
Department of Computer Science University of North Carolina at Chapel Hill November 2004

Fast and Reliable Collision Culling using
Graphics Hardware

Highlights
More reliable computations over prior GPU-based
algorithms

More effective culling over prior CPU-based algorithms

Broad applicability to non-manifold geometry,
deformable models, and breaking objects

Interactive performance with no preprocessing and
low memory overhead

•

•

•

•

The Challenge
GPUs are well-optimized for 3-D vector and matrix
operations, and complex computations on the frame-
buffer pixel or image data. These operations are ef-
fi ciently processed using multiple vertex and pixel
processing units, each of which is programmable, al-
lowing a user to execute a custom program. Moreover,
the capabilities of GPUs to perform frame-buffer
computations has been growing at a rate faster than
Moore’s law for CPUs. Different algorithms have
exploited these capabilities to compute interferences
or overlapping regions or to cull away portions of the
models that are not in close proximity. These GPU-
based collision detection algorithms are widely used
for performing interactive simulations in gaming and
virtual reality applications, robot motion-planning,
line-of-sight queries etc. Further, many of these al-
gorithms involve no preprocessing and therefore ap-
ply well to both rigid and deformable environments.
In practice, GPU-based algorithms can offer better
runtime performance as compared to object-space
collision detection algorithms.

However, GPU-based collision detection algorithms
suffer from limited precision. This problem is due to
the limited viewport resolution (up to 11 bits on cur-
rent GPUs), sampling errors and depth precision er-
rors. Due to these errors, prior GPU-based algorithms
may miss collisions and may result in an inaccurate
simulation. In contrast, object-space collision detec-
tion algorithms are able to perform more accurate
interference computations using IEEE 32 or 64-bit
fl oating arithmetic on the CPUs.

Precision: Our algorithm computes reliable collisions between the two bun-
nies, each with 68K triangles. The top right image (b) shows the output of our
algorithm and the top left image shows the output of a GPU-based algorithm
CULLIDE at 1400x1400 resolution. CULLIDE misses many collisions due to
sampling errors

We present a simple and effi cient algorithm for fast
and reliable collision culling between triangulated
models in a large environment using GPUs. We per-
form visibility queries to eliminate a subset of primi-
tives that are not in close proximity, thereby reducing
the number of pairwise tests that are performed
for exact proximity computation. We show that the
Minkowski sum of each primitive with a sphere pro-Minkowski sum of each primitive with a sphere pro-Minkowski sum
vides a conservative bound for performing reliable
2.5D overlap tests using GPUs. For each primitive in a
collection of triangles, our algorithm computes a tight
bounding offset representation. The bounding offset

representation is a union of object oriented
bounding boxes where each OBB encloses
a single triangle. Our algorithm performs
visibility queries using these UoBBs on
GPUs to reject primitives that are not in
close proximity. Our algorithm guarantees
that no collisions will be missed due to lim-
ited framebuffer precision or quantization
errors during rasterization.

Algorithm
Our algorithm CULLIDE uses the im-
agespace occlusion queries available on
current GPUs and computes a potentially
colliding set (PