the two (logarithmic) plots: they are
mirror images of each other. The graph for cy, is very similar to them
as well; with respect to cy,, it is compressed for large values of ¢z, and
stretched a lot for small ones (due to the logarithmic scale). The influence
of these three constants is not to be neglected, it can change cost by one
or two orders of magnitude. It is not easy to find a low constant region.
Increasing co, to 1.7 or reducing c1, to 0.2 might be advantageous.

A smaller than the current value for pi,;; (Fig. 4.9, left) might seem
appropriate. Indeed reducing it to about 100 might be beneficial. I would
not set it in the low flat region to the left, because a conservative (high)
value is a more robust starting point in difficult problems; it won’t allow
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Figure 4.8: Influence of three constants in the p adaption scheme on cost
after 40 iterations.
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Figure 4.9: Influence of two other constants in the p adaption scheme on
cost after 40 iterations.

much increase in any violation for a certain decrease in the objective
function. If the problem turns out to be easy, p will soon decrease and
adapt to the situation. If the initial p is small, the first step may be too
large in spite of the constraint violations this might bring along; it can
then be difficult for the program to find its way back.

The purpose of pimit (Fig. 4.9, right) is to stop p from becoming zero



even in very well-behaved problems. The choice of this constant is not
sensitive, any small value will do. An extremely small value is not the
best, because p should not be allowed to drop too low, so that it can
respond promptly to a changing situation (which doesn’t come up in the
example problem).

cost vs. Log stepSm | cost vs. Log steplLarg
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Figure 4.10: Influence of two other constants in the p adaption scheme
on cost after 40 iterations.

Control of the step size in the line search (the ratio between the actual
step Az and g Z) is based on the heuristic that the new step is likely of a
similar size as the previous one. The starting step size in the line search
adapts to the final step size of the previous, but is cannot change too much
at a time. The old step is multiplied by stepLarge (Fig. 4.10, right), and
the line search can then expand it to almost twice this size. Any value
above 1 will do, but a very large step will require many bisections and
waste time. Similarly the value of stepSmall is not critical; it is the
smallest factor by which the step size may be multiplied in one step.
This is a safeguard against the occasional very small, zero, or negative
step.

4.3 Examples and results

Figure 4.2 shows the starting point for the optimization; the right diagram
is a superimposition of the line patterns in Figure 4.1 (the iso-latitude
distance was increased to ). Figure 3.6 visualizes the result of the opti-
mization in different ways. The same vertex as in Figure 4.2 is marked.
In contrast to that figure, the areas of all elementary facets in parameter
space are now equal, and local distortions are minimized. The rotational
position of the net on the sphere is arbitrary. After the optimization,



the former poles have lost their prominent role. They have now the same
importance as any other point in parameter space and could lie anywhere
on the surface. However, the use of polar coordinates for visualization
still gives them a conspicuous appearance in Figure 3.6¢c. Figure 4.11
shows several stages of the optimization process. The starting configura-
tion, “0”, corresponds to Fig. 4.2a. The final result is obtained after 64
iterations; it has the label “64” and is the same as Fig. 3.6a.

Figure 4.11: Stages from an optimization run. The labels indicate the
number of iterations. “0” marks the starting configuration, where the
areas of the facets vary considerably. “64” is the final result; all facets
have now equal area, and distortions are minimized.






Chapter 5

The Spherical Harmonic
Descriptor

5.1 Spherical harmonics

There are many possibilities for choosing a set of basis functions which
are defined on the sphere. The spherical harmonic functions are a popu-
lar choice because they are relatively simple and have a number of nice
mathematical properties. They are introduced e.g. by Greiner [18].

5.1.1 Definition

Y™ denotes the spherical harmonic function of degree [ and order m.
The following definitions agree with [31]. The variable w is a scalar and
will correspond to uo below.

Legendre polynomials

P _ L4 1)! 5.1
l(w)—ﬁw(w_) (5.1)
Associated Legendre polynomials
Prw) = ()" -w)¥ o piw) (52)
—_1)ym m m—+1
— ( ) (1 _,w2)7 d - (w2 1)1



Spherical harmonic functions

Y™ (6,6) = \/”;f e PP (eose) ™ (53
Vm0,6) = (-1 6,0) (5.4)

A list of the spherical harmonics up to degree 3 (in table 5.1) ex-
emplifies these definitions. Both polar coordinates (6, ¢) and Cartesian
coordinates (ug,u1,us) are used. The Cartesian notation reveals that
spherical harmonics are just polynomials, in spite of the 2 exponent,

2
which means a square root if m is odd.
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Figure 5.1: Plots of ¥,(f = arccosw,$ = 0) up to degree 4. These
diagrams are scaled plots of the associated Legendre polynomials.

Figure 5.1 plots Y;™(arccosw,0) for 0 < m < [ < 5. The functions
Y™ take real values for ¢ = 0. The graphs give a quantitative impression
of the zonal amplitude variation of ¥;™. At the same time, they are plots
of the associated Legendre polynomials, except for a scaling constant (cf.
(5.3)). The leftmost column corresponds to the Legendre polynomials
themselves. Figure 5.2 gives a more qualitative impression of our basis
functions and their signs. The real parts of the spherical harmonics up
to degree 5 are displayed as gray levels on the surface of the unit sphere,
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Table 5.1: Explicit expressions of the spherical harmonics up to degree
3, in both polar and Cartesian form. The last part of the table gives the
common normalizing constants, e.g., Y = 1/3/4m us.
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Figure 5.2: The real parts of the spherical harmonic functions Y;™, with
[ growing from 0 (top) to 5 (bottom), and m ranging from 0 (left) to
[ in each row. The function value is mapped on the spheres, light grey
representing positive values and dark grey negative values.



which is the domain of ¥;™. The real-valued functions Y;° appear by
themselves in the left column (m =0). For m > 0, the imaginary part is
the same as the real part, rotated by —5.

