Statistical Analysis of Shapes

by J. S. Marron

Department of Statistics University of North Carolina

Statistics in Image Processing

Old Roles:

- Denoising
- Segmentation

New Roles:

- Understanding *populations* of images / objects
- Discrimination (i.e. classification)

Statistics in Image Processing (cont.)

Personal Interest: development of new statistical methods

Main Challenge: High Dimension, Low Sample Size

- Endemic to Image Analysis
- Classical Statistical Methods useless
- Huge Need for Invention of New Methods!

Relevant New Statistical Area

Functional Data Analysis

A personal view: what is the "atom" of the statistical analysis?

1st course in statistics: "atoms" are numbers

Statistical multivariate analysis: "atoms" are vectors

Functional Data: "atoms" are more complex objects

Functional Data Analysis (cont.)

FDA: "atoms" are more complex objects, e.g.

- curves [toy example]
- images, e.g. Cornea data (Cohen, Tripoli) [example]
- shapes, e.g. Corpus Callosum Data (Ho, Gerig) [example]

M-rep version (Yushkevich) [example]

Functional Data Analysis (cont.)

Recommended Source:

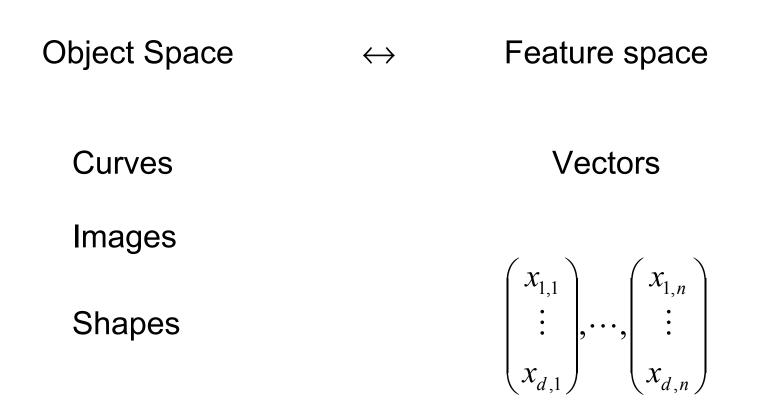
Ramsay, J. O. & Silverman, B. W. (1997) *Functional Data Analysis*, Springer, N.Y.

(there is 2nd book that I have not seen yet, "more applied and example oriented")

Drawback: Only curves, no more complex data objects

Strength: Excellent source for many deep analytic ideas

Data Representation

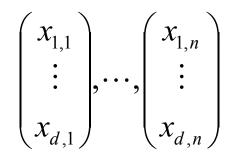


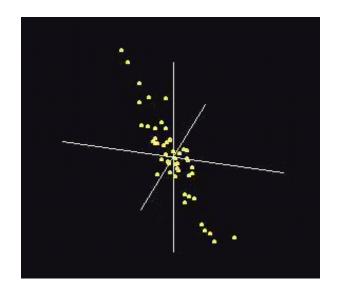
One to one mapping couples visualization in Object Space, with statistical analysis in Feature Space

High Dim'al Data Conceptualization

Feature space \leftrightarrow Point Clouds

Vectors





[Spinning Point Cloud Graphic]

E.g. 1: Curves [example]

Data Objects: $f_1(x),...,f_n(x)$ (conceptual model)

Digital version:
$$\begin{pmatrix} f_1(x_1) \\ \vdots \\ f_1(x_d) \end{pmatrix}, \dots, \begin{pmatrix} f_n(x_1) \\ \vdots \\ f_n(x_d) \end{pmatrix},$$
 for a "grid" x_1, \dots, x_d

Object Space View: **Overlay** plots of curves

Feature space

ce:
$$\begin{cases} \begin{pmatrix} f_i(x_1) \\ \vdots \\ f_i(x_d) \end{pmatrix} : i = 1, ..., n \end{cases}$$
, e.g. dimension $d = 10$

E.g. 2: Images, Corneas [example]

Special thanks to K. L. Cohen and N. Tripoli, UNC Ophthalmology

Reference:

Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T. and Cohen, K. L. (1999) Robust Principal Component Analysis for Functional Data, *Test*, 8, 1-73.

