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: Global Shape Models for Computational

Anatomy.

Homogeneous anatomy characterized by (2, H,Z, P).

1. £): Collection 0f 0,1,2, and 3-dimensional compact sub-manifolds

M., of IR,

Q:gMa.

2. H: Family of transformations of {2 accommodating variability.

heH: 0

3. Z: set of anatomical imagery {MRI, CT, PET, CRYOSEC-
TION} .
[,€T:Q— RY

4. P: probability measures on the space of transformations .
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: Global Shape Models for Computational

Anatomy.

e H constructed from group of diffeomorphisms of coordinate
system ().

e h € H defined via vector fields of displacements.

r = (x1,T2,23) € Q= h(z) =2 — (u1(x), uz(x), uz(x))

e 7: Homogeneous space of the group H.
1. Two images Iy, Is € Z are topologically equivalent.
2. dh € H such that I} = L(h(x)),z € Q.

3. dh~! € H such that I, = I,(h (z)),z € Q.
4. 7: orbit of a single anatomy Iy, under the group action H:

IEHO[@

e Anatomical variability understood via empirical construc-
tion of probability measures P on H.

1. Given family of anatomical images {Iy, I1,--- , In} construct
“registration” transformations {h;,¢ = 1,--- N}, h;, € H
mapping provisory template Iy to the family.

2. Given maps {h;,i =1,--- , N} estimate P.
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Representation of Sub-Structures of the
Brain.

The surface M of neuro-anatomically significant substructure
is assumed to be a smooth two-dimensional C? sub-manifold of

Qc IR3.
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4 Shape of 2-D Sub-Manifolds of the Brain: h
Hippocampus.

The provisory template hippocampal surface M is carried onto
the family of targets:

RUN o, h,
Mo%Ml, MOFM{ e ,MO%MN .
hit hy't hy'

Template
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Shape of 2-D Sub-Manifolds of the Brain:
Hippocampus.

e The mean transformation and the template representing the

entire population:

iL hz y Mtemp:iLOMo.

I ILM=

1
N i

The mean hippocampus of the population of thirty subjects.
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Shape of 2-D Sub-Manifolds of the Brain:
Hippocampus.

e Mean hippocampus representing the control population:

- 1 N, control -
control
hcontrol — N > h@ ) Mcontrol — hcontrol O MO .

control =1

e Mean hippocampus representing the Schizophrenic popula-
tion:
1 Nschiz

Bschiz — > hfchz’z , Mschiz — Bschiz O MO .
Nschiz =1
Control population Schizophrenic population
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4 )

(Gaussian Random Vector Fields on 2-D
Sub-Manifolds.

e Hippocampi M*,i =1, -+ , N deformation of the mean M ¢,,,:

ui(x) = hi(z) —z,2 € Miemyp -

Vector field u;(x) shown in red.

e Construct Gaussian random vector fields over sub-manifolds.
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4 )

(Gaussian Random Vector Fields on 2-D
Sub-Manifolds.

e Let H(M) be the Hilbert space of square integrable vector
fields on M. Inner product on the Hilbert space H(M):

(1,9) = = fyu ['(@)g(@)dv(x)

where dv 1s a measure on the oriented manifold M.

Definition 1 The random field {U(z),x € M} is a Gaus-
sian random field on a manifold M with mean p, € H(M)
and covariance operator K,(x,y) if Vf € HM), (f,-) is
normally distributed with mean my = (uy,, f) and variance

0-]2f:<Kufaf>

e Gaussian field is completely specified by it’s mean p, and the
covariance operator K,(x,y).

e Construct Gaussian random fields as a quadratic mean limit
using a complete IR3-valued orthonormal basis

{¢k7k:1727'”}7 <¢27¢]>:Oa7’7é]
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Isotropic Stochastic Process on The Sphere:
Oboukhov expansion

e Let H(S) be the Hilbert space of square integrable functions on
the sphere S. Inner product on the Hilbert space H(S):

(f,9) =[5 f(0,0)g(6, §)sin(0)dOde
where sin(0)dfde is the measure on the sphere S.

e The Spherical Harmonics Y, are a complete orthonormal ba-

sis of H(S)
Define process {u(p),p € S}
— Jim S Y Zyn Y
ulp) = lim ingm. X% Zun¥,"(p),

where ® 7, are zero mean independent Gaussian random vari-
ables with variance A\, with = A,, < o0.

Theorem: The stochastic process {u(p),p € S} constructed
above 1is an isotropic zero mean q.m. continuous Gaussian process
with covariance

K(QZ, y) — %_?0 )\npn(COS d(ﬂf, y))
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4 )

(Gaussian Random Vector Fields on 2-D
Sub-Manifolds.