A spherical harmonic function of degree [ is a polynomial of degree
l in ug, u1 and us. It can be written as a homogeneous polynomial of
degree [ (using the identity up? + u1? + u2? = 1, on Q3).

In some cases, we have to adopt an indexing scheme j(l,m) that
assigns a unique index j to every pair [, m, like e.g. j(I,m) := 12+ 1+ m.
When the degree of the spherical harmonics is limited, i.e. 0 <[ < ng, j
is also limited by j < n; = n?.

5.1.2 Expressing surface shape

With spherical harmonics the series (2.3) takes the form

00 l
=0 m=—
The coefficients
g =11
o’

in this series are three-dimensional vectors. Their components, ¢, ¢/}
and cj%, are complex numbers for m # 0 in general; they are real numbers
for m = 0.

For convenience, the real and imaginary parts of the complex basis
functions ¥;™ can be used as independent real valued basis functions. The
set of functions {Y,°, Re(Y;™),Im(Y;™)} (where I > 0 and 0 < m <) is
orthogonal but not normalized. For m > 0, § Re(Y;™)? = § Im(Y;")? =
%. The real functions might be scaled by v/2 for m # 0. There is the
same number of functions as with the complex basis, namely 2/ + 1 for
any non-negative [, or n? in total.

5.1.3 Variability of spherical harmonic surfaces

All of the following shapes are defined as spherical harmonic surfaces of
degree up to three, i.e. n; = 4. Each of x¢, 1 and x5 are defined by
the 16 coefficients in the corresponding series. They illustrate the wide
variability that can be achieved even with a low degree. Typically only
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Figure 5.3: Smooth rotational geometrical objects: vector valued series
of spherical harmonics represent a sphere, and they approximate a cone,
a double cone, and a cylinder.

a few (like 5 or 9) of the 48 coefficients are different from zero in the
examples.

The basis functions are smooth. The objects described by a truncated
series of the form (5.5) tend to be smooth as well (Fig. 5.3). But they can
have sharp edges or cusps as well, as Figure 5.4 illustrates. The first three

Figure 5.4: The lens has high curvature at the rim, and the top has a
sharp edge and points. Yet they are composed of low degree spherical
harmonics.

platonic polyhedra (Figure 5.5) can be modelled with the truncated set of
basis functions. The polyhedra in Figure 5.5 have rotational symmetries
of order two and three, and the cube and the octahedron have even fourth
order symmetry. More generally, an object using spherical harmonics up
to degree n; — 1 can have at most n;-ary rotational symmetry. Examples
for ny = 2...4 appear in Figure 5.6.

There is no reason to limit ourselves to star-shaped objects. Figure 5.7
lists a few that are not. The Dodecahedron and the Icosahedron would
need higher harmonics: but the tetrahedron uses only degree one and
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Figure 5.5: The tetrahedron, the cube or hexahedron, and the octahedron
are the three simpler ones of the five platonic polyhedra.

Figure 5.6: Objects involving spherical harmonics up to degree 1, 2 and
3 can have a 2-, 3- and 4-fold rotational symmetry.

two. The cube and the octahedron have no second degree component.
They only differ in the sign of the third degree contributions: starting
from a sphere, the points that move out on the cube move in on the
octahedron, and vice versa. The upper signs in (5.6) correspond to the
cube, the lower ones to the octahedron.

o —0.7071 Re(Y7) = 0.0745 Re(Y3) & 0.098 Im(Y33)
21| = | —0.7071 Im(Y{) £ 0.0745 Im(Y3) + 0.098 Re(Y3) | (5.6)
B 0.5 Y% ¥ 0.0863 Y0

Objects with symmetries have been used in the examples up to now be-
cause their whole shape can be perceived or at least guessed from a single
view. The chosen objects are special cases with respect to symmetry and
not representative in that sense for shapes expressable with spherical
harmonic descriptors. Figure 5.8 gives an example of a general object.



Figure 5.7: Neither of these is star-shaped: A monkey saddle, a croissant
and a vase. In the last image, the vase is cut open to reveal the folding

in of the surface.

Figure 5.8: A “random” asymmetric blob shaped object




5.2 Harmonic shape descriptors

Section 3.4 introduced the parametrization of the surface of a simply con-
nected object. The parametrization provides a correspondence between
any surface vertex x; and its parameter u;, which can be interpreted as
the sampling of a function z(u), i.e. u[i] — z(ufi]) = z[i]. Now z(u)
is expanded into a series of spherical harmonics as in (5.5), or into any
other set of basis functions

The coefficients of the spherical harmonic functions of different de-
grees provide a measure of the spatial frequency constituents of the struc-
ture. Partial sums of the series (5.5) for the “duck” test object are plotted
in Figure 5.9. The sums are truncated by limiting [ to 0 < [ < n;, where
n; = 2,4, 8. As higher frequency components are included, more detailed
features of the object appear.

(a) (b) (c)

Figure 5.9: Global shape description by expansion into spherical har-
monics: The figures illustrate the reconstruction of the partial spherical
harmonic series, using coefficients up to degree 1 (a), to degree 3 (b) and

7 ().

5.2.1 Integration over the sphere

The use of orthonormal basis functions is convenient for the calculation
of the expansion coefficients. Formally, the coefficients are calculated by
forming the inner product of z with the basis function in question:
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The parametrization defines the function z(6, ¢) only for the parameter
coordinates of the vertices. Only z(0;, ¢;) = z, is defined, where i is the
index of a vertex, 0 < i < nyert. For the evaluation of the integral (5.7)
we would have to define an interpolating function between these sample
points; an adaptation of bilinear interpolation could be used for this pur-
pose. But this would introduce an artificial sub-voxel resolution that is
not supported by the input data. On the other hand, the straightforward
discretization of the integral is

Nvert—1

o~ Y nY(6e)AQ (5.8)
1=0

with the finite AQ replacing d2 = d¢ sin 6’d0 There are two possibil-
ities for choosing A€). Setting A2 = -
evenly over all vertices. But it might be argued that the area of a facets
is relevant, and hence should be distributed to its four corners. Then
AQ = 41;"“”’5 , where count; is the number of neighbors of vertex i.
But neither of these schemes in general gives the precise coefficients of a
series representing our object. The reason is that although the functions
Y,/™ are orthonormal, their values evaluated at some set of parameter
pairs (6;, ¢;) will generally not form an orthonormal set of vectors.

We can arrange all needed values of our basis functions in a nyert X 1
matrix B where b; jq.m) = Y™ (0;,¢;). In the usual case where n; is
significantly smaller than ne;¢, the columns of B are approximately or-
thogonal. We further arrange the object space coordinates of all vertices
in an Nyery X 3 matrix X = (zg,2,...2, ._;)" and all coefficients in
the n; x 3 matrix C = (cJ,¢; ', ¢y...)T. The equations (5.8) for all [
and m take the compact form C ~ n4” BT X. But what we really want
is a spherical harmonic series that passes near the real positions of our
vertices, i.e. X = BC + E where the error matrix £ should be small.
These so-called normal equations are solved with least square sums over

the columns of E by

C = (B'B)"'BTx . (5.9)

The formula 5.9 mathematically states the use of the pseudo-inverse of
B: it does not imply a numerical evaluation of the matrix expressions on



the right. The global approximation error is the square of the Frobenius
norm of £ = BC — X, which is also minimized. This is not too different
from (5.8) because the symmetric n; x n; matrix n4—7’tBTB is close to
the identity matrix. -

5.2.2 Invariant descriptors

The coefficients obtained thus far still depend on the relative position
of the parameter net of the object surface and on the orientation of the
object in space (Figure 3.6). We can get rid of these dependencies by
rotating the object to canonical positions in parameter space and object
space. This needs three rotations in parameter space and three rotations
in object space, when rotations are described using Euler angles. All
rotations result in new linear combinations of the components of the
harmonic descriptors.

The relations between the Cartesian and the spherical coordinates of
the parameter space are ug = sin € cos ¢, u1 = sin sin ¢ and us = cos#.
To define a standard position we consider only the contribution of the
spherical harmonics of degree [ = 1 in equation (5.5).

z,(0,9) = c* Yi"(0, ) (5.10)
m=—1
. . . . -1 \/g o 0o __
This sum involves the basis functions Y7~ = ¥z (ug —iuy), Yy° =
%UQ and Y = — 2\{%(% + du1). Any three real valued linear com-

binations ! of these, interpreted as Cartesian coordinates in the object
space, will always describe an ellipsoid(see Figure 5.9 a). We rotate the
object in parameter space so that the north pole (6 = 0, on the us axis)
will be at one end of the shortest main axis of this first order ellipsoid
and the point where the Greenwich meridian (¢ = 0) crosses the equator
(6 = 5, on the ug axis) is at one end of the longest main axis.

This paragraph explains how I determine the main axes. At the three
main axes, the length of the vector z,(,¢) is stationary: it reaches
a maximum, a saddle point, and a minimum, respectively. Measuring
FEuclidean lengths becomes simpler when we transform the component
vectors to a Euclidean, real valued form. Applying the definitions of the

1 . . . . . —1\* _ 1 0 3
The combination z, is real if and only if (91 ) =-crandc; € R



Y™ yields

U
z,(u) = Au = A|luw | = ayup+ayus +azus , (5.11)
Uz

where

A == (Q17Q27Q3)

\/3(1_
2V/2m

We are looking for the unit vectors 4, @, and @5 that maximize or
minimize the length of the vector. The solutions are the eigenvectors
of AT A, with nonnegative eigenvalues I3 > I3 > 12. Their roots 1, lo
and [3 represent half the lengths of the main axes of the ellipsoid. At the
middle eigenvector, @, ||z,|| has a saddle-point rather than an extremum.
The normalized eigenvectors form the rotation matrix RL = (i, s, G3),
which is applied to the parameters u[i] associated with each vertex i:
uli] = Rf u;. This new parametrization results in new coefficients g}"'
and hence in the new coefficient matrix A’ = AR,. Its three column
vectors @'y, d’, and a5 are the main axes of the first order ellipsoid in
object space.

All rotations are determined based on the values of QTI (m'=-1...1)
of the ellipsoid only, but they are applied to all components of the descrip-
tor {¢/*}. The parameter space rotations result in a different description
of the same object in the same position, just parametrized in a standard
way.

Now, the ellipsoid is rotated in the object space to make its main
axes coincide with the coordinate axes, putting the longest ellipsoid axis
along z¢ and the shortest one along 2. The ob ject space rotations require
only the matrix multlphcatlon "’ = Ry ™. The object space rotation

chiler +ef),V2eh) . (5.12)

matrix is R, = dlagonal(l : l i Ly. A", It rotates the main axes of the
ellipsoid into an axis- parallel posmon and makes the coefficient matrix
A” = R, A" = R, AR, diagonal. The elements of the diagonal are

the lengths of the main axes of the ellipsoid.