Data Objects: color map of "temperature scale radial curvature"

- "hot" = more curvature
- "cool" = less curvature

E.g. 2: Images, Corneas [example] (cont.)

Feature vectors: Digitized version is "large and wasteful"

Instead use coefficients of Zernike Basis repres'n, d = 66

Schwiegerling, J., Greivenkamp, J. E., and Miller, J. M. (1995) Representation of videokeratoscopic height data with Zernike polynomials, *Journal of the Optical Society of America, Series A*, 12, 2105-2113.

Born, M. and Wolf, E. (1980) *Principles of optics: electromagnetic theory of propagation, interference and diffraction of light.* Pergamon Press, New York. E.g. 2: Images, Corneas [example] (cont.)

Object Space view: can't overlay images

Instead show images sequentially

Hard to see "population structure"

Data Objects: boundaries of "segmented" corpora callosa

Feature vectors: use coefficients of Fourier boundary representation, d = 80

Object Space view: can either overlay, or show sequentially

In either case: hard to see "population structure"

<u>M-rep version</u>: same issues

Finding and visualizing structure in populations

Powerful method: Principal Component Analysis

Presentation here:

- Focus on visualization

Underlying mathematics:

- Eigen-analysis of covariance matrix
- Singular Value Decomposition of Data Matrix

Principal Component Analysis (PCA)

There are many names (lots of reinvention?):

Statistics: Principal Component Analysis (PCA)

Social Sciences: Factor Analysis (PCA is a subset)

Probability / Electrical Eng: Karhunen – Loeve expansion

Applied Mathematics: Proper Orthog'l Decomposition (POD)

Geo-Sciences: Empirical Orthogonal Functions (EOF)

PCA, Optimization View

Goal: find "direction of greatest variability"

[Spinning point Cloud] - [Axis of greatest variability]

Question: "direction" from where?

PCA, Optimization View (cont.)

Step 1: Start with Center Point:

Sample Mean:
$$\underline{x} = \begin{pmatrix} \overline{x}_1 \\ \vdots \\ \overline{x}_d \end{pmatrix} = \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n x_{i1} \\ \vdots \\ \frac{1}{n} \sum_{i=1}^n x_{id} \end{pmatrix},$$

Aside: "mean vector" = "vector of means" is not obvious

Notation: "under-arrow" used for vectors

PCA, Optimization View (cont.)

Step 2: Work with re-centered data:

 $\underline{x}_i - \overline{\underline{x}}, \quad i = 1, ..., n$, the "mean residuals"

Step 3: Consider all possible "directions"

Step 4: Project (find closest point) data onto direction vector

Step 5: Maximize "spread" (sample variance), over direction

Step 6: Project data onto orthogonal subspace, and repeat.

Curves, Toy Example I

Features of Graphic:

- Data
- Mean
- Residuals
- PC Decomps projections
- PC Decomps mean +- extremes
- PC Residuals
- % Sums of Square summarizing "signal power"
- Summarization of % SS
- 1-d Projections

More Curve Toy Examples

Toy Example 2:

Shows 1-d projections useful to highlight "clusters"

Toy Example 3:

Shows 1-d projections useful to identify "outliers"

Toy Example 4:

Show 2-d Projections useful [2-d Projections]

PCA Analysis of Cornea Data

Recall <u>Raw Data</u>

PCA: same as before (do analysis in feature space)

Visual problem: can't overlay projections

Solution:

March along eigenvector in feature space

Study corresponding image in object space

PCA Analysis of Cornea Data (cont.)

PC1: Overall curvature & "with the rule" astigmatism

PC2: Big problem caused by an outlier?!? [toy 2-d graphic]

Approach 1: Outlier deletion?

- Problem: too many outliers (recheck <u>raw data</u>)

Approach 2: Robust PCA (i.e. "reduced influence" methods)

PCA Analysis of Cornea Data (cont.)

