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Markov Random FieldsMarkov Random Fields

Model a large collection of random variables 
with complex dependency relationships 
among them.



Markov Random FieldsMarkov Random Fields

• A model based approach;
• Has been applied to a variety of problems:

- Speech recognition
- Natural language processing
- Coding
- Image analysis
- Neural networks
- Artificial intelligence

• Usually used within the Bayesian framework.



The Bayesian ParadigmThe Bayesian Paradigm

X = space of the unknown variables,
e.g. labels;

Y = space of data (observations),
e.g. intensity values;

Given an observation y∈Y, want to make 
inference about x∈X.



The Bayesian ParadigmThe Bayesian Paradigm

Prior PX :  probability distribution on X;
Likelihood PY|X :  conditional distribution of Y 

given X;

Statistical inference is based on the posterior
distribution PX|Y ∝ PX • PY|X .



The Prior DistributionThe Prior Distribution

• Describes our assumption or knowledge 
about the model;

• X is usually a high dimensional space. PX
describes the joint distribution of a large 
number of random variables;

• How do we define PX?
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AssumptionsAssumptions

• X = {Xs}s∈S, where each Xs is a random 
variable; S is an index set and is finite;

• There is a common state space R: Xs∈R
for all s ∈ S; | R | is finite;

• Let Ω = {ω=(xs1, ..., xsN): xsi∈R, 1≤i≤N} be 
the set of all possible configurations.



Dependency GraphDependency Graph

A simple undirected graph G = (S, N):
• S is the set of sites (vertices);
• N={Ns}s∈S is the neighborhood structure (the set 

of edges). The neighbors of s are those sites that 
are connected to s by an edge;

• Let C denote the set of cliques - completely 
connected subgraphs of G, including singletons. 



Markov Random Field: Markov Random Field: 
DefinitionDefinition

P is an Markov random field on Ω with 
respect to G = (S, N) if 

(1) P(X=ω) > 0 for all ω∈Ω; 
(2) P(Xs=xs | Xr=xr, r ≠ s)  

= P(Xs=xs | Xr=xr, r ∈Ns)                         
(local characteristics)

The local characteristics uniquely determines 
a joint distribution.



Examples of MRF: Examples of MRF: 
Nearest Neighbor SystemsNearest Neighbor Systems

• 1st order Markov chain {X0 , X1,…, Xn ,…}:
P(Xn+1=xn+1 | Xn=xn, Xn-1=xn-1 ,…, X0=x0)  

= P(Xn+1=xn+1 | Xn=xn)
• 4-neighbor lattice system:

P(Xi,j | all other random variables) = 
P(Xi,j | Xi-1,,j , Xi+1,j , Xi,,j-1 , Xi,,j+1 )



Gibbs FieldGibbs Field

P is Gibbs on Ω with respect to G = (S, N) if 
P(ω) = 1/Z ·exp{-H(ω) / T},

where 
– Z is a normalizing constant (partition function);

– H is the energy.  H(ω) = ΣC∈C UC(ω).  C is the set of 
cliques for G.  {UC≥0} are called the potentials;

– UC(ω) depends only on those xs of ω for which s∈C;
– T is a parameter (temperature).



The The HammersleyHammersley--Clifford Clifford 
TheoremTheorem

P is an MRF with respect to G if and only if P 
is a Gibbs distribution with respect to G.



Advantage of Using the Advantage of Using the 
Gibbs FormGibbs Form

• The Gibbs form explicitly specifies the joint 
distribution; 

• Local characteristics (conditional 
probabilities) can be easily formulated from 
the Gibbs form;

• The potentials can be learned from training 
data (see later slides) .



Examples: Nearest Examples: Nearest Neighbor Neighbor 
Systems (cont.)Systems (cont.)

