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Statistics in Image Processing

Old Roles:
- Denoising

- Segmentation

New Roles:
- Understanding populations of images / objects

- Discrimination (i.e. classification)



Statistics in Image Processing (cont.)

Personal Interest:  development of new statistical methods

Main Challenge:

- Endemic to Image Analysis
- Classical Statistical Methods useless

- Huge Need for Invention of New Methods!



Relevant New Statistical Area

Functional Data Analysis

A personal view: what is the “atom” of the statistical analysis?

1% course in statistics: “atoms” are numbers

Statistical multivariate analysis: “atoms” are vectors

Functional Data: “atoms™ are more complex objects



Functional Data Analysis (cont.)

FDA: "atoms”™ are more complex objects, e. g.

- curves [toy example]

- images, e.g. Cornea data (Cohen, Tripoli) [example]

- shapes, e.g. Corpus Callosum Data (Ho, Gerig) [example]

M-rep version (Yushkevich) [example]




Functional Data Analysis (cont.)

Recommended Source:

Ramsay, J. O. & Silverman, B. W. (1997) Functional Data
Analysis, Springer, N.Y.

(there is 2" book that | have not seen yet,
“more applied and example oriented”)

Drawback: Only curves, no more complex data objects

Strength:  Excellent source for many deep analytic ideas



Data Representation

Object Space o Feature space
Curves Vectors
Images
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One to one mapping couples visualization in Object Space, with
statistical analysis in Feature Space



High Dim’al Data Conceptualization

Feature space o Point Clouds

Vectors
(xl,l \ (’xl,n \
Kxcu ) de,n )

[Spinning Point Cloud Graphic]




E.g. 1. Curves [example]

Data Objects: f (x),..., f,(x) (conceptual model)

/ﬂ(xl)\ (fn(xl)\

Digital version: , fora“grid” x,,...x,

Ji(x,))  \[(x,))

Object Space View: Overlay plots of curves

(/]pi(xl)\

Feature space: - i=1,..,np, €.g.dimension d =10

(X))



E.g. 2: Images, Corneas [example]

Special thanks to K. L. Cohen and N. Tripoli,
UNC Ophthalmology

Reference:

Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J.
T. and Cohen, K. L. (1999) Robust Principal Component
Analysis for Functional Data, Test, 8, 1-73.

Data Objects: color map of “temperature scale radial curvature”

- “hot” = more curvature

- “cool” = less curvature



E.g. 2: Images, Corneas [example] (cont.)

Feature vectors: Digitized version is “large and wasteful”
Instead use coefficients of Zernike Basis repres’n, d = 66

Schwiegerling, J., Greivenkamp, J. E., and Miller, J. M. (1995)
Representation of videokeratoscopic height data with Zernike

polynomials, Journal of the Optical Society of America, Series
A, 12, 2105-2113.

Born, M. and Wolf, E. (1980) Principles of optics: electromagnetic
theory of propagation, interference and diffraction of light.
Pergamon Press, New York.



E.g. 2: Images, Corneas [example] (cont.)

Object Space view: can’t overlay images

Instead show images sequentially

Hard to see “population structure”



E.g. 3: shapes, Corpora Callosa [example]

Data Objects: boundaries of “segmented” corpora callosa

Feature vectors: use coefficients of Fourier boundary
representation, d =80

Object Space view: can either overlay, or show sequentially

In either case: hard to see “population structure”

M-rep version: same issues




Finding and visualizing structure in populations

Powerful method: Principal Component Analysis

Presentation here:

-  Focus on visualization

Underlying mathematics:
- Eigen-analysis of covariance matrix

- Singular Value Decomposition of Data Matrix



Principal Component Analysis (PCA)

There are many names (lots of reinvention?):

Statistics: Principal Component Analysis (PCA)

Social Sciences: Factor Analysis (PCA is a subset)

Probability / Electrical Eng: Karhunen — Loeve expansion

Applied Mathematics: Proper Orthog’| Decomposition (POD)

Geo-Sciences: Empirical Orthogonal Functions (EOF)



PCA, Optimization View

Goal: find “direction of greatest variability”

[Spinning point Cloud] - [Axis of greatest variability]

Question: “direction” from where?



