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Abstract

Feature selection methodology from machine learning literature is adapted

and applied to the problem of statistical shape-based classification of bio-

logical objects. The feature selection paradigm is used to discover the re-

gions of objects where the difference between classes is most pronounced.

This also improves the generalization ability and statistical significance

of shape-based analysis. A feature selection algorithm based on support

vector machines is extended to take advantage of special relationships

between neighboring features, which are inherently present in geometric

object representations. Performance analysis using simulated data is pre-

sented.

1 Introduction

Recent advances in medical imaging and image processing techniques have en-
abled medical researchers to link changes in the shape of human organs to the
progress of some long-term diseases. For instance, differences in the shape of
the hippocampus between schizophrenia patients and healthy subjects have been
reported [8, 25]. Results of this nature are powerful because they promise to en-
able early diagnosis of serious diseases, and because they may reveal the nature
of the biological processes responsible for the diseases.

However, the methods for characterizing how and where a given disease af-
fects an organ can still be improved. Such characterization is made difficult by
the fact that shape differences between healthy and diseased organs are often
less prominent that the inter-population variability. Furthermore, standard sta-
tistical techniques may not be reliable in these kinds of problems, due to small
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sample sizes and large numbers of features that are needed to describe human
organs.

This paper explores the ways in which a machine learning technique called
feature selection can be used to improve shape characterization. Feature selec-
tion is used to reduce the dimensionality of classification problems by finding the
subset of features that best captures the differences between classes. Classifiers
restricted to the selected subset of features are less affected by sampling noise
and tend to generalize better than the classifiers trained on the entire feature
set. Feature selection has been shown to dramatically improve the generalization
ability of classifiers in high-dimensional problems [3, 29].

The potential benefit of using feature selection algorithms in shape charac-
terization problems extends beyond the improved generalization ability. Exami-
nation of features deemed most relevant by such algorithms may reveal the areas
of organs that are most affected by a disease, leading to improved localization
and understanding of the biological processes responsible for the disease.

Feature selection algorithms in machine learning literature usually address
general classification problems and make minimal assumptions as to where the
different features come from and how they may be related. In shape classifica-
tion problems, where features are usually derived from dense geometrical object
representations, there exist special relationships between neighboring features.
By incorporating our knowledge of these relationships into feature selection al-
gorithms, we can improve their performance and stability when applied to shape
classification. The two properties of shape features that are particularly useful
for improving feature selection are structure and locality.

We use the term structure to indicate the importance of the order in which
the features are arranged in a classification problem. In many problems, the
order of the features is arbitrary, as is the case, for example, when all the
features describe different physical properties of an object, such as its height,
weight, age or density. However, when the features are measurements regularly
sampled from a lattice, as is the case in many geometrical object representations,
the order of the features is important, as nearby features are more likely to be
correlated than the far-away features.

A biological process responsible for variability in the shape of an anatomical
object exhibits locality if it affects the object at one or at most a few locations,
which are consistent across the population of objects. In reference to a feature
set, we use the term locality to mean that some components of the statistical
variability in the data can be localized to one or more subsets the features.

In the absence of structure and locality, the feature selection problem is
purely combinatorial, since in the set of n features there are 2n possible sub-
sets and all of them are considered a priori to be equally worthy candidates
for feature selection. The properties of structure and locality constitute prior
knowledge about the kinds of feature subsets that ought to be selected. Feature
sets consisting of one or a few contiguous subsets are more likely candidates
than feature sets in which the selected features appear scattered. By assuming
that shape features exhibit structure and locality, we can reduce the number of
possible solutions of a feature selection algorithm.
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The paper is organized as follows. In Section 2 we provide an overview of
the related literature in the fields of machine learning and shape characteri-
zation. In Section 3 we incorporate the prior knowledge about structure and
locality of shape features into an existing feature selection method by Bradley
and Mangasarian [3]. In Section 4.1 we analyze the performance of the algo-
rithm in simulated data examples, where the features are normally distributed.
In Section 4.2 we apply the method to a simulated shape classification problem.

2 Background

2.1 Feature Selection

In classification problems, the generalization ability of a classifier can be im-
proved by removing features that do not contribute to classification, i.e. are
irrelevant. A number of algorithms for automatic feature selection have been
developed in the machine learning literature.