Parameter Visualization

This subsection introduces a specific surface pattern. The pattern is
gray valued and covers the whole surface of an object. It always stays
fixed with relation to the parameter space {23. This makes it possible to
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Figure 5.10: The components of the pattern are a sawtooth function of
0 (left), and a ramp plus a rectangle function of ¢ (right).

estimate the parameter value associated with a location on the surface
from the shading of is neighborhood. The pattern makes visible the
parameter space rotations described above.

The brightness of the pattern varies with 6 in a sawtooth fashion,
cf. Figure 5.10a, and with ¢ in a ramp and rectangle function, cf. Fig-
ure 5.10b. The whole pattern is the additive superposition of the 8 and
¢ contributions; Figure 5.11 presents it. The diagrams of Figure 5.10
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Figure 5.11: This pattern, when mapped to an object surface, reveals
the pose of the parameter space. The 6 axis points down to preserve a
right handed coordinate system. The top border § = 0 corresponds to
the north pole, the bottom border # = 7 is the south pole.



illustrate that the functions interpolate linearly between sample points

spaced g7 apart and that there are no discontinuities (jumps). Even the

descent in the wrap around for ¢ extends from 1%% to 2r = 0 and is

continuous.

(a) (b)

Figure 5.12: The simplest object, a sphere, exemplifies the interpretation
of the surface pattern. The specular highlights don’t belong to the pattern
but are added for a better 3D impression. (a) The north pole is visible
from the standard view point. We perceive it as the center of a bright
circular zone in spite of its dark center (the pole itself). (b) The region
of the south pole, on the contrary, appears as a dark zone, although the
pole has actually a light shade.

In Figure 5.12 the surface pattern covers the sphere x = u. This is the
simplest possible object, because here only first degree terms contribute,
and the object space coordinates are identical with the parameter space
coordinates. Figure 5.12 might be called a “picture of the parameter
space”. It should help the interpretation of the following pictures that use
the same pattern for parameter coding. The sphere is striped lengthwise
with 16 sectors, each 8 lighter and darker ones. The stripes meet at the
poles. The shading becomes slowly brighter as ¢ increases, i.e. towards
east (cf Fig. 5.10b). With the normal (right handed) orientation of the
parameter space, this gives a positive or counterclockwise increase of the
brightness around the north pole and a negative or clockwise increase
around the south pole. After one turn, the intensity leaps back from
brightest to reach the darkest value on the Greenwich meridian. When
moving southward, i.e. with increasing 6, the shading gradually becomes
lighter, only to drop back to the same dark level every g (cf Fig. 5.10a).
The slow brightening from the north pole to the first maximum at 7 /8
is less visible than the rapid drop that follows, so that the north pole



appears as the center of a bright disk (but this center is dark!). The
opposite is true at the south pole, which is the bright center of circle
with a dark border?.

Figure 5.13: This nine voxel object will illustrate the standardization
of descriptors and their comparison, including symmetry considerations.
The object itself is completely asymmetric. Two steps of a stair sit on
top of a 3 by 2 base plate. We call the object “stair”.

To illustrate the descriptor and its rotations in parameter and object
space, a test object should be very simple, but it must not have symme-
tries with respect to any plane, straight line, or point. Symmetries are
frequent in few-voxel objects, but they would make the pose ambiguous
and interfere with the symmetry discussions below in subsection 5.3.1.
The nine voxel object in Figure 5.13 is fit for the purpose.

Parametrization of the surface and expansion into the spherical har-
monic basis yields a descriptor for the object. Partial series of (5.5) define
surfaces of increasing levels of detail. They visualize the descriptor in Fig-
ure 5.14, and they illustrate its hierarchical organization from coarse to
fine. Thanks to the surface pattern, the relation to the parameter space
Q3 is visible.

Figure 5.15 shows the descriptor ¢ before any standardization. The

2The intensity drop that should happen exactly at the south pole is suppressed.
The isolated dark spot would be distracting.
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Figure 5.14: The “stair” object, reconstructed from its descriptor. The
numbers indicate the maximum degree [ in the partial sum, i.e. n; — 1.
As higher frequency components are added, more and more details show
up. This is not the standard view: zg increases towards front and left, z;
towards front and right, zo upwards. The new view point gives a better
look at the north pole.




(1)

Figure 5.15: The raw descriptor of the “stair” object. Left: The first
degree ellipsoid. Right: Reconstruction up to degree 9 (n; = 10). The
edges of the original object give an impression of the accuracy of the
partial sums. Standard view: zg increases towards the right and front,
x1 to the back and right, and z5 increases upwards.

subsequent steps take as their reference the first degree ellipsoid, which
appears in the left image. Their effects on both the ellipsoid and the full
object (n; = 10) are shown in each case.

Parameter space rotation takes us to Figure 5.16, showing ¢’. The
poles (# = 0 and & = 7) end up on the shortest main axis, and the
Greenwich meridian (¢ = 0) passes through the longest main axis. The
resulting descriptor still represents exactly the same geometrical surface.
The superimposed wireframe of the original “stair” object confirms that
the object has not moved in object space. The object space rotation now
leads to a descriptor ¢’ in canonical position (Figure 5.17). The edges of

3
the cube [0, V3/ 8%} are overlaid as a reference of size and orientation.