PCA, Optimization View (cont.)

Step 1: Start with Center Point:

/1 n \
(X1 ; - il
Sample Mean: x = = L,
_ 1 n
\ N4 — /X
=)
Aside: “mean vector’ = “vector of means” is not obvious

Notation:

“under-arrow” used for vectors



Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

PCA, Optimization View (cont.)

Work with re-centered data:

x,—x, i=1,...n, the “mean residuals”

Consider all possible “directions”

Project (find closest point) data onto direction vector

Maximize “spread” (sample variance), over direction

Project data onto orthogonal subspace, and repeat.



Curves, Toy Example |

Features of Graphic:

- Data

- Mean

- Residuals

-  PC Decomps — projections

-  PC Decomps — mean +- extremes

-  PC Residuals

- % Sums of Square — summarizing “signal power”
- Summarization of % SS

- 1-d Projections



More Curve Toy Examples

Toy Example 2:

Shows 1-d projections useful to highlight “clusters”

Toy Example 3:

Shows 1-d projections useful to identify “outliers”

Toy Example 4:

Show 2-d Projections useful [2-d Projections]




PCA Analysis of Cornea Data

Recall Raw Data

PCA: same as before ( do analysis in feature space)

Visual problem: can’t overlay projections
Solution:
March along eigenvector in feature space

Study corresponding image in object space



PCA Analysis of Cornea Data (cont.)

PC1. Overall curvature & “with the rule” astigmatism

PC2: Big problem caused by an outlier?!? [toy 2-d graphic]

Approach 1. Outlier deletion?

- Problem: too many outliers (recheck raw data)

Approach 2: Robust PCA (i.e. “reduced influence” methods)



PCA Analysis of Cornea Data (cont.)

Robust PCA |:  “Projection Pursuit”

- Works well in 4-5 dimensions, 20 max (<< 66 here)

Robust PCA Il: Eigenanalysis of Robust covariance est.

- “affine invariance” fails for

Robust PCA lll:  Spherical and Elliptical PCA

Elliptical PC1

Elliptical PC2




PCA analysis of M-rep Corpora Caloosa

Recall Raw Data: Hard to see “structure of population”

PC1: Overall Curvature

Rotation of ends

-
S
N

PC3: Variation of curvature

Note: “Directions are orthogonal”



Discrimination
Main idea:
Have several “classes” of data. E.g “Healthy” and “Diseased”

Find a “rule” for assigning new cases to each class.

Standard statistical method:
Fisher Linear Discrimination (FLD)

I. e. Linear Discriminant Analysis (LDA)

Big Problem: Fails in contexts



Discrimination (cont.)

Serious competitor (in situations):

“Mean Difference”, i.e. “centroid” method

ldea: choose class with closest mean

Weakness: ignores covariance information

Strength: ignores covariance information

Personal observation: simplicity is often a strength...



Discrimination (cont.)

Comparison between FLD and Mean Difference [toy datal:

. Large Sample “Two Meatballs” [PCA works]:

FLD Mean Difference

0

. Large Sample “Parallel Squished” Gaussian [PCA fails]:

FLD >> Mean Difference

1. Gaussian:

FLD << Mean Difference




Discrimination (cont.)

Interesting “High Tech” method from “Machine Learning”:

Support Vector Machine

Main Idea: Find “separating hyperplane”
To maximize the "margin” i.e. minimum distance to plane

Graphical lllustration

- Add “penalty” when have “violations”

- Find solution by quadratic programming



Support Vector Machine
Classical References:

Vapnik (1982) Estimation of dependences based on empirical
data, Springer (Russian version, 1979)

Vapnik (1995) The nature of statistical learning theory, Springer.