Feature selection methods can be categorized into filter methods and wrapper
methods. Filter methods deal with the feature selection task independently of
the classification: they find and remove irrelevant features first, and pass the
rent on to the classification [21]. Wrapper methods use classification as a sub-
task; as they try different subsets of features, they perform classification and
cross-validation on each subset, until an optimum is found [17, 22]. Wrapper
methods generally perform better than filter methods, but are much more time
consuming, as each iteration of the method requires an execution and testing of
the classification method.

Feature selection methods can also be categorized as exhaustive, random-
ized or sequential, based on the search algorithm that they employ for finding
the optimal feature subset [1, 14]. Exhaustive methods search for an optimal
subset of n features using either a combinatorial search of all the 2n possi-
ble subsets, or using AI techniques, such as the branch and bound algorithm
[23]. Sequential feature selection methods achieve polynomial time complexity
by iteratively adding and subtracting features to a subset in a greedy fashion.
Randomized methods employ stochastic search techniques, such as simulated
annealing and genetic algorithms. Comparisons of a number of popular feature
selection techniques can be found in paper by Aha and Bankert [1], and by Jain
and Zongker [15]. According to [7, 14], only the exhaustive search procedure
can be guaranteed to produce the globally optimal feature subset.

The feature selection algorithm by Bradley and Mangasarian [3, 4], which
is used and extended in this paper, does not directly fall into one of the above
categories. It can be said to be a wrapper method because it uses the classifica-
tion algorithm as a component. It also falls somewhere between the randomized
and sequential categories as it has a stochastic component and uses hill climbing
techniques. It formulates the feature selection as a smooth optimization problem
and finds an optimum by solving a sequence of linear programming problems.
The method falls into a broader category of techniques that integrate support
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vector machine methodology with feature selection [29, 16].

2.2 Shape-Based Classification

Shape classification methods can be characterized by the object representation
that they use to yield statistical features and by the statistical methods em-
ployed to analyze the features.

Landmark methods [2] use corresponding points of special anatomic or geo-
metric significance as features. Since the number of such landmarks is relatively
small, the properties of structure and locality, defined in Section 1, do not apply
to features derived from landmarks. However, methods based on landmarks can
benefit from the existing feature selection methodology.

The feature selection method presented in this paper is best suited for the
shape analysis approaches that use dense object representations. This rich class
of representations includes boundary point distribution models [6], parametric
boundary models based on Fourier and spherical harmonic basis decomposition
[26, 20], discrete and continuous medial representations [24, 31, 12], as well as
functional object representations, such as distance transforms [13], and defor-
mation fields based on a warping of a template to each object in the training
set [8, 9, 18]. The features yielded by these representations exhibit structure
and locality because they are densely and regularly sampled.

Many of the methods in statistical shape analysis focus on estimating the
probability distribution on the shape space [6, 20, 26, 18]. Such probability
distributions can be used as priors for deformable segmentation and can be
sampled to visualize shape variability. Principal component analysis, which is
used by many of the methods to estimate the shape distribution, is related
to feature selection, as it reduces the dimensionality of the data to a linear
combination of the original features.

While the issues of representation and correspondence have been the focus
of extensive research in shape characterization literature, the application of
feature selection paradigm to the shape characterization problem have received
less attention. However, there has been considerable work in the literature in
using classification techniques to detect, localize and describe the anatomical
differences in the shape between different populations [11, 10, 27, 8, 18, 19, 32].

3 Methods

This section contains the details of the new feature selection method for shape
classification, which is an extension of an existing feature selection algorithm by
Bradley and Mangasarian [3]. The novelty of our method is that it searches for
an optimal set of windows of features, as described in the following sections. For
clarity, we will use the term feature selection to refer to the original algorithm,
while referring to our extended version using the term window selection.

This section is organized as follows. Subsection 3.1 formulates the feature
selection problem in general terms of energy minimization. Subsection 3.2 ex-
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pands this formulation by adding an energy term that favors feature sets that
exhibit locality and structure. The concept of minimal window cover is used to
measure how localized and structured a feature set is. Subsection 3.3 describes
how the feature selection problem can be formulated and solved using linear
programming.