Theorem 1 Let {U(x),x € M} be a Gaussian random vector
field with mean my € H and covariance Ky of finite trace.
There exists a sequence of finite dimensional Gaussian random

vector fields {U,(x)} such that
Uz)'=" lim U,(z)
where .
o) = £ Zu()n(a)

{Zy(w),k = 1,---} are independent Gaussian random vari-
ables with fived means E{Z,} = i and covariances E{|Z;|*}—
E{Z;}* = 07 = \;,5i i < 0o and (hk, \,) are the eigen func-
tions and the eigen values of the covariance operator K :

Aii(z) = [y Ku(z,y)i(y)dv(y)

where dv is the measure on the manifold M.
If dv, the surface measure on Miepmy s atomic around the
points . then {¢;} satisfy the system of linear equations

Mo .
AquZ(xk) — ]gl KU(£/€7 y]>¢l(y])y(y]> y U — 17 U 7N )

where v(y;) is the surface measure around point y;.
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- Eigen Shapes of the Hippocampus.

e Assume that deformation fields {u;(x),s = 1,---, N} are
realizations from a Gaussian field on the surface of the mean hip-
pocampus Miep,.

e Fimpirical estimate of the covariance operator given by

. 1

Ku(e,y) = 1 & ul@)uly)”

e Numerically compute the eigenfunctions and eigenvalues of
using Singular Value Decomposition:

1. Let {qb(i),i =1,---, N} be vectors of length 3M with
oL = ¢ilwy)
2. \ be a diagonal matrix of size 3M x 3M with
Azjzj = Asjy13j01 = A3jra3j02 = v(Y)),
3. Ky be a 3M x 3M symmetric matrix with
IA{,-,]- — KU(xi, ;).
The system of linear equations in the above theorem becomes

)\Z.qb(i) _ IA{Aqb(i),i —1,---,N.

The basis vectors {qb(i),i =1,---, N} are generated by diago-
nalizing the matrix KA.
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Eigen Shapes of the Hippocampus.

e Figen shapes £, =1, -+, N defined as:
gi = {CC -+ <)\2>¢z<x> - Mtemp} .

e Eigen shapes completely characterize the variation of the sub-

manifold in the population.
Sarang Joshi May 3, 2000

~

21/




4 Statistical Significance of Shape Difference h

Between Populations.

o Assume that {uS" uS""°'} j =1 ... 15 are realizations

from a Gaussian process with mean Ugep;» and Ucontrol A common
covariance K.
Statistical hypothesis test on shape difference:
HO Unorm = Uschiz
Hl L Unorm 7é Uschiz

eflixpand the deformation fields in the eigen functions ¢;:
schiz(g N schiz(g
u (J)(@ _ ,El 7 (])¢i(x)
control(y N control(y
U t l(])(@ _ -Zl 7 t l(])gbi(x)

o {Zpchiz Zcontrol 5 — 1,...,15} Gaussian random vectors
with means Zschzz and Zcontml and covariance ..
Hotelling’s T test:

T]%f — ]\24<Znorm — Zschiz>TZ_1(Znorm — Zschz’z) .
N| T% |p-value: Py(Hp)
31 9.8042 0.0471
4 114.3086 0.0300
5114.4012 0.0612
6 |19.6038 0.0401
\_ Sarang Joshi May 3, 200 N: number of eigen functions. 0 )
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Bayesian Classification on Hippocampus
Shape Between Population.

e Bayesian log-likelihood ratio test: Hy: normal hippocampus,
H: schizophrenic hippocampus.

AN — _(Z — Zschiz>TZ_1<Z — Zschiz)

AN

+ (Z T 2n0rm>Ti_1<Z _ Znorm) ; O

e Use Jack Knife for estimating probability of classification:

6 I ! l

4+ ¢ . -
o) ‘
§ 2 ‘ —
O .
3
Y O S
e '
-
o2 [ § . i
(@]
|

4 -

L 2
6 | | |
Control Schiz
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g DISTRIBUTION FREE STATISTICAL h

TESTING.

e Use Fisher’s method of randomization to empirically estimate
the distribution of the test statistics with out the Gaussian as-
sumption.

e Under the null hypothesis Hj the expansion coefficients
(ZN)senizy Z )eontrot) for ¢ = 1,+++ , M are independent random
samples from a single population.

e Fach of the (?{7\[) possible permutations of the data are equally

likely and can be used for estimating the distribution of the test
statistics under the hypothesis Hj.

e For N =15, 1.551175e + 08 different combinations.

e Use monte carlo simulations for estimating the probability
distribution by generating uniformly distributed random combi-
nations.
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g DISTRIBUTION FREE STATISTICAL h

TESTING.

e Estimate probability distribution of the T statistics under the
hypothesis Hy computed using 100000 monte carlo simulations.

Number of Simulations = 100,000 P = 0.02320
018 ] T T T T T
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0.06 M

0.04F

Ul

1 1 1 1
0 1 2 3 4 5 6 7 8

e The significance level or the p-value becomes:

P = [ F(f)df .

e Using 4 eigen shapes the p-value is estimated at 0.0232
e Statistically significant difference in the populations.
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