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Computation Anatomy
• Precise Computational study of Anatomical Variability.
• First attempts to bring mathematical insight were made 

by D’Arcy Wentworth Thompson (1860-1948) 
“In a very large part of morphology, 
our essential task lies in the 
comparison of related forms rather than 
precise definition of each; and the 
deformation of a complicated figure 
may be a phenomenon of easy 
comprehension though the figure itself 
have to be left unanalyzed and 
undefined” ---1917 D. W. Thompson: 
“On Growth and Form”
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Image Understanding Via Computational Anatomy

•Deformable Image Registration. Map a family of 
images to a single Template Image
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Motivation:A Natural Question

• Given a collection of Anatomical Images 
what is the Image of the “Average Anatomy”
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Motivation: A Natural Question

What is the Average?

Consider two simple images of circles:
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Motivation: A Natural Question

What is the Average?
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Motivation: A Natural Question

Average considering “Geometric Structure”

A circle with 
“average radius”
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Motivation: A Natural Question

Simple average:
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Motivation: A Natural Question

Average considering “Geometric 
Structure”
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Mathematical Foundations 
Computational Anatomy

• Homogeneous Anatomy characterized by
• :The underlying coordinate system with a collection of 0,1,2 and 3 

dimensional compact manifolds of   
0-Dimensional –Landmark points
1-Dimensional –Lines
2-Dimensional –Surfaces
3-Dimensional –Sub-Volumes

• A set of transformation of    accommodating 
biological variability.

• I Set of anatomical Imagery (CT, MRI, PET, US etc…)

• P: A probability measure on the set of transformation. 
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Interesting Spaces
• Image intensities I well represented by 

elements of flat spaces:
– L2 :Square integrable functions.

• Structure in Images represented by 
transformation groups:
– For circles simple multiplicative group of positive 

real’s (R+)
– Scale and Orientation: Finite dimensional Lie Groups 

such as Rotations, Similarity and Affine Transforms.
– High dimensional anatomical structural variation: 

Infinite dimensional Group of Diffeomorphisms
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Space of Images and Anatomical 
Structure

• Images as function of a underlying coordinate 
space 

• Image intensities          
• Space of structural transformations:             

diffeomorphisms of the underlying coordinate 
space  

• Space of Images and Transformations a semi-
direct product of the two spaces.
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Mathematical Foundations of 
Computational Anatomy

• transformations constructed from the group of 
diffeomorphisms of the underlying coordinate system
– Diffeomorphisms: one-to-one onto (invertible) and differential 

transformations. Preserve topology. 

• Anatomical variability understood via transformations 
– Traditional approach: Given a family of images                  

construct “registration” transformations                                     
that map all the images to a single template image or the Atlas.

• How can we define an “Average anatomy” in this 
framework: The Atlas estimation problem!! 
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Large deformation diffeomorphisms

• Space of all Diffeomorphisms           forms 
a group under composition:

• Space of diffeomorphisms not a vector 
space.
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Large deformation diffeomorphisms.
• infinite dimensional “Lei Group”

(Almost). 
• Tangent space: The space of smooth velocity 

fields.
• Construct deformations by integrating flows of 

velocity fields.

)(ΩDiff
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Large deformation diffeomorphisms.

•Proof:  Existence and Uniqueness 
of solutions of ODE’s.

•One-to-one: Uniqueness

•Differentiability: Smooth dependence 
on initial condition.
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Relationship to Fluid Deformations

• Newtonian fluid flows generate 
diffeomorphisms: John P. Heller "An Unmixing
Demonstration," American Journal of Physics, 28, 348-
353 (1960). 
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Simple Statistics on Interesting 
Spaces: ‘Average Anatomy’

• Use the notion of Fréchet mean to define 
the “Average Anatomical” image.

• The “Average Anatomical” image: The 
image that minimizes the mean squared 
metric on the semi-direct product space 

)()(2 Ω⊗Ω DiffL
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Metric on the Group of 
Diffeomorphisms: LDMM

• Induce a metric via a Sobolev norm on the velocity fields. 
Distance defined as the length of Geodesics under this 
norm. 

• Distance between e, the identity and any diffeomorphism 
ϕ is defined via the geodesic equation:

• Left invariant distance between any two is defined as:
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Simple Statistics on Interesting 
Spaces: ‘Averaging Anatomies’

• The average anatomical image is the Image that 
requires “Least Energy to deform and match to 
all the Images in a population”:

•Not as intractable as it looks!!

•Efficient alternating algorithm:
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Simple Statistics on Interesting 
Spaces: ‘Averaging Images’

•If the transformations are fixed than the average 
image is simply the average of the deformed 
images!!

•Alternate until convergence between estimating 
the average and the transformations.
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Results: Sample of 16 Bull’s eye 
Images
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Averaging of 16 Bull’s eye images
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Averaging of 16 Bull’s eye images
Voxel Averaging LDMM Averaging

Numerical average of the radii of the 
individual circles forming the bulls eye sample.
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Applications: Early Brain Development 
Assessed by structural MRI

•Longitudinal study of Brain 
Growth from 2 Years to 4 
Years.

•Quantify details Structural 
differences.
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Applications: Early Brain Development 
Assessed by structural MRI
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Applications: Early Brain Development 
Assessed by structural MRI
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Applications: Early Brain Development 
Assessed by structural MRI

• Deformation between 2 Year 
Average and 4 Year Average.
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Applications: Early Brain Development 
Assessed by structural MRI

• Full volumetric analysis of Brain Growth.

•Use Log-Jacobian to study local volumetric 
changes.
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How many images do we need to 
build a stable population?

For more details see: P. Lorenzen, B. Davis, and S. Joshi, "Unbiased Atlas 
Formation via Large Deformations Metric Mapping", in MICCAI 2005 , Pages 411-
418. 
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Hypothesis Testing
• The goal: To determine if two different 

populations of objects have significant 
shape differences
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Hypothesis Testing
• The challenges:

–High dimension, low sample size
–Shape parameters live in non-

Euclidean spaces
–Different variables are not 

commensurate
–Neighboring sites are correlated
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Shape Model: M-reps

• 8 dimensions per 
medial atom
– x (3), r (1), n0 (2), n1

(2)
• Riemannian 

symmetric space
– R3×R+×S2×S2

(Fletcher et al. 2003)
– Nonlinear, except R3
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Metric Space
• Each parameter has a metric invariant to geometric 

transformations
– R3 - Euclidean metric (invariant to translation)
– R+ - |log(r1) - log(r2)| (invariant to scale)
– S2 - Distance on sphere (invariant to rotation)

• Can define the Fréchet mean of populations via the metric.

• Cannot do statistical testing on the tangent space as the two 
populations have different means and hence different 
tangent spaces
– No way to intrinsically transform covariance structure 

from one tangent space to another especially if the 
manifold is not parallizable.

∑
∈

=
i

i
Mx

xxd 2),(minargµ̂



20

10/21/2005 Sarang Joshi MICCAI 2005

Our Approach
• Generalize permutation tests to capture 

desirable properties of Hotelling's test
– Use a true multivariate permutation test 

framework (Pesarin 2001)
• Perform partial tests on individual features
• Combine the test results into a single score

– Trivial example: Bonferroni correction
• min p-value multiplied by number of tests
• Too pessimistic for high-dimension data
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Our Approach
• Marginal permutation tests on 

individual features generate uniformly 
distributed and parameterization 
invariant p-values

• Using a c.d.f., map the uniform 
distribution to a standard distribution, 
and perform tests there

• Gives an unbiased global test for 
equality of population distributions
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Our Approach In Pictures
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Example

• Two data sets
– Size n1 = n2 = 10

• M=2 dimensional                                 
feature vectors
– Position, Scale

• Drawn from multivariate normal distributions 
(common covariance)
– Second parameter exponentiated
– Then both parameters scaled by 10
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Step 1: Partial Tests

• Choose N random                  
assignments to                            
group 1 or 2

• For each feature j                            
and permutation k
– Compute a test statistic       , e.g.
– Also compute        , the statistics for the 

observed data

k
jT )ˆ,ˆ( ,2,1

k
j

k
jd µµ

o
jT

10/21/2005 Sarang Joshi MICCAI 2005

Step 2: Partial Test p-values

• For each feature j                              
and permutation k
– Compute a p-value                                             

using that feature's                                            
cumulative distribution:                                       

• The marginal distributions are uniform, 
and invariant to scale
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Step 3: Combined Test
• If the partial tests are

– Significant for large values
– Consistent
– Marginally unbiased (unbiased regardless of whether 

or not other tests are true)
• And we choose a combining function T'(p(T k)) such 

that it is
– Monotonically non-increasing in each p-value
– Obtains its supremum T* when any p-value is 0
– Has finite critical values strictly smaller than T*
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Step 3: Combined Test
• Theorem: Then T'(p(T k)) is an unbiased 

global test for equality of distributions 
(Pesarin 2001)                 

• What function should we use?
• One asymptotically equivalent to Hotelling's 

T2 test (in linear case)
– Uniformly most powerful, and affine invariant
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Step 3: Combined Test (2-
sided)

• With signed distances,         is significant for 
large and small values

• Map p-values for each feature to a standard 
normal distribution

Gaussian c.d.f.
• Compute samp. covariance

– Full rank even for small samples: N is large  
• Then ( ) k

U
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Acceptance Region

• Map critical 
region via 
c.d.f. to 
original 
space

• Contains 
both axes (p-
value = 0)
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Application: Twin Ventricles
• MRI data of lateral ventricles from twin 

pairs
– MZ - Healthy                                                        

monozygotic:                                                    
9 pairs

– DS - Monozygotic and                                               
discordant for                                                  
schizophrenia:                                                  
9 pairs

– DZ - Healthy dizygotic: 10 pairs
– NR - Healthy non-related pairs: 10 pairs                   

drawn from other healthy subjects
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Application: Twin Ventricles

• Existing data set (provided by Martin 
Styner) includes:
– Binary segmentations
– PDM models of surface
– M-rep models (3 × 13                                          

grid, 98% volume overlap)
• All shapes volume normalized
• Aligned via m-rep extension of Procrustes 

(Fletcher et al. 2004)
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Application: Twin Ventricles

• Test: Is shape variability between pairs related 
to genes? Disease?

• Test statistics for pairs (x1,y1) in group 1 and 
(x2,y2) in group 2                                                 

• 6 features per atom (x (3), r (1),n0 (1), n1(1)), 
39 atoms: M = 234 tests

• N = 50,000 permutations
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Global Results

• Comparison of our results with an 
earlier study on the PDMs (Styner et 
al. 2002)
– Tests significant at 0.05 level in bold
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Local Tests

• Local tests (M = 6 partial tests per 
atom, correction for multiple tests 
applied across atoms)
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Conclusion

• Developed multivariate permutation 
test approach for hypothesis testing

• Well-defined in HDLSS case
• Requires only a metric space
• Combines features of differing scale
• Multivariate approach accounts for 

correlation, even without explicit 
correlation coefficients
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