3.1 Feature Selection

The input to a feature selection algorithm consists of a training set of objects
that fall into two classes of sizes m and k. Each object is represented by an n-
dimensional feature vector. The classes are represented by the feature matrices
Am×n and Bk×n.

We wish to find the set of features, i.e., a subset of columns of A and B,
that are most relevant for discriminating between the two classes. The idea
of Bradley and Mangasarian [3] is to look for a relevant subset of features by
finding a hyperplane

P =
{

x ∈ R
n : wT x = γ

}

(1)

that optimally separates the two classes, while lying in the minimal number of
dimensions, as formulated by the energy minimization problem,

P = arg min
γ,w

Esep(γ,w) + λEdim(w) . (2)

The term Esep measures how well the hyperplane P separates the elements
in A from the elements in B. It is expressed as

Esep(γ,w) =
1

m
‖(−Aw + eγ + e)+‖1

+
1

k
‖(Bw − eγ + e)+‖1

(3)

where e represents a vector of ones of appropriate size, and (•)+ is an operation
that replaces the negative elements of • with zero.

Let P− and P+ be a pair of hyperplanes parallel to P , whose distance to P
is 1/‖w‖. Then, Esep measures the distance to P + of those elements of A that
lie on the ’wrong side’ of P+, as well as the distance to P− of the elements of
B that lie on the ’wrong side’ of P−. By wrong side, we mean that half-space
of P− or P+ which contains the hyperplane P .

The energy term Edim in (2) is used to reduce the number of dimensions in
which the hyperplane P lies. It has the general form

Edim(w) = eT I(w), (4)

where I(w) is an indicator function that replaces each non-zero element of w

with 1. However, since indicator functions are inherently combinatorial and
badly suited for optimization, Bradley and Mangasarian suggest approximating
the indicator function with a smooth function

I ({w1 . . . wn)}) =
{

1 − ε−α|w1|, . . . , 1 − ε−α|wn|
}

, (5)

which, according to [5], yields the same solutions as the binary indicator function
for finite values of the constant α .
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3.2 Locality Term for Feature Selection

We hypothesize that features derived from dense geometrical object represen-
tations of biological objects to exhibit the properties of structure and locality,
which are described in Section 1. These properties imply that that if a certain
feature strongly contributes to the separation between two classes of objects,
then the neighboring features are also likely to strongly contribute to the sepa-
ration.

The formulation of the feature selection problem in (2) rewards good separa-
tion between classes in a small number of features, but does not take structure
and locality of the features into account. As discussed in Section 1, structure
and locality constitute a prior term for feature selection that can reduce the
complexity of its solution space.

To reward locality, we expand the energy minimization formulation (2) to
include an additional energy term:

P = arg min
γ,w

Esep(γ,w) + λEdim(w) + ηEloc(w) . (6)

The term Eloc(w) rewards selection of neighboring features, by requiring that
the non-zero elements of w be ordered in a structured manner.

Let J ⊂ {1 . . . n} be the set of features for which w is non-zero. To measure
how structured J is, we define an ’alphabet’ of structured subsets of {1 . . . n}
that we call windows, and measure the most compact description needed to
express J using this alphabet.

The neighborhood relationships between the features in the set {1 . . . n}
depend on the structure of the space from which the features are sampled. Typ-
ically, as in the case of parametric shape descriptions, the underlying structure
of a feature set is a lattice of one or two dimensions.

In order to define an alphabet of windows over the feature set {1 . . . n}, we
use a metric d(i, j) that assigns a non-negative distance to every pair of features
i, j. A set W ⊂ {1 . . . n} is defined to be a window of size q if (i) d(i, j) ≤ q for
all i, j ∈ W , and (ii), there does not exist a superset of W in {1 . . . n} for which
the condition (i) holds.

