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Statistics in Image Processing 
 
 
Old Roles: 
 

- Denoising 
 
- Segmentation 

 
 
 
New Roles: 
 

- Understanding populations of images / objects 
 
- Discrimination  (i.e. classification) 

 
 



Statistics in Image Processing   (cont.) 
 
 
Personal Interest:     development of new statistical methods 
 
 
 
Main Challenge:    High Dimension, Low Sample Size 
 
 

- Endemic to Image Analysis 
 
- Classical Statistical Methods useless 

 
- Huge Need for Invention of New Methods! 



Relevant New Statistical Area 
 
 

Functional Data Analysis 
 
 
A personal view:  what is the “atom” of the statistical analysis? 
 
 
1st course in statistics:  “atoms” are numbers 
 
 
Statistical multivariate analysis:  “atoms” are vectors 
 
 
Functional Data:   “atoms” are more complex objects 
 
 



Functional Data Analysis (cont.) 
 
 
 
FDA:  “atoms” are more complex objects, e. g. 
 
 
- curves [toy example] 

 
 

- images, e.g. Cornea data (Cohen, Tripoli) [example] 
 
 

- shapes, e.g. Corpus Callosum Data (Ho, Gerig) [example] 
 

M-rep version (Yushkevich)  [example] 
 
 



Functional Data Analysis (cont.) 
 
 
Recommended Source: 
 
 Ramsay, J. O. & Silverman, B. W. (1997) Functional Data 

Analysis, Springer, N.Y. 
 

(there is 2nd book that I have not seen yet, 
“more applied and example oriented”) 

 
 
Drawback:    Only curves, no more complex data objects 
 
 
Strength:    Excellent source for many deep analytic ideas 
 
 



Data Representation 
 
 
  Object Space      Feature space ↔
 
 

Curves        Vectors 
 

Images 
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One to one mapping couples visualization in Object Space, with 

statistical analysis in Feature Space 
 



High Dim’al Data Conceptualization 
 
 

Feature space                         Point Clouds ↔
 
 
   Vectors 
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[Spinning Point Cloud Graphic]    . 



E.g. 1:  Curves  [example] 
 
 
Data Objects:  )(),...,(1 xfxf n     (conceptual model) 
 

Digital version:  
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Object Space View:    Overlay plots of curves 
 
 

Feature space:  ,  e.g. dimension  
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E.g. 2:  Images, Corneas  [example] 
 
 
Special thanks to K. L. Cohen and N. Tripoli,  

UNC Ophthalmology 
 
 
Reference: 
Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. 

T. and Cohen, K. L. (1999) Robust Principal Component 
Analysis for Functional Data, Test, 8, 1-73. 

 
 
Data Objects:  color map of “temperature scale radial curvature” 
 
- “hot” = more curvature 
 
- “cool” = less curvature 
 



E.g. 2:  Images, Corneas  [example] (cont.) 
 
 
Feature vectors:  Digitized version is “large and wasteful” 
 
 Instead use coefficients of Zernike Basis repres’n,  66=d
 
Schwiegerling, J., Greivenkamp, J. E., and Miller, J. M.  (1995) 

Representation of videokeratoscopic height data with Zernike 
polynomials,  Journal of the Optical Society of America, Series 
A, 12, 2105-2113. 

 
Born, M. and Wolf, E. (1980) Principles of optics:  electromagnetic 

theory of propagation, interference and diffraction of light. 
Pergamon Press, New York. 

 
 



E.g. 2:  Images, Corneas  [example] (cont.) 
 