The main axes of the ellipsoid and of its parametrization line up with
the coordinate axes. The final scaling makes the coefficient of Re(Y7),
which corresponds to the longest main axis, equal to 1. The half length
of the longest axis becomes —Y{'(%,0) = —f{((1,0,0)") = /3/8x. For
the descriptor of a reasonably sized object, this is a shrmkmg by several
orders of magnitude.



Figure 5.16: The descriptor of the “stair” object after parameter space
rotation. Left: The first degree ellipsoid. Right: Reconstruction up to
degree 9 (n; = 10). Standard view. The wireframe of the original object
is overlaid again.

(1)

Figure 5.17: The descriptor of the “stair” object in canonical position.
Left: The first degree ellipsoid. Right: Reconstruction up to degree 9
(nl = 10)



¢’ are now invariant under rotation of the object,

except mirrorings (rotations by 7). Including information from higher
degree coefficients could eventually disambiguate these cases. Subsection
5.3.1 presents an alternative approach, which considers all possible mir-
rorings. Ignoring ¢ results in translation invariance. Scaling invariance
can be achieved by dividing all descriptors by /1, the length of the longest
main axis.

The descriptors ¢

5.2.3 Importance of uniform parametrization

This thesis thus far assumed that a homogeneous density and a minimal
distortion of the parameter net would be important for shape character-
ization, especially for obtaining an invariant description. Similarly, the
2-D expansion of contours s(t) into series of harmonics [23] was based on
the model of tracing a curve with constant velocity, i.e. assigning same
lengths AL to equivalent parameter steps At. A non-uniform distribution
of parameters on an object surface, e.g. by clustering at certain locations,
seems to be suboptimal with respect to a uniform representation of the
whole surface. One would expect an over-representation of some parts at
the expense of other regions, resulting in a distorted shape description.

The importance of a parametrization with minimal distortion can be
demonstrated with an experiment. The expansion into a series of spheri-
cal harmonics is calculated for both the non-uniform initial parametriza-
tion (bypassing the optimization step for this part of the experiment)
and the result after optimization. A manifestly non-star-shaped form
was chosen: the original object consists of 11 voxels and is shaped like
the character E. Its initial and optimized parametrizations are given in
Figure 5.18 for comparison. The diagrams correspond to Figures 4.2a
and 3.6a.

Figure 5.19 illustrates the expansion in a spherical harmonic series up
to degree ten and the truncated reconstruction up to degree one (top),
four (middle) and ten (bottom) for the initial (left) and optimized (right)
parametrization. (A five-fold oversampling was applied to the surface to
represent it accurately. This may be viewed as a rough form of numerical
integration.) Comparing the expressive difference, one can conclude that
a uniform parametrization is absolutely essential to obtain useful spher-
ical harmonic descriptors. Even from the distorted initial parametriza-
tion, descriptors can be derived, that are necessarily “optimal” in the
least squares sense, but the series of harmonics does not reflect the shape
properties of the surface. Using the optimized parametrization, coeffi-



Figure 5.18: Two different parametrizations of the “E” object. Left: The
initial parametrization is the starting point of the optimization. Right:
The optimized parametrization.

cients of higher degree add information about details of higher spatial
frequency; this is desirable. The first degree harmonic approximation
(Figure 5.19b) covers the whole object and comprises information about
the major size and elongation, whereas the three “legs” of the E-shape

appear in the reconstruction using harmonics up to degree four (Fig-
ure 5.19d,f).

5.3 Comparison and Recognition of Shapes

The main purpose of invariant spherical harmonic descriptors is to trans-
form the task of comparing the shape of two objects to the simpler com-
parison of their descriptors.

In the truncated series, [ takes the n; different values 0,1,...n; — 1.
The descriptor presents itself as "12 three-vectors or as one flat 3 n?—vector.
Thanks to the invariance properties of the descriptors, the similarity be-
tween the feature vectors of two objects measures the similarity between
their shapes. One of the simplest dissimilarity measures is the Euclidean
distance between the feature vectors. This is the same as the Ly norm
of the difference of the two vectors. The square of this quantity is the
sum of the squared differences between corresponding entries in the two
vectors.



Figure 5.19: Homogeneous parameter distribution is important for shape
description. The “E”-shaped object surface, indicated by a wireframe,
is expanded into a series of spherical harmonics. The Shaded surfaces
depict the reconstructions of the series up to degree 1 (a,b), 4 (c,d), and
10 (e,f). The initial, non-uniform parametrization yields a poor shape
representation (a,c,e); its optimization achieves a significant improvement
(b,d,f). ||E||r measures the error quantitatively; n;elréz |E||F gives the
RMS distance in pixel units (a: 1.143, b: 0.884; c: 0.729, d: 0.250; e:
0.313, and f: 0.102).



5.3.1 Symmetries of the Ellipsoid

The symmetry of the first degree ellipsoid allows for four different stan-
dard orientations of the object. Each of them results from the other three
by mirroring (rotating by 7) about one of the three main axes. The four
pose transformations form a commutative group with respect to concate-
nation. The group is known as Klein’s four-group. The concatenation of
two mirrorings results in identity if they are about the same axes, and in
a mirroring about the third axis if they are different. An object can flip
in this way in parameter space and in object space independently, which
gives rise to sixteen combinations. In the comparison of two descriptors,
the minimal distance resulting from any of the sixteen relative flips is
relevant as the dissimilarity measure.