Robust PCA I: "Projection Pursuit"

- Works well in 4-5 dimensions, 20 max (<< 66 here)

Robust PCA II: Eigenanalysis of Robust covariance est.

- "affine invariance" fails for HDLSS

Robust PCA III: Spherical and Elliptical PCA

Elliptical PC1

Elliptical PC2

PCA analysis of M-rep Corpora Caloosa

Recall <u>Raw Data</u>: Hard to see "structure of population"

- PC1: Overall Curvature
- PC2: Rotation of ends
- PC3: Variation of curvature

Note: "Directions are orthogonal"

Main idea:

Have several "classes" of data. E.g "Healthy" and "Diseased"

Find a "rule" for assigning new cases to each class.

Standard statistical method:

Fisher Linear Discrimination (FLD)

i. e. Linear Discriminant Analysis (LDA)

Big Problem: Fails in HDLSS contexts

Serious competitor (in HDLSS situations):

"Mean Difference", i.e. "centroid" method

Idea: choose class with closest mean

Weakness: ignores covariance information

Strength: ignores covariance information

Personal observation: simplicity is often a strength...

Comparison between FLD and Mean Difference [toy data]:

I. Large Sample <u>"Two Meatballs"</u> [PCA works]:

<u>FLD</u> ≈ <u>Mean Difference</u>

II. Large Sample <u>"Parallel Squished" Gaussian</u> [PCA fails]:

III. HDLSS Gaussian:

Interesting "High Tech" method from "Machine Learning":

Support Vector Machine

Main Idea: Find "separating hyperplane"

To maximize the "margin" i.e. minimum distance to plane

Graphical Illustration

- Add "penalty" when have "violations"
- Find solution by quadratic programming

Support Vector Machine

Classical References:

Vapnik (1982) *Estimation of dependences based on empirical data*, Springer (Russian version, 1979)

Vapnik (1995) The nature of statistical learning theory, Springer.

Recommended tutorial:

Burges (1998) A tutorial on support vector machines for pattern recognition, *Data Mining and Knowledge Discovery*, **2**, 955-974, see also web site:

http://citeseer.nj.nec.com/burges98tutorial.html

Support Vector Machine (cont.)

HDLSS performance of <u>SVM</u>:

- Somewhat Shaky
- Reason is too strongly feels "support vectors"
- And too many of them

But <u>FLD</u> is much worse

Support Vector Machine (cont.)

Coming Improvement (for HDLSS contexts)

Distance Weighted Discrimination

- Idea: feels all of the data, not just "support vectors"
- Needs more sophisticated optimization

(2nd Order Cone Programming)

- Nearly ready for prime time

Apparent Weakness of Above Methods:

Only allow "separating planes"

Solution 1: Gaussian Likelihood methods

Weakness: fails in HDLSS situations

Solution 2: Nonlinear surfaces:

- Nearest Neighbors
- Parzen Windows
- Neural Nets

Drawback: No insights about data

Solution 3: "Kernel Embedding" methods

Fundamental Reference:

Aizerman, Braverman and Rozoner (1964) *Automation and Remote Control*, **15**, 821-837.

{Historical Note: way before SVM and "machine learning"}

Polynomial Embedding

Motivating idea: extend "scope" of linear discrimination, by adding "nonlinear components" to data (better use of name "nonlinear discrimination"????)

E.g. In 1d, "linear separation" splits the domain $\{x : x \in \Re\}$

into only 2 parts [toy graphic]

Polynomial Embedding (cont.)

But in the "quadratic embedded domain"

$$\{(x, x^2): x \in \mathfrak{R}\} \subset \mathfrak{R}^2$$

linear separation can give 3 parts [toy graphic]

- original data space lies in 1d manifold
- very sparse region of \Re^2
- curvature of manifold gives better linear separation
- can have any 2 break points (2 points \Rightarrow line)

Polynomial Embedding (cont.)