Recommended tutorial:

Burges (1998) A tutorial on support vector machines for pattern
recognition, Data Mining and Knowledge Discovery, 2, 955-
974, see also web site:

http://citeseer.nj.nec.com/burges98tutorial.html



Support Vector Machine (cont.)

HDLSS performance of SVM:
- Somewhat Shaky
- Reason is too strongly feels “support vectors”

- And too many of them

But FLD is much worse



Support Vector Machine (cont.)
Coming Improvement (for HDLSS contexts)

Distance Weighted Discrimination

- ldea: feels all of the data, not just “support vectors’
- Needs more sophisticated optimization
(2" Order Cone Programming)

- Nearly ready for prime time



Discrimination (cont.)
Apparent Weakness of Above Methods:

Only allow “separating planes”

Solution 1:  Gaussian Likelihood methods
Weakness: fails in situations

Solution 2: Nonlinear surfaces:

- Nearest Neighbors

- Parzen Windows

- Neural Nets

Drawback: No insights about data



Discrimination (cont.)

Solution 3: “Kernel Embedding” methods

Fundamental Reference:

Aizerman, Braverman and Rozoner (1964) Automation and
Remote Control, 15, 821-837.

{Historical Note: way before SVM and “machine learning”}



Polynomial Embedding

Motivating idea: extend “scope” of linear discrimination,
by adding “nonlinear components” to data

(better use of name “nonlinear discrimination™???77?)

E.g. In1d, “linear separation” splits the domain
{x:x00

Into only 2 parts [toy graphic]




Polynomial Embedding (cont.)

But in the “quadratic embedded domain”
{(x,x?):x00} 002

linear separation can give 3 parts [toy graphic]

original data space lies in 1d manifold

very sparse region of [O0°

curvature of manifold gives better linear separation

can have any 2 break points (2 points = line)



Polynomial Embedding (cont.)

Stronger effects for higher order polynomial embedding:

E.g. for cubic, {(x,x*,x*):x00}00°

linear separation can give 4 parts (or fewer) [toy graphic]

- original space lies in 1d manifold, even sparser in O’
- higher d curvature gives improved linear separation
- can have any 3 break points (3 points = plane)?

- relatively few “interesting separating planes”



Polynomial Embedding (cont.)

General View: for original data matrix:
/xll Xin \
\ X a1 Xan )
“add rows’:
( X1 X1n )
X a1 X dn
2 2
X1 X1n
2 2
X a1 X dn
X11X91 X1nXon




Polynomial Embedding (cont.)

Now apply linear methods (FLD, SVM, ...) in embedded space.

- image of class boundaries in original space is nonlinear

- allows much more complicated class regions



Polynomial Embedding Toy Examples

E.g. 1. Donut

- ELD: poor for low degree, then good

- SVM: similar excellent perfromance



Polynomial Embedding Toy Examples (cont.)

E.g. 2. Parallel Clouds

- FLD good for all embeddings

- SVM OK, but begin to see overfitting problems



Polynomial Embedding (cont.)

Drawback to polynomial embedding:

- extra terms may create spurious structure

- i.e. potential for “overfitting”

- problems worse



Kernel Machines

ldea: replace polynomials by other “nonlinear functions”

e.g. 1. “sigmoid functions” from neural nets

e.g. 2. ‘radial basis functions” — Gaussian kernels

Related to “kernel density estimation” (smoothed histogram)




Kernel Machines (cont.)

Radial basis functions: at some “grid points” g o8,

For a “bandwidth” (i.e. standard deviation) o,

Consider (d dim’al) functions: ¢a()~c_§1)”"’¢0(x_gk)

Replace data matrix with:




Kernel Machines (cont.)

For discrimination: work in radial basis function domain,

With new data vector X, represented by:

(4, (x,-g )

\¢a()—(0 _8,1)/



Kernel Machines (cont.)