 
 
Object Space view:  can’t overlay images 
 
 
 Instead show images sequentially 
 
 

Hard to see “population structure” 
 
 



E.g. 3: shapes, Corpora Callosa  [example] 
 
 
 
Data Objects:  boundaries of “segmented” corpora callosa 
 
Feature vectors: use coefficients of Fourier boundary 

representation, 80=d  
 
 
Object Space view:  can either overlay, or show sequentially 
 
In either case:  hard to see “population structure” 
 
 
M-rep version:    same issues 



Finding and visualizing structure in populations 
 
 
Powerful method:  Principal Component Analysis 
 
 
Presentation here: 
 

- Focus on visualization 
 
 
Underlying mathematics: 
 
- Eigen-analysis of covariance matrix 
 
- Singular Value Decomposition of Data Matrix 
 



Principal Component Analysis  (PCA) 
 
There are many names (lots of reinvention?): 
 
 
Statistics:    Principal Component Analysis  (PCA) 
 
 
Social Sciences:    Factor Analysis (PCA is a subset) 
 
 
Probability / Electrical Eng:    Karhunen – Loeve expansion 
 
 
Applied Mathematics:    Proper Orthog’l Decomposition (POD) 
 
 
Geo-Sciences:    Empirical Orthogonal Functions (EOF) 



PCA, Optimization View 
 
 
Goal:  find “direction of greatest variability” 
 
 [Spinning point Cloud]    -     [Axis of greatest variability] 
 
 
 
 
Question:  “direction” from where? 
 
 
 
 



PCA, Optimization View (cont.) 
 
 
 
Step 1:  Start with Center Point:   
 

Sample Mean:  
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Aside:   “mean vector”  =  “vector of means”   is not obvious 
 
 
Notation:   “under-arrow” used for vectors 



PCA, Optimization View (cont.) 
 
 
Step 2: Work with re-centered data: 
 

xxi − ,     ,          the “mean residuals” ni ,...,1=
 
 
Step 3: Consider all possible “directions” 
 
 
Step 4: Project (find closest point) data onto direction vector 
 
 
Step 5: Maximize “spread” (sample variance), over direction 
 
 
Step 6: Project data onto orthogonal subspace, and repeat. 



Curves, Toy Example I 
 
 
Features of Graphic: 
 
- Data 
- Mean 
- Residuals 
- PC Decomps – projections 
- PC Decomps – mean +- extremes 
- PC Residuals 
- % Sums of Square – summarizing “signal power” 
- Summarization of % SS 
- 1-d Projections 
 
 
 



More Curve Toy Examples 
 
 
Toy Example 2: 
 

Shows 1-d projections useful to highlight “clusters” 
 
 
Toy Example 3: 
 

Shows 1-d projections useful to identify “outliers” 
 
 
Toy Example 4: 
 

Show 2-d Projections useful    [2-d Projections] 
 
 



PCA Analysis of Cornea Data 
 
 
Recall     Raw Data 
 
 
PCA:    same as before     ( do analysis in feature space) 
 
 
Visual problem:    can’t overlay projections 
 
Solution:  
 

March along eigenvector in feature space 
 

Study corresponding image in object space 
 
 



PCA Analysis of Cornea Data    (cont.) 
 
 
PC1:    Overall curvature   &   “with the rule” astigmatism 
 
 
PC2:    Big problem caused by an outlier?!?    [toy 2-d graphic] 
 
 
 
Approach 1:    Outlier deletion? 
 
 - Problem:    too many outliers    (recheck raw data) 
 
 
 
Approach 2:    Robust PCA    (i.e. “reduced influence” methods) 
 
 



PCA Analysis of Cornea Data    (cont.) 
 
 
Robust PCA I:     “Projection Pursuit” 
 
 - Works well in 4-5 dimensions,  20 max   (<< 66 here) 
 
 
Robust PCA II:    Eigenanalysis of Robust covariance est. 
 
 - “affine invariance” fails for HDLSS 
 
 
Robust PCA III:    Spherical and Elliptical PCA 
 
 Elliptical PC1 
 
 Elliptical PC2 



PCA analysis of M-rep Corpora Caloosa 
 
 
Recall Raw Data:    Hard to see “structure of population” 
 
 
PC1:    Overall Curvature 
 
 
PC2:    Rotation of ends 
 
 
PC3:    Variation of curvature 
 
 

Note:    “Directions are orthogonal”



Discrimination 
 
Main idea: 
 

Have several “classes” of data.   E.g  “Healthy” and “Diseased” 
 

Find a “rule” for assigning new cases to each class. 
 
