
Department of Computer Science University of North Carolina at Chapel Hill August 2005

Accelerating Line of Sight
Computation Using GPUs

Highlights
Line of sight (LOS) is a visibility query between two
entities with respect to a terrain and possibly other
entities

Simulations with many entities may be LOSbound;
LOS can account for 40% of simulation time

Improving simulation performance necessitates
accelerating LOS queries

We use the GPU to conservatively cull queries with
definite LOS

Demonstrated 200x speed up of LOS calls in
OneSAF on a single CPU/GPU machine

Demonstrated 15-20x overall speedup improvement
in OneSAF system performance

GPU LOS code transitioning into Block D Build 24
of OneSAF

Will be distributed to every battlion in the Army (650
sites), every laboratory, and simulation center (150
sites)

Potential for inclusion into FCS embedded training
system and into UK FRES system

•

•

•

•

•

•

•

•

•

The Challenge
We present a method to accelerate line-of-sight
computation for computer generated forces (CGF)
using graphics processing units (GPUs). GPUs have
become commodity processors and they are part of
every game console or PC system. Moreover, their
performance has been increasing at a rate faster than
CPUs and the trend is expected to continue in the
foreseeable future. We present a hybrid algorithm
that exploits the computational power of GPUs to
perform visibility culling and combine it with exact
visibility computations on the CPU. Our approach
is directly applicable to dynamic terrains. It has been
applied to complex terrain environments and our
hybrid algorithm is able to perform line of sight
computations in a few microseconds on a commodity
PC.

Approach
Line of sight (LOS) computation is essential for
military simulations. These simulations can contain
tens of thousands of moving entities for which
LOS computations must be performed. One such
system is the OneSAF war simulator. In its current
implementation, LOS computation may account
for 40% of the CPU time. In order to improve
the performance of OneSAF it is essential to
accelerate LOS computation. We use a hybrid CPU-
GPU algorithm that uses the GPU to perform a
conservative culling step.

We use the GPU to quickly cull away LOS queries
with a defi nite line of sight. This reduces the number
of rays that must be traversed and intersected with
terrain triangles on the CPU. Moreover, queries with
line of sight are the most expensive for the CPU to
evaluate as the full line segment between the query
points must be traversed.

The algorithm works by first rendering the terrain
from above orthographically. This initial rendering

must be performed only once for a static terrain.
Then, for each query we render a line segment
between the two query points with a reversed depth
test. With the depth test reversed only pixels for
which the line is below the terrain will pass the depth
test. Therefore, a query has LOS if no pixels pass the
depth test as determined by an occlusion query (GL
ARB occlusion query).

It is essential that our culling step is conservative and
does not falsely cull queries because of sampling or
precision errors. As in [Govindaraju et al. 2004], we
use a Minkowski sum when rendering the terrain to
ensure that depth values generated conservatively
bound the maximum height of the terrain. Similarly,
we use a Minkowski sum when rendering queries to

LOS
No LOS

A line of sight (LOS) query is simply a point-to-point visibility query with respect to a terrain. We present an algorithm to quickly
perform many LOS queries for simulations that are LOS-bound.

http://gamma.cs.unc.edu/

ensure that the rendering of each query covers all
pixels that the ray passes through.

Our hybrid GPU-CPU ray-casting algorithm has
several optimizations. To perform exact tests, rays
are traversed through a 2D grid imposed on the
terrain. We store the maximum height of the terrain
within each grid cell and only perform ray-triangle
intersections for cells in which the ray falls below
this maximum height. A mailboxing system is used to
avoid testing a ray against the same triangle multiple
times when it appears in multiple grid cells. When
presented with a large query workload we attempt
to utilize the GPU and CPU simultaneously. While
one batch of queries is culled the non-culled queries
from the previous batch are processed by the CPUs.

Project Leaders
Dinesh Manocha, professor
Ming Lin, professor

Team Member
Naga Govindaraju, research assistant professor

Graduate Research Assistants
Brian Salomon, Russell Gayle, Sung-Eui Yoon,
Avneesh Sud

Other Investigators
Maria Bauer and Angel Rodriguez, RDECOM
Marlo Verdesca, Eric Root and Jaeson Munro, SAIC
Michael Macedonia, PEO STRI

Research Sponsors
U.S. Army Research Office
Defense Advanced Research Projects Agency
Army Model and Simulation Office

Selected Publications
Govindaraju, N., S. Redon, M. Lin, and D. Manocha.
CULLIDE: Interactive collision detection in large
environments using graphics hardware. Proc. of
ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware, 2003, 25-32.

Govindaraju, N., M. Lin, and D. Manocha. Fast and
Reliable Collision Culling using Graphics Processors,
Proc. of ACM VRST, 2004.

Key Words
GPU algorithms, line of sight, raycasting

For More Information
http://gamma.cs.unc.edu

To ensure that our culling step is conservative we compute the Minkowski sum of terrain triangles and LOS lines with a pixel-
sized rectangle. This ensures that fragments are generated for all pixels through which a terrain triangle or LOS line partially
covers.

Conservative
LOS Line

Conservative
Terrain Triangle

By batching LOS queries we are able to hide the latency of
GPU occlusion queries and utilize the CPU and GPU simul-
taneously. While one batch is culled, the non-culled queries
from the previous batch are processed by the CPU.