Any 7 flip leaves the magnitudes of all coefficients constant, however
it changes the sign of some of the ¢}, where 0 < k < 3 enumerates the
object space coordinates. A mirroring (7 flip) at the zx axis in object
space flips the sign of ¢} if k' # k. For example, a flip around the z
axis changes the signs of all ¢} and ¢]%. The situation is less simple for
flips around the parameter axes. The definition of the spherical harmon-
ics Y, (eqn. 5.3) is helpful to determine which coefficients change sign
in response to parameter space flips. (ug? — 1)’ is an even symmetric
polynomial of degree 2/ in us. Its [ + m-th derivative is a polynomial of
degree 2l — (I +m) = | — m. This derivative is even symmetric when
[ — m is even, and odd otherwise. Multiplying it with the even function
(1 — u32)™/2 does not change its symmetry and yields a multiple of P™.
Constant factors are insignificant for the present symmetry considera-
tions. Y;™ (up to a constant factor) results from the multiplication by
e'™? = (up + iuy)™. The real part of the latter is m-symmetric in ug
and even in uy. The imaginary part is (m — 1)-symmetric in ug and odd
in wy; it vanishes for m = 0. In terms of symmetry, ¥, is equivalent
to ub ™ ult (1 4+ iuguy) (only the parity of the exponents is relevant).
Table 5.2 summarizes the sign changes.

The formulas in this table cause the sign change pattern that table 5.3
makes explicit. Any flip around one axis is the concatenation of the flips
around the other two axes, and the condition for any one sign change is
the exclusive disjunction of the other two.

Object recognition tries to match a given object with a similar one
out of a collection of known model objects. If it is to use some form
of descriptors, it has to describe all model objects and collect their de-
scriptors ahead of time. The recognition then takes two steps. First it



A flip changes | multiply multiply
around axis | signs of | Re(¢;*) by | Im(c*) by
uo U1, Us (_1)l—|—m (_1)l—|—m+1

Uy Up, U2 (—1)l (_1)l+1

u9 Ug, Uz (—1)m (—1)m

Table 5.2: The sign changes that parameter space flips cause.

Il | m=0 1 2 3 4
Re Im Re Im Re Im Re Im

O _

1 01 12 02

2 — 02 12 - 01

3 01 12 02 01 - 12 02

4 — 02 12 - 01 02 12 - 01

Table 5.3: The formulas in table 5.2 evaluate to this sign change pattern.
A “0”, “1” or “2” entry means this coefficient changes sign when the
object is mirrored on the ug, u; or uo axis, respectively. The sign of an
coefficient marked “—” will never change due to a 7 rotation about any
parameter axis.

describes the unknown object. Then it compares that descriptor with
all the descriptors of the models. If any distance is less than a preset
dissimilarity threshold — or tolerance —, the unknown object is considered
to match the corresponding model. A particular strategy might pick the
closest match if several existed. For a large model database, indexing
can give significant savings compared to the comparison with all model
descriptors.

When the task is not only to recognize an object but also to estimate
its pose, the parameters of the transformation to standard position, ori-
entation and size must be stored along with each descriptor. The trans-
formation has 7 degrees of freedom, divided in 3 for translation (in cJ),
3 for rotation, and one for scale.



5.3.2 Limitations

A word of caution is in order. The descriptors introduced above are prone
to serious quantization artefacts. These can lead to the undesirable situ-
ation where two copies of the same object produce different descriptors,
although they are only rotated, translated and/or scaled with respect to
each other. When the object is too small, i.e. of the order of a few voxel
units, a sampled voxel version cannot represent it adequately. Sampling
the object thus misses shape aspects that cannot be recovered from the
voxel collection. This leads one kind of quantization artefacts which can
be corrected by sampling the object at sufficient resolution.

The parametrization by its construction assigns exactly the same
amount of parameter space to each surface facet. But there are situ-
ations that do not justify this. The same planar area on the surface of an
ideal object corresponds to a varying number of facets, depending on its
orientation. When the planar surface is parallel to one of the coordinate
planes and is sufficiently large, it is discretized into a number of facets ap-
proximately equal to its true area, measured in square grid units. When
we rotate the surface by 7 /4 around one of the two coordinate directions
it is parallel to, its quantization turns into a stair, and the number of
facets for the same area multiplies by v/2. When the surface is orthog-
onal to (1,1,1)7 (diagonal in space), the number of facets is even /3
times the true area. The various regions of an object’s surface can claim
different amounts of parameter space with respect to each other, depend-
ing on the rotational position of the object. This leads to a different
parametrization and hence to different descriptors, which cannot made
invariant. If there is an object that presents this problem, the problem
will persist, no matter how fine the discretization is.

5.3.3 Experimental results

In a student project, Matteo Frapolli compared the spherical shape de-
scriptors for a number of small test objects. Table 5.4 presents the
objects he prepared for these experiments. He calculated invariant de-
scriptors for all the test objects. Table 5.5 lists all the distances between
the descriptors of any two shapes. Spherical harmonics up to degree 7
have been used, i.e. n; = 8. As a metric, this matrix must be symmetric.
The most similar objects are “c” and “c2”, as expected. Discretization
artefacts cause the remaining differences; the small objects are at the
limit of the resolution.



Table 5.4: A collection of simple test objects for shape comparison, to-
gether with their working names. Object “c2” is a copy of “c”, enlarged
by voxel replication.
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0 0.3957 0.3910 0.1553 0.2064 0.2588 0.1759 0.2079
0.3957 O 0.0159 0.5251 0.1811 0.5255 0.5381 0.2388
0.3910 0.0159 O 0.5296 0.1824 0.5386 0.5094 0.2412
0.1553 0.5251 0.5291 O 0.3133 0.2071 0.2779 0.2884
0.2064 0.1811 0.1824 0.3133 O 0.3237 0.2830 0.1132
0.2588 0.5255 0.5386 0.2071 0.3237 O 0.3364 0.3267
0.1759 0.5381 0.5094 0.2779 0.2830 0.3364 O 0.3239

0.2079 0.2388 0.2412 0.2884 0.1132 0.3267 0.3239 O

Table 5.5: Dissimilarity between the descriptors and hence between the
shapes of any two of the small test objects.