 
Standard statistical method: 
 
  Fisher Linear Discrimination   (FLD) 
 
  i. e.  Linear Discriminant Analysis (LDA) 
 
 
Big Problem:    Fails in HDLSS contexts 
 



Discrimination (cont.) 
 
 
Serious competitor (in HDLSS situations): 
 

“Mean Difference”,    i.e. “centroid” method 
 
 
Idea:    choose class with closest mean 
 
 
 Weakness:    ignores covariance information 
 
 Strength:    ignores covariance information  
 
 
  Personal observation:    simplicity is often a strength… 
 
 



Discrimination (cont.) 
 
Comparison between FLD and Mean Difference [toy data]: 
 
 

I. Large Sample “Two Meatballs”  [PCA works]: 
 

FLD        ≈ Mean Difference 
 
 
II. Large Sample “Parallel Squished” Gaussian [PCA fails]: 

 
FLD    >>    Mean Difference 

 
 

III. HDLSS Gaussian: 
 

FLD    <<    Mean Difference 
 



Discrimination (cont.) 
 
 
Interesting “High Tech” method from “Machine Learning”: 
 

Support Vector Machine 
 
 
Main Idea:    Find “separating hyperplane” 
 
 To maximize the “margin”  i.e. minimum distance to plane 
 

Graphical Illustration 
 
 
- Add “penalty” when have “violations” 
 
- Find solution by quadratic programming 
 



Support Vector Machine 
 
Classical References: 
 
Vapnik (1982) Estimation of dependences based on empirical 

data, Springer (Russian version, 1979) 
 
Vapnik (1995) The nature of statistical learning theory, Springer. 
 
 
Recommended tutorial: 
 
Burges (1998) A tutorial on support vector machines for pattern 

recognition, Data Mining and Knowledge Discovery, 2, 955-
974, see also web site: 

http://citeseer.nj.nec.com/burges98tutorial.html 
 
 
 



Support Vector Machine  (cont.) 
 
 
HDLSS performance of SVM: 
 
- Somewhat Shaky 
 
- Reason is too strongly feels “support vectors” 
 
- And too many of them 
 
 
But FLD is much worse 
 
 



Support Vector Machine  (cont.) 
 
 
Coming Improvement (for HDLSS contexts) 
 
 

Distance Weighted Discrimination 
 
 
- Idea:  feels all of the data, not just “support vectors” 
 
- Needs more sophisticated optimization 
 

(2nd Order Cone Programming) 
 
- Nearly ready for prime time 
 
 
 



Discrimination (cont.) 
 
Apparent Weakness of Above Methods: 
 
  Only allow “separating planes” 
 
 
Solution 1:    Gaussian Likelihood methods 
 
   Weakness:  fails in HDLSS situations 
 
Solution 2:    Nonlinear surfaces: 
 
- Nearest Neighbors 
- Parzen Windows 
- Neural Nets 
 

Drawback:    No insights about data 
 



Discrimination (cont.) 
 
 
Solution 3:    “Kernel Embedding” methods 
 
 
Fundamental Reference: 
 
Aizerman, Braverman and Rozoner (1964) Automation and 

Remote Control, 15, 821-837. 
 

{Historical Note:   way before SVM and “machine learning”} 
 



Polynomial Embedding  
 
 
Motivating idea:    extend “scope” of linear discrimination, 
 
   by adding “nonlinear components” to data 
 

(better use of name “nonlinear discrimination”????) 
 
 
E.g.    In 1d,  “linear separation”   splits the domain 
 

{ }ℜ∈xx :  
 

into only 2 parts   [toy graphic] 
 



Polynomial Embedding (cont.) 
 