The distance function allows us to define windows on arbitrarily organized
features. For instance, when features are organized in a one-dimensional lattice,
and the distance function is d(i, j) = |i− j|, the windows are contiguous subsets
of features. By letting d(i, j) = |i − j| mod n, we can allow for wrap-around
windows, which are useful for periodic features, such as features sampled along
the boundary of a closed object. On higher-dimensional lattices, different dis-
tance functions such as Euclidean distance and Manhattan distance generate
differently shaped windows. For the features sampled from vertices on a mesh,
windows can be constructed using the transitive distance function, which counts
the smallest number of edges on a mesh that separate a pair of vertices.

Let W = {W1 . . . WN} be a set of windows of various sizes over the feature
set {1. . . n}. The minimal window cover of a feature subset J is defined as the
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smallest set α ⊂ {1 . . . N} for which

J ⊂
⋃

i∈α

Wi . (7)

We take the locality energy component Eloc(w) to be equal to the size of the
minimal window cover of the set of non-zero features in the vector w. While such
a formulation is combinatorial in nature, in the following sections we formulate
it the context of linear programming and derive an elegant implementation.

3.3 Linear Programming Formulation

Bradley and Mangasarian express the energy minimization problem in (2) as a
series of linear programming problems [3]. This section briefly summarizes their
approach and extends it to include the formulation (6).

The term Esep(w, γ) in (3) is linear. The global minimum of Esep can be
found by solving the following linear programming problem:

minimize
γ,w,y,z

e
T
y

m
+ e

T
z

k
,

−Aw + eγ + e ≤ y

subject to Bw − eγ + e ≤ z

y ≥ 0, z ≥ 0 .

(8)

The feature selection problem in (2) can be formulated as a smooth non-
linear problem

minimize
γ,w,y,z,v

e
T
y

m
+ e

T
z

k
+ λeT I(v),

−Aw + eγ + e ≤ y

subject to Bw − eγ + e ≤ z

y ≥ 0, z ≥ 0 ,
−v ≤ w ≤ v .

(9)

Bradley and Mangasarian call this problem Feature Selection Concave (FSV).
Notice, that the absolute value of w from (3) does not appear in this formulation;
instead the positive vector v is used to clamp w from above and below.

The non-zero elements of the vector v correspond to the selected features. In
order to introduce the locality energy Eloc into the linear program, we express
the non-zero elements of v as a union of a small number of windows, and penalize
the number of windows used.

Let W1 . . . WN be an ’alphabet’ of windows, as defined in section 3.2. Let
Ωn×N be a matrix whose elements are defined as

ωij =

{

1 if i ∈ Wj ,
0 otherwise.

(10)

Each column of this matrix represents a window in the alphabet. Let u be
a sparse positive vector of length N . Then the non-zero elements of the vector
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Ωu constitute the union of windows corresponding to the non-zero elements of
u.

In the following linear program, we introduce u into the objective of the
linear programming formulation, in a manner that penalizes both the number
of windows used and the number of features contained in those windows:

minimize
γ,w,y,z,u

e
T
y

m
+ e

T
z

k
+

(

λeT Ω + ηeT
)

I(u),

−Aw + eγ + e ≤ y

subject to Bw − eγ + e ≤ z

y ≥ 0, z ≥ 0 ,
−Ωu ≤ w ≤ Ωu .

(11)

This formulation of the objective function is identical to the energy minimization
formulation (6) if none of the windows selected by u overlap. In case of an
overlap, the penalty assessed on the combined number of features in all of the
selected windows, and not on the total number of windows in the vector w.

We use a fast successive linear approximation algorithm outlined in [3] to
solve the program (11). The algorithm is randomly initialized and iteratively
solves a linear programming problem in which the concave term I(u) is approx-
imated using the Taylor series expansion. The algorithm does not guarantee a
global optimum, but does converge to a minimum after several iterations. The
resulting vector u, whose non-zero elements indicate the selected windows, is
very sparse.

Different values of the parameters λ and η result in different numbers of
windows and features being selected. The feature selection algorithm is repeated
over a range of parameter values, and the feature subset that generalizes best
is reported.

4 Experimental Results

4.1 Normally distributed features

This section presents the experiments used to analyze the performance of the
window selection, comparing it to the original feature selection algorithm with-
out locality and to classification without feature selection. The experiments are
applied in a situation where the true distributions of the classes are known,
only a number of features is relevant for classification, and the relevant features
are arranged in a structured and localized manner. Two similar experiments
are performed. In the first, the relevant features are arranged sequentially in a
single contiguous block, and in the second, the relevant features are arranged
into two disjoint contiguous blocks.