• 1-D : 

H({xi}) = ΣUi ( xi) +  ΣU(i,i+1) ( xi, xi+1)
• 2-D :

The most general form of the energy is

H({xi,j}) = ΣU{(i,j)} ( xi,j) 

+ ΣU{(i,j), (i+1,j)} ( xi,j , xi+1,j)

+ ΣU{(i,j), (i,j+1)} ( xi,j , xi,j+1)



Important Properties of MRFImportant Properties of MRF

• Markov property: 
Let A, B, C ⊂ S.  If every path from a∈Α to c∈C

meets some b∈Β, then XA and XC are 
conditionally independent given XB. 

Can still model complicated dependencies!
• Maximum entropy property:

The family Pλ(ω) = 1/Zλ exp{- Σc λcUc(ω)} are 
the maximum entropy models with fixed values 
for E(Uc(ω)) = U*c (average energy).



Learning by the ME PrincipleLearning by the ME Principle

• Choose a set of (local) features;
• Obtain empirical distribution of the features 

from training set;
• Learn the potentials by the ME principle.
• Example: ME distribution with specified 

mean and variance yields a Gaussian 
distribution.
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Computation MethodsComputation Methods

• Dynamic programming
– the basic idea behind a lot of different 

algorithms, e.g. forward-backward, parsing,
Viterbi, sum-product, belief propagation, etc.;

– relatively fast;
– does not work for all MRF’s.

• Stochastic relaxation



General Computation ProblemsGeneral Computation Problems

a) Sample from a Gibbs distribution;
b) Find minimum energy;
c) Compute expected values;
d) Test model and estimate parameters.
Among them, a) is the most basic problem.

Direct sampling from a Gibbs field P(x) = Z-1 exp(-H(x)),  
x ∈ X, is usually not feasible because

– the underlying space X is huge;

– the partition function Z is intractable.



Stochastic Sampling AlgorithmsStochastic Sampling Algorithms

Design a Markov chain with state space Ω
whose equilibrium distribution is the 
desired Gibbs distribution.

Examples:
– Metropolis -Hastings algorithms: based on 

having “elementary” Markov chains;
– Gibbs sampler: based on using local 

characteristics.



Temperature in Gibbs DistributionTemperature in Gibbs Distribution

Any Gibbs field P can be put in a family {PT} 
with parameter T = temperature:

PT(x) = 1/ZT P(x)1/T

= 1/ZT · exp{-E(x)/T},
– as T → ∞, PT → uniform distribution;
– as T → 0,  PT → δ mode(P).



Simulated AnnealingSimulated Annealing

• Goal: find the global minimum energy 
(ground state), e.g. MAP estimates. 

• Algorithm:
– choose a  cooling scheme T1>T2>... → 0;
– generate a Markov chain {X(n)}} on Ω where 

X(n) →X(n+1) is a transition by PTn ; the transition 
probabilities are specified by the 
Metropolis/Gibbs sampler;

– If one cools at a very slow pace, then X(n) 

converges in probability to the mode of P.



Simulated Annealing (cont.)Simulated Annealing (cont.)

• Advantages:
– guaranteed to find global minima (in principle), 

as opposed to greedy algorithms;
– works for any Gibbs fields;

• Disadvantages:
– convergence is very slow;
– stopping rule is not clear;
– hard to analyze;



Markov Chain Monte Carlo Markov Chain Monte Carlo 

• Goal: compute Ep(f) for a function f on Ω.
• Traditional Monte Carlo: sample uniformly 

from Ω and average w.r.t. P

• MCMC: sample from P and average 
uniformly
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Summary of the TheorySummary of the Theory

• MRF provides a general framework for 
studying complex random systems;

• Computation is usually complicated;
• How can we do better?

– data driven methods in computation;
– better design of MRF, e.g. hierarchical MRF 

modes (HMF, HMRF, etc.);
– other approximations, e.g. mean field, 

continuous stochastic processes.
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MM--reps Modelsreps Models

• Multiscale shape models.  Each scale k is 
described by a set of primitives {zk

i};
• Object intrinsic coordinates provide 

correspondences among object population;
• Can easily describe both global and local

variations, as well as inter-object relations.