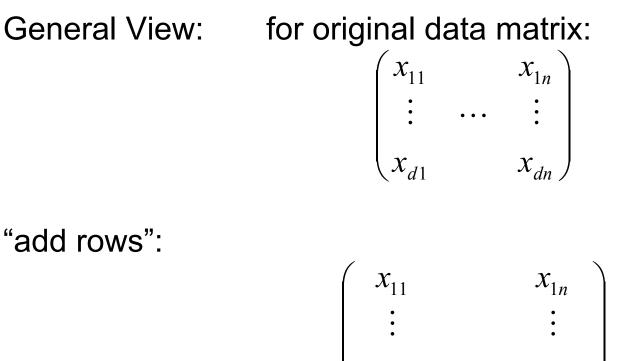
Stronger effects for higher order polynomial embedding:

E.g. for cubic, $\{(x, x^2, x^3): x \in \mathfrak{R}\} \subset \mathfrak{R}^3$

linear separation can give 4 parts (or fewer) [toy graphic]

- original space lies in 1d manifold, even sparser in \Re^3
- higher d curvature gives improved linear separation
- can have any 3 break points (3 points \Rightarrow plane)?
- relatively few "interesting separating planes"

Polynomial Embedding (cont.)



$$\begin{pmatrix} x_{11} & x_{1n} \\ \vdots & \vdots \\ x_{d1} & x_{dn} \\ x_{11}^2 & \cdots & x_{1n}^2 \\ \vdots & \vdots \\ x_{d1}^2 & x_{dn}^2 \\ x_{d1}^2 & x_{dn}^2 \\ x_{11}x_{21} & x_{1n}x_{2n} \\ \vdots & \vdots \end{pmatrix}$$

Polynomial Embedding (cont.)

Now apply linear methods (FLD, SVM, ...) in *embedded* space.

- image of class boundaries in original space is *nonlinear*
- allows much more *complicated* class regions

Polynomial Embedding Toy Examples

E.g. 1: Donut

- <u>FLD</u>: poor for low degree, then good

- <u>SVM</u>: similar excellent perfromance

Polynomial Embedding Toy Examples (cont.)

E.g. 2: Parallel Clouds

- FLD good for all embeddings

- <u>SVM</u> OK, but begin to see overfitting problems

Polynomial Embedding (cont.)

Drawback to polynomial embedding:

- extra terms may create spurious structure
- i.e. potential for "overfitting"
- High Dimension Low Sample Size problems worse

Kernel Machines

Idea: replace polynomials by other "nonlinear functions"

e.g. 1: "sigmoid functions" from neural nets

e.g. 2: "radial basis functions" – Gaussian kernels

Related to "kernel density estimation" (smoothed histogram)

Radial basis functions: at some "grid points" $\underline{g}_1, ..., \underline{g}_k$,

For a "bandwidth" (i.e. standard deviation) σ ,

Consider (*d* dim'al) functions: $\varphi_{\sigma}(\underline{x} - \underline{g}_1), ..., \varphi_{\sigma}(\underline{x} - \underline{g}_k)$

Replace data matrix with:

$$\begin{pmatrix} \varphi_{\sigma}(\underline{X}_{1} - \underline{g}_{1}) & \varphi_{\sigma}(\underline{X}_{n} - \underline{g}_{1}) \\ \vdots & \cdots & \vdots \\ \varphi_{\sigma}(\underline{X}_{1} - \underline{g}_{k}) & \varphi_{\sigma}(\underline{X}_{n} - \underline{g}_{k}) \end{pmatrix}$$

For discrimination: work in radial basis function domain,

With new data vector \underline{X}_0 represented by:

$$\begin{pmatrix} \varphi_{\sigma}(\underline{X}_{0}-\underline{g}_{1}) \\ \vdots \\ \varphi_{\sigma}(\underline{X}_{0}-\underline{g}_{1}) \end{pmatrix}$$

Toy Examples:

- E.g. 1: <u>Donut</u> mostly good (slight mistake for one kernel)
- E.g. 2: Parallel Clouds good at data, poor outside

Main lesson: generally good in regions with data, unpredictable results where data are sparse

E.g. 7: Checkerboard

- Kernel embedding (<u>FLD</u> or <u>SVM</u>) is excellent
- While polynomials (FLD SVM) lack flexibility
- Lower degree is worse

 \exists generalizations of this idea to other types of analysis,

and some clever computational ideas.