The two samples A and B in both experiments are drawn from the mul-
tivariate normal distribution, with means µ and −µ, and identity covariance
matrices. The 15-dimensional vector µ has 9 elements that are equal to zero
and 6 non-zero elements. The non-zero elements are arranged into contiguous
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Figure 1: A comparison of the average expected error rates of the window
selection algorithm (red diamond, dotted line), the feature selection algorithm
(blue square, dashed line), and global discriminant analysis (black triangle, solid
line). The plots show the average error rates achieved with each algorithm for
sample sizes ranging from 30 to 120. The results shown were computed using
λ = 0.03 in both experiments, η = 0.16 in Experiment I and η = 0.02 in
Experiment II.

groups: in Experiment I, they form one group of 6 elements, in Experiment II
they form two groups of 3 elements each:

µi = {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}/(2
√

6)

µii = {1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0}/(2
√

6)

Each experiment is performed using training sets of sizes 30, 60, 90, and 120.
For each size, 40 random training sets are drawn from the normal distributions
described above. For each training set, the two feature and window selection
algorithms are applied using different values of the energy modulation param-
eters λ and η. The parameter λ, which modulates the penalty on the number
of selected features, takes values is the range 0.01, 0.02, . . . , 0.2. The param-
eter η, which modulates the penalty on the number of windows takes values
0.02, 0.04, . . . , 0.2. For each set of parameter values, the algorithm is applied
10 times with different random initializations, and the best of the 10 results is
recorded.

For every subset of features selected by the two algorithms under different
parameters and on different training sets, we compute the expected generaliza-
tion performance of a classifier trained on that subset. A parametric classifier
formed by the Fisher linear discriminant is used; it is a natural choice for this
type of an experiment where the data is sampled from normal distributions with
equal covariances. This choice also underlines the fact that the classifier used as
a part of the feature selection algorithm need not be the same as the classifier
used for the subsequent discrimination.

Let w be the Fisher linear discriminant of unit length, and let {x : wT x = γ}
define its decision boundary. Since the underlying normal distributions are
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Figure 2: These charts show how many times out of 40 the two feature selection
algorithms selected the correct subset of features, for a range of sample sizes.
The red double bars (left) describe the window selection algorithm and the blue
double bars (right) describe the feature selection algorithm. The top part of
each double bar shows how many times the right feature subset was selected
for some value of the parameters. The bottom part shows how often the right
feature set was deemed optimal by cross validation.

known, the expected error rate ε of the classifier can be computed as

2ε =

γ
∫

−∞

φ(t − µT w) dt +

∞
∫

γ

φ(t + µT w) dt, (12)

where φ(t) is the standard normal probability density. Figure 1 shows the
average expected error rate achieved by each feature selection approach for each
sample size. For comparison, the error rate of a classifier based on the Fisher
linear discriminant is also plotted.

Figure 2 shows the frequency with which both algorithms find the correct
feature subset in each experiment. For each sample size, it shows the number
of times the feature subset was found for some parameter value, as well as
the number of times that such a parameter value yielded the smallest cross-
validation error.

The window selection algorithm outperforms the original feature selection
algorithm in both experiments. However, the feature selection algorithm has a
lower computational complexity, because it’s formulation as a linear program-
ming problem has an O(m + k + n) variables and O(m2 + k2 + n2) inequalities,
while the window selection algorithm generates a problem with O(m+k+n+N)
variables and O(m2 + k2 + n2 + n · N) inequalities. In these experiments,
N = n(n + 1)/2, as the window set contained all the windows possible The
linear programming problems were solved using the Sequential object-oriented
simplex class library (SoPlex), developed by Roland Wunderling. [30].