Toy Examples:

E.g. 1: Donut — mostly good (slight mistake for one kernel)

E.g. 2. Parallel Clouds — good at data, poor outside

Main lesson: generally good in regions with data,
unpredictable results where data are sparse



Kernel Machines (cont.)

E.g. 7. Checkerboard

- Kernel embedding (FLD or SVM) is excellent

- While polynomials (FLD — SVM) lack flexibility

- Lower degree is worse



Kernel Machines (cont.)

[1 generalizations of this idea to other types of analysis,

and some clever computational ideas.

E.g. “Kernel based, nonlinear Principal Components Analysis”

Scholkopf, Smola and Muller (1998) “Nonlinear component
analysis as a kernel eigenvalue problem”, Neural Computation,
10, 1299-1319.



Discrimination (cont.)

M-rep Corpora Callosa Data:

Try to find differences between Schizophrenics and Controls

Most interesting views: Projections onto normal vector

Mean Difference FLD SVM

Verification: None signif'ly better than “random permutations”



Discrimination (cont.)
Paul Yushkevich Toy Data: (simulate from PCA, and a bump)

Raw Data Raw Data with bumps

Discrimination Performance (again check projections):

Mean Difference: OK

FLD: Better, no overlap

SVM: Best? Ortoo much “piling at the margin”?

Also check direction: SVM



Independent Component Analysis

Our application:

Find directions of “least Gaussian” projections

Origins: “blind source extraction”
Motivating Example: Cocktail Party Problem

- Start with signals

- Do linear mixing

- Recover signals (without knowledge of mixing coeff’s)




Independent Component Analysis (cont.)

How it works: Scatterplot views:

- Oiriginal Data

- Mixed Data & result of sphering

(now rotate to “least Gaussian” directions)

- PCAgetsitwrong, signals & scatterplot




Independent Component Analysis (cont.)

Recommended References:

Hyvarinen and Oja (1999) Independent Component Analysis: A
Tutorial, http://www.cis.hut.fi/projects/ica

Hyvarinen, A., Karhunen, J. and Oja, E. (2001) /Independent
Component Analysis, John Wiley & Sons.


http://www.cis.hut.fi/projects/ica

Independent Component Analysis (cont.)

Goal (from James Chen):

Simulate kidney images to test segmentation

Simple Approach:  Gaussian simulation from PCA



Independent Component Analysis (cont.)
Ticklish Question: Are data Gaussian?

Approach (joint work with Inge Koch and James Chen):

Look for non-Gaussianity, using ICA:
- Sphere Data
- Look for single “Least Gaussian Direction”
- Repeat, since algorithm depends on random start

- Results: find outliers in “several directions”

- Question: are these “spurious”™?



Gaussianity Check

Approach:
- Simulate from the Gaussian
- Recompute ICA
- Compare data abs skewness with simulated values

- Result: shows clearly non-Gaussian



Distributional Fix

ldea: transform to fix above problem

(BIG) Assumption:  Distribution is “radially symmetric”
Transformation: Power Transformation

Choose power to make “radii looks as expected for Gaussian”

Result: Raise radii to power % 55~ 1.8

Final Check: Apply above tests to simulated data




Exciting new area

FDA of populations of tree structured objects

Motivation:

Current FDA methods are powerful

but limited to populations of fixed length feature vectors

can’t handle “variable topology shapes”

severe limitation for “multifigural objects”



Exciting new area (cont.)

Challenging problem:

Statistical Analysis of Populations of Trees

A first approach to this slippery area: Haonan \Wang

Careful axiomatic mathematics required!

(because “our intuition is too Euclidean”)



FDA on Trees

30,000 foot view:

1. Start with a “metric” (distance measure)

2. Define “centerpoint” as “point closest to all data points”

3. Define PC1 as “simplest 1-d representations”

For details: Talk by Haonan