 
But in the “quadratic embedded domain” 
 

( ){ } 22 :, ℜ⊂ℜ∈xxx  
 
linear separation can give 3 parts   [toy graphic] 
 
 

- original data space lies in 1d manifold 
 

- very sparse region of   2ℜ
 

- curvature of manifold gives better linear separation 
 

- can have any 2 break points  (2 points    line) ⇒
 



Polynomial Embedding (cont.) 
 
 
Stronger effects for higher order polynomial embedding: 
 
 
E.g.  for cubic,   ( ){ } 332 :,, ℜ⊂ℜ∈xxxx  
 

linear separation can give 4 parts (or fewer)   [toy graphic] 
 
 

- original space lies in 1d manifold, even sparser in   3ℜ
 

- higher d curvature gives improved linear separation 
 

- can have any 3 break points  (3 points    plane)? ⇒
 

- relatively few “interesting separating planes” 



Polynomial Embedding (cont.) 
 
General View:       for original data matrix: 
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“add rows”: 
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Polynomial Embedding (cont.) 
 
 
Now apply linear methods (FLD, SVM, …) in embedded space. 
 
 

- image of class boundaries in original space is nonlinear 
 
 

- allows much more complicated class regions 



Polynomial Embedding Toy Examples 
 
 
E.g. 1:    Donut 
 
 
 

- FLD:  poor for low degree, then good 
 
 
 

- SVM:  similar excellent perfromance 
 
 
 



Polynomial Embedding Toy Examples (cont.) 
 
 
 
E.g. 2:    Parallel Clouds 
 
 
 
 - FLD  good for all embeddings 
 
 
 
 - SVM OK, but begin to see overfitting problems 
 



Polynomial Embedding (cont.) 
 
 
Drawback to polynomial embedding: 
 
 

- extra terms may create spurious structure 
 
 

- i.e. potential for “overfitting” 
 
 

- High Dimension Low Sample Size problems worse 
 
 
 
 



Kernel Machines 
 
 
 
Idea:    replace polynomials by other “nonlinear functions” 
 
 
e.g. 1:    “sigmoid functions” from neural nets 
 
 
e.g. 2:    “radial basis functions” – Gaussian kernels 
 

Related to “kernel density estimation”  (smoothed histogram) 
 
 
 



Kernel Machines (cont.) 
 
 
 
Radial basis functions: at some “grid points”   
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For a “bandwidth” (i.e. standard deviation)  σ , 
 
 
Consider  (  dim’al)  functions:     d ( ) ( )

k
gxgx −− σσ ϕϕ ,...,

1
 

 
 

Replace data matrix with:    
( ) ( )

( ) ( )















−−

−−

knk

n

gXgX

gXgX

σσ

σσ

ϕϕ

ϕϕ

1

111

MLM  

 



Kernel Machines (cont.) 
 
 
 
For discrimination:    work in radial basis function domain, 
 
 

With new data vector  0X   represented by:    
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Kernel Machines (cont.) 
 
Toy Examples: 
 
 
E.g. 1:    Donut – mostly good (slight mistake for one kernel) 
 
 
E.g. 2:    Parallel Clouds – good at data, poor outside 
 
 
Main lesson:  generally good in regions with data, 
 unpredictable results where data are sparse 
 



Kernel Machines (cont.) 
 
 
 
E.g. 7:  Checkerboard 
 
 

- Kernel embedding (FLD or SVM) is excellent 
 
 

- While polynomials (FLD – SVM) lack flexibility 
 
 

- Lower degree is worse 
 



Kernel Machines (cont.) 
 
 
 
∃   generalizations of this idea to other types of analysis, 
 
and some clever computational ideas. 
 
 
 
E.g. “Kernel based, nonlinear Principal Components Analysis” 
 
 
Schölkopf, Smola and Müller (1998) “Nonlinear component 

analysis as a kernel eigenvalue problem”, Neural Computation, 
10, 1299-1319. 

 
 
 



Discrimination (cont.) 
 