4.2 Synthetic shape example

We use synthetic shape data to analyze the performance of the feature window
selection algorithm in a shape classification problem. The classification is per-
formed on two classes of artificial objects, which are constructed using a point
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Figure 3: The generation of synthetic shapes. a. Samples from the Gaussian
distribution that describes global shape variability common to both classes. b.
A distribution of random tumors in relation to the average corpus callosum
shape. c. The effect of a embedding a tumor into the object: the grey outline is
sampled from the global shape distribution, the black outline in the deformed
outline, the circle indicates the location of the warped tumor. d. The relevance
measure on the features, as indicated by the relative sizes of the red dots on the
boundary of the corpus callosum.

distribution model of 71 corpus callosum boundaries. The point distribution
model, which was graciously provided to us by Prof. G. Gerig, consists of 64
boundary points that have been regularly sampled from Fourier contour seg-
mentations of the corpus callosum. The segmentation technique [28] aligns the
objects in space and ensures correspondence.

The two classes are generated in such a way that the differences between
them are restricted to a single area of the corpus callosum. The differences
between the classes are made difficult to detect by addition of a large global
variability component that is common to the two classes.

The global variability component is simulated by randomly sampling mem-
bers of both classes from a single Gaussian probability distribution, which is
fitted to the corpus callosum point distribution model using principal compo-
nent analysis, following the methodology of Cootes et al.[6]. Fig. 3a shows a
few of the randomly generated outlines.

A local difference between the classes is induced by applying a randomized
deformation to the outlines in Class II, using the following four-step procedure:
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1. A random outline Ornd is sampled from the Gaussian distribution. This
is the same step used to generate the outlines in Class I.

2. A circular ’tumor’, described by a point c and radius r, is randomly gener-
ated near a predetermined location inside of the average corpus callosum
outline Oavg. Fig. 3b shows the outline Oavg and the distribution of the
randomly sampled tumors.

3. A circular outward deformation field

φ(x) =
x − c

‖x − c‖ 3

2

r (13)

is applied to each point of Oavg, yielding a new outline Otumor.

4. A thin plate spline warp field, which interpolates the mapping from Oavg

to Ornd, is applied Otumor, yielding the final outline Odef , which becomes
a member of Class II. Fig. 3c shows the effect of the tumor, by superim-
posing the outlines Odef and Ornd.

A single feature measuring the distance to the origin is computed at each
boundary point. The approach used to produce the outlines in Class II makes
it possible to measure the relevance of each feature. The relevance is computed
as the average difference in distance to the origin between corresponding points
on the final outlines Odef and intermediate outlines Ornd. Fig. 3d shows the
relevance of each feature in the experiment.

The two classes were generated with 100 objects in each. Another 1000 ob-
jects were generated for testing the generalization ability of the selected feature
sets. The feature selection algorithms with and without locality were applied to
the classes using a range of modulation parameters λ and η. The non-parametric
linear classifier (8) was used for measuring the generalization ability of feature
subsets.

Of the all the feature subsets computed for the different parameter values,
the ones that generalized best to the test data are reported. Fig. 4a shows the
best feature subset for the algorithm without locality. This subset generalizes to
the test data with the error rate of 0.310. Fig 4b shows the best result for window
selection, which achieves the error rate of 0.300. Without any feature selection
the error rate of the classifier is 0.386. While the optimal set of features yielded
by window selection includes some irrelevant features, this result is encouraging
taking into account the small sample size, high dimensionality, and relatively
large inter-population variability.

These results show that both feature selection methods improve the gener-
alization ability of classifier and that while both algorithms detect some of the
relevant features, the algorithm that uses locality is more accurate.

5 Conclusions

We have adapted a feature selection method from the machine learning liter-
ature to the problem of shape classification by defining an additional energy
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Figure 4: The best generalizing subset of features selected by the feature selec-
tion algorithm without locality (a) and by the window selection algorithm (b).
The red dots on the boundary indicate selected features.

term which rewards selection of structured and localized subsets of features.
We have tested the new approach on normally distributed synthetic data and
showed that it performs better that the original algorithm in cases when the un-
derlying probability densities exhibit structure and locality. We have also tested
the algorithm on synthetic shape data and demonstrated that it can localize the
relevant set of features in a high dimensional small sample size problem where
the differences between classes are less evident than the inter-population vari-
ability. In the future, we plan to apply the method to three-dimensional clinical
data as well as to other classification problems where structure and locality are
present.
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