MRF MMRF M--reps Modelsreps Models

• The probability distribution on the shape space is 
given by P({zk

i });
• Markov assumption:

P(zk
i | all other primitives at all scales ≤ k) 
= P(zk

i  | N(zk
i ), P(zk

i ))
• If zk denotes scale k, then a multiscale MRF m-

reps model can be written as a Markov chain
P(z1, … zn ) = P(z1)·P(z2| z1) ··· P(zn| zn-1) 



MRF MMRF M--reps Modelsreps Models

• By the H-C theorem, the model has “two-sided” Markov 
property, i.e.  P(zk| all other scales) = P(zk| zk-1, zk+1) ,
or equivalently, 

P(zk
i | all other primitives at all scales) 

= P(zk
i  | N(zk

i ), P(zk
i ), C(zk

i ))
• Use residues (differences) as features;
• The basic problem is how to specify the conditional 

probabilities Pk = P(zk| zk-1) 



The Boundary Level: The Boundary Level: 
MRF ModelMRF Model

• Primitives: zi = τi, the (normalized) 
displacement along the normal direction at 
point i;

• Neighborhood structure:  nearest 4-
neighbors; 

• The Gibbs distribution thus involves 
potentials of the form Ai(τi) and Bij(τi, τj), 
where i and j are 4-neighbors. 



The Boundary Level: The Boundary Level: 
MRF ModelMRF Model

• Further assumptions:
– Potentials have the same function form;
– Gaussian (quadratic potentials);
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• The joint distribution of {τi} has density

• σ1, σ2 are parameters;  {si}and {wij}are 
fixed from the previous stage.



The Boundary Level: The Boundary Level: 
Conditional DistributionConditional Distribution
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Interpretation: penalizes large τi and large 
deviation from “predicted τ” by neighbors.



The Boundary Level:The Boundary Level:
Prior Model LearningPrior Model Learning

• The parameters σ1, σ2 can be learned from 
training data, using maximum likelihood 
estimates or other criteria;

• Other choices of model:
– position-dependent parameters;
– non-Gaussian models, maximum entropy 

learning.



The Atom LevelThe Atom Level

• Primitive: zi = Ai = (xi, Ri, ri), describing 
position x, local frame F, and radius r of 
atom i. zi ∈ R3×SO(3)×R+;

• With 4-neighbor structure, the Gibbs 
distribution contains potentials of the form 
fi (Ai) and gij(Ai , Aj ) for neighboring atoms;

• Need a metric to describe difference 
between atoms …



Atom DistanceAtom Distance

Define a metric on atoms (or R3×SO(3)×R+) by

where
– dE is Euclidean distance in R3;
– dR is the Riemannian distance in SO(3);
– dr is the log-distance in R+: d(r1,r2) = |log(r1/r2)|;
– αE, αR, αr are appropriate weights.
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The Atom Level:The Atom Level:
MRF ModelMRF Model

• Let ∆Ai denote the “difference” between Ai 
and A'i, where A'i is the corresponding atom 
at the previous scale.  In other words,
∆Ai = (∆xi, ∆Ri, ∆ri ) = ((xi - x'i)) / r'i, (R'i)

-1Ri, ri / r'i) .

• Prior model (quadratic potentials): 
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The Atom Level:The Atom Level:
Conditional DistributionConditional Distribution
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• σi , σij are trainable parameters of the model;
• The density is with respect to the Haar measure on 

the product space R3×SO(3)×R+;
• Interpretation:  penalties on being away from 

“parent atom” and “neighbor mean”;



MRF MMRF M--reps Modelsreps Models

• Similar MRF models can be designed for all 
other scale levels, using appropriate parent 
and neighbor terms;

• The full joint distribution is a probability 
measure on the shape space, with a 
relatively small number of parameters;

• The model is trainable (parametric vs. non-
parametric).
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