M-rep Corpora Callosa Data: 
 
Try to find differences between Schizophrenics and Controls 
 
 
Most interesting views:       Projections onto normal vector 
 
  Mean Difference    FLD   SVM 
 
 
Verification:    None signif’ly better than “random permutations” 
 
 
 
 



Discrimination (cont.) 
 
Paul Yushkevich Toy Data:    (simulate from PCA, and a bump) 
 

Raw Data    Raw Data with bumps 
 
 
Discrimination Performance    (again check projections): 
 
 Mean Difference:    OK 
 
 FLD:     Better, no overlap 
 
 SVM:    Best?    Or too much “piling at the margin”? 
 
 
Also check direction:     SVM 
 



Independent Component Analysis 
 
 
Our application:     
 

Find directions of “least Gaussian” projections 
 
 
Origins: “blind source extraction” 
 
Motivating Example:    Cocktail Party Problem 
 

- Start with signals 
 
- Do linear mixing 

 
- Recover signals    (without knowledge of mixing coeff’s) 



Independent Component Analysis    (cont.) 
 
 
How it works:    Scatterplot views: 
 

- Original Data 
 
- Mixed Data    &   result of sphering 

 
(now rotate to “least Gaussian” directions) 

 
- PCA gets it wrong,    signals   &   scatterplot 

 
 



Independent Component Analysis    (cont.) 
 
 
 
Recommended References: 
 
 
Hyvärinen and Oja (1999) Independent Component Analysis: A 

Tutorial,  http://www.cis.hut.fi/projects/ica 
 
Hyvärinen, A., Karhunen, J. and Oja, E. (2001) Independent 
Component Analysis, John Wiley & Sons. 
 
 
 
 

http://www.cis.hut.fi/projects/ica


Independent Component Analysis    (cont.) 
 
 
Goal (from James Chen):     
 

Simulate kidney images to test segmentation 
 

 
 
 
Simple Approach:     Gaussian simulation from PCA 



Independent Component Analysis    (cont.) 
 
Ticklish Question:    Are data Gaussian? 
 
Approach (joint work with Inge Koch and James Chen): 
 
 
Look for non-Gaussianity, using ICA: 
 

- Sphere Data 
 
- Look for single “Least Gaussian Direction” 

 
- Repeat, since algorithm depends on random start 

 
- Results:    find outliers in “several directions” 

 
- Question:    are these “spurious”? 



Gaussianity Check 
 
 
Approach:     
 

- Simulate from the Gaussian 
 
- Recompute ICA 

 
- Compare data abs skewness with simulated values 

 
- Result:    shows clearly non-Gaussian 

 
 



Distributional Fix 
 
Idea:    transform to fix above problem 
 
 
(BIG) Assumption:     Distribution is “radially symmetric” 
 
 
Transformation:    Power Transformation 
 
 
Choose power to make “radii looks as expected for Gaussian” 
 
 
Result:     Raise radii to power 8.155.0

1 ≈  
 
Final Check:    Apply above tests to simulated data 



Exciting new area 
 
 
FDA of populations of tree structured objects 
 
 
Motivation: 
 

- Current FDA methods are powerful 
 

- but limited to populations of fixed length feature vectors 
 

- can’t handle “variable topology shapes” 
 

- severe limitation for “multifigural objects” 
 
 
 



Exciting new area (cont.) 
 
 
Challenging problem:  
 

Statistical Analysis of Populations of Trees 
 
 
 
A first approach to this slippery area:    Haonan Wang 
 
 

Careful axiomatic mathematics required! 
 
 

(because “our intuition is too Euclidean”) 
 
 



FDA on Trees 
 
30,000 foot view: 
 
 

1. Start with a “metric”  (distance measure) 
 
 
2. Define “centerpoint” as “point closest to all data points” 

 
 

3. Define PC1 as “simplest 1-d representations” 
 
 
For details:     Talk by Haonan 
 
 
 
 