Larger Objects

The surfaces of the following test objects are parametrized, and their
shapes are expressed with spherical harmonic descriptors.

c4 A “c”’-shaped polyhedron made up from five 4x4x4 voxel cubes.

c8 The same object, magnified by a factor of two in all coordinate
directions.

bor A The voxels fill a rectangular box, which is not aligned with
the coordinate axes.

bor B Rotating the box A results in a completely different sampling.

patella The patella was extracted from a segmented CT scan data
set of a human knee.

ventricle The ventricular system has been segmented from a MRI
data set of a hydrocephalus patient®. We selected one lateral ven-
tricle. The data has been interpolated to compensate for the aspect
ratio of 1:1:6.4 of the original data.

For each object, Figures 5.20, 5.21, and 5.22 present the cuberille in-
terpretation of the input data, a spread-out graph of the parametrization,
and the reconstruction from spherical harmonic descriptors. The cylin-
drical projection we chose for drawing the parametrization shows the

3Data courtesy Ron Kikinis, M. D., Surgical Planning Lab, Department of Radi-
ology, Brigham and Women’s hospital and Harvard Medical School, Boston



true area ratios. The smooth surface of the reconstruction is shaded in a
pattern that allows the estimation of the parameter values. These latter
parameter values do not coincide with the ones in the middle diagram.
They rather differ by the rotation in parameter space that makes the
descriptors rotation invariant. The object space rotation is suppressed in
the diagrams to show the spatial relation of the original data — shown as
a wireframe — with the reconstruction from the descriptor, up to degree
8. In the case of the ventricle, this shows an insufficient degree of detail,
but the same value was chosen for comparability.

Table 5.6 summarizes the sizes and differences of the various test
objects. Virtually all of the processing time for an object is spent in
the optimization. The figure for computation time must be interpreted
with caution; it qualifies only the optimization program, which is not
necessarily as efficient as possible, and which might be substituted with
an out-of-the box optimizer. Times are measured on a HP 9000/735.
The number of vertices, nert, indicates the size of the problem: the
optimization has 3 mnye+ variables, 2n ey — 3 equality constraints and
4 nyery — 8 inequality constraints.

The distance between the descriptors appears to be a valid rough
measure of shape dissimilarity. The matrix of distances is symmetric by
definition. The two “c”s are most similar to each other. The two boxes
are also quite similar. Both these examples illustrate the translation,
rotation and scale invariance of the descriptors. The patella is more
similar to a box than to a “c”, whereas the ventricle is more similar to a
“c” than to any of the other objects.
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name

box A  box B c4 c8 patella  ventricle
Nvert 628 902 354 1410 2182 37654
time 33 s 267 s 26 s 338 s 536 s 28 h
distance to
box A 0 0.0241 0.2370 0.2378 0.0673 0.3850
box B 0.0241 0 0.2796 0.2808 0.0859 0.4555
c4 0.2370 0.2796 0 0.0002 0.2309 0.2175
c8 0.2378 0.2808 0.0002 0 0.2299 0.2143
patella 0.0673 0.0859 0.2309 0.2299 0 0.2623
ventricle 0.3850 0.4555 0.2175 0.2143 0.2623 0

Table 5.6: Comparison of the six test objects, including the squared
Euclidean distances between their descriptors.






Chapter 6

Conclusions

This thesis presents new techniques to generate explicit parametric rep-
resentations of convoluted object surfaces with minimal distortion. The
new techniques allow characterizing 3-D surfaces by invariant spherical
harmonic shape descriptors. We have overcome traditional limitations of
expressing an object surface by explicit parametric representations. The
limitations were the restriction of star-shaped objects, the non-uniform
spacing of parameters on the object surface, and often a specific choice
of the parameter coordinate system with respect to the object geometry.
The parametrization technique is described in detail for closed surfaces
of simply connected objects, but it generalizes naturally to the unfolding
or flattening of complex surface patches (open surfaces with one more
edges, including tubes). Other classes of simple 3-D surfaces with differ-
ent topology, for example tori and pretzels, are not considered.

The following paragraphs summarize the properties of the novel sur-
face analysis techniques.

Parametrization: The unfolding and optimization procedure maps
nodes of the surface net onto a sphere. Each node is associated with a
voxel vertex, and its position on the sphere can be expressed with two
parameters. The procedure imposes no restrictions regarding the geom-
etry of objects and is suitable for surfaces of arbitrary complexity. An
initial diffusion of “temperature” on the object’s surface achieves a con-
tinuous mapping by assigning co-latitude and longitude to each surface
vertex. The position of the poles and the geometry of the object pro-
duce a clustering of parameters at certain regions of the object surface.
This non-uniform distribution of parameter density on the object surface



is corrected with a nonlinear optimization technique, which restores the
area ratios of the original surface elements in parameter space and mini-
mizes their distortion. The latter is formulated as the goal function of the
nonlinear optimization problem and the former as its constraints. The
resulting arrangement of the vertex nodes on the sphere (in parameter
space) reflects the geometry of the original shape and achieves similar
parametrizations for similar shapes, however, it is free to rotate around
any axis as no surface points are kept fixed. It must be pointed out that
the polar coordinate system for spherical surfaces is only used for the sake
of visualization. This coordinate system itself determines a non-uniform
tessellation of the sphere and may give a misleading visual impression,
making parameters seem denser than they are the poles (see e.g. Fig-
ure 3.6). An alternative displaying technique is found by tessellating the
sphere into a different pattern of small cells, for example with regular or
semiregular polyhedra (Figure 2.9).