E.g. "Kernel based, nonlinear Principal Components Analysis"

Schölkopf, Smola and Müller (1998) "Nonlinear component analysis as a kernel eigenvalue problem", *Neural Computation*, **10**, 1299-1319. Discrimination (cont.)

M-rep Corpora Callosa Data:

Try to find differences between <u>Schizophrenics</u> and <u>Controls</u>

Most interesting views: Projections onto normal vector

<u>Mean Difference</u> <u>FLD</u> <u>SVM</u>

Verification: None signif'ly better than "random permutations"

Discrimination (cont.)

Paul Yushkevich Toy Data: (simulate from PCA, and a bump)

Raw Data <u>Raw Data with bumps</u>

Discrimination Performance (again check projections):

Mean Difference: OK

- FLD: Better, no overlap
- <u>SVM</u>: Best? Or too much "piling at the margin"?

Also check direction: <u>SVM</u>

Independent Component Analysis

Our application:

Find directions of "least Gaussian" projections

Origins: "blind source extraction"

Motivating Example: Cocktail Party Problem

- Start with signals
- Do <u>linear mixing</u>
- Recover <u>signals</u> (without knowledge of mixing coeff's)

Independent Component Analysis (cont.)

How it works: Scatterplot views:

- Original Data
- <u>Mixed Data</u> & result of sphering

(now rotate to "least Gaussian" directions)

- PCA gets it wrong, <u>signals</u> & <u>scatterplot</u>

Recommended References:

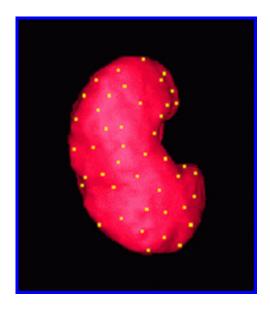
Hyvärinen and Oja (1999) *Independent Component Analysis: A Tutorial*, <u>http://www.cis.hut.fi/projects/ica</u>

Hyvärinen, A., Karhunen, J. and Oja, E. (2001) *Independent Component Analysis*, John Wiley & Sons.

Independent Component Analysis (cont.)

Goal (from James Chen):

Simulate kidney images to test segmentation



Simple Approach: Gaussian simulation from PCA

Independent Component Analysis (cont.)

Ticklish Question: Are data Gaussian?

Approach (joint work with Inge Koch and James Chen):

Look for non-Gaussianity, using ICA:

- Sphere Data
- Look for single "Least Gaussian Direction"
- Repeat, since algorithm depends on random start
- <u>Results</u>: find outliers in "several directions"
- Question: are these "spurious"?

Gaussianity Check

Approach:

- Simulate from the Gaussian
- Recompute ICA
- Compare data abs skewness with simulated values
- <u>Result</u>: shows clearly non-Gaussian

Distributional Fix

Idea: transform to fix above problem

(BIG) Assumption: Distribution is "radially symmetric"

Transformation: Power Transformation

Choose power to make "radii looks as expected for Gaussian"

Result: Raise radii to power
$$\frac{1}{0.55} \approx 1.8$$

Final Check: Apply above tests to simulated data

FDA of populations of tree structured objects

Motivation:

- Current FDA methods are powerful
- but limited to populations of *fixed length* feature vectors
- can't handle "variable topology shapes"
- severe limitation for "multifigural objects"

Exciting new area (cont.)

Challenging problem:

Statistical Analysis of Populations of Trees

A first approach to this slippery area: <u>Haonan Wang</u>

Careful axiomatic mathematics *required*!

(because "our intuition is too Euclidean")

FDA on Trees

30,000 foot view:

- 1. Start with a "metric" (distance measure)
- 2. Define "centerpoint" as "point closest to all data points"
- 3. Define PC1 as "simplest 1-d representations"

For details: <u>Talk by Haonan</u>