The parametrization of object surfaces forms an intermediate repre-
sentation with the following properties:

e The surface of arbitrarily shaped (but simply connected) objects
can be parametrized. Objects are not restricted to a limited family
of shapes; even protrusions and intrusions are dealt with appropri-
ately.

e The surface is represented explicitly by the variation of two param-
eters, expressing the properties of local surface neighborhoods as
well as of the global shape.

e The parametrization results in a continuous, one-to-one mapping
of surface vertices to a sphere. While varying the vector u (or the
two parameters # and ¢) over the parameter range, each point of
the surface is visited exactly once.

e The optimization yields a unique, reproducible solution (except for
rotation).

e The parametrization preserves areas exactly and minimizes local
distortions which cannot be avoided when mapping an object with
corners to a sphere (see location marked by a black dot in Fig-
ures 3.6 a, b and c¢). The uniformity of the parametrization is
important for a subsequent shape description, as illustrated in Fig-
ure 5.19.



The parametrization technique is potentially interesting for applica-
tions where a mapping of convoluted object surfaces to a surface of mini-
mal curvature is required. The unfolding or flattening process with mini-
mization of distortions generates a representation which could serve as a
useful intermediate surface description for many structure analysis pro-
cesses. The only restriction, i.e. the presence of the closed surface of a
simply connected object, highlights the generality of the approach.

As discussed previously, the unfolding is in principle not restricted
to closed surfaces. Ongoing developments focus on a similar technique
for flattening parts of surfaces onto planar charts. This procedure could
be interesting for the comparative analysis and description of convoluted
surface patches. Practical applications can be found in brain research,
for example, where regional cortical patterns of the human brain are
qualitatively and quantitatively analyzed.

Applications are still constrained by the efficiency of the nonlinear
optimization. Although the method itself poses no restriction on the
maximum number of object vertices, the commonly available optimiza-
tion routines cannot be applied for a large number of vertices (exceeding
several hundreds). In real applications, e.g. the analysis of volume data
in medicine, one can expect to deal with object surfaces with up to one
million voxel vertices. We are presently developing an optimization tech-
nique which takes into account the sparsity of the problem and the specific
nature of the local constraints.

Shape description: The new parametrization allows representation
of object surfaces of arbitrary complexity. As one possible approach to
global shape analysis, it enables us to expand an object surface into a
series of spherical harmonic functions. The numerical coefficients in the
Fourier series represent an object-centered, surface-oriented descriptor
of the object’s form. Surface description with harmonic descriptors is
no longer restricted to star-shaped objects but can now be applied to a
broad class of shapes. Invariance has to be considered as one of the most
important properties of shape description, as it only allows a compara-
tive analysis between different objects or a match between objects and
models. With the development of new scale and rotation independent
descriptors we obtain a global, object-centered shape description which is
invariant to standard transformations (rotation, translation and scaling).
The invariant positioning of the object and of the parameter net are based
on the analysis of harmonic descriptors up to the first degree, defining
the three main axes of the ellipsoid. The symmetry of this low frequency
representation determines a general 3-D object only up to four different



positions. Including coefficients of higher degree could disambiguate the
different cases and avoid a matching using four different object descrip-
tions. For example, the second degree contribution can be evaluated at
the extremal points of the first degree ellipsoid.

Applications of global object representation and description in com-
puter vision and image analysis are imminent. Generality with respect
to object complexity, invariance to standard transformations, and de-
scriptive power in terms of object geometry are the critical issues for
shape-based categorization and comparison of 3-D objects. For instance,
robot vision and medical image analysis are dealing with recovering the
global shape characteristics of objects. Whereas the former most often
deals with a small number of views of objects and hence only a partial
surface description, modern scanning techniques in medicine can pro-
vide full 3-D images. Mapping of convoluted surface structures and high
level 3-D shape descriptions of anatomical objects (e.g. the heart cavi-
ties, the ventricular system or cortical substructures of the brain) will
play a significant role in the analysis of shape dissimilarities, morpho-
logical deformations and in the comparison of malformed with “normal”
shape structures. The overall shape is captured by a small number of pa-
rameters, expressing structural details at various scales with coefficients
of different degrees. The continuous analytical description of the ap-
proximated surface permits to compute local differential characteristics,
e.g. principal curvature [33]. Inferring the differential structure would
result in a characterization of important landmarks, e.g., for registration
of different 3-D objects.
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Chapter 7

Appendix: Polar
Coordinates for () and ()3

The generalized sphere Q41 in R™"' is an m-dimensional manifold
(hypersurface). It is defined as

Q1 = {513:(xo,...xm)T||:U|2:a:g—|—...:1:$n:1}. (7.1)

A location on €2, is identified by m + 1 Cartesian or m polar coordi-
nates. The cases m = 1 (the circle) and m = 2 (the sphere) are important
in this thesis. The Cartesian coordinates ug and u; (and ug in 3D) are
related to the polar ¢ (and € in 3D) by the relations

ug = Cos¢ (7.2)
u; = sing
in 2D and
ug = sinf cos¢
u; = sinf sing (7.3)
Uy = cosf

in 3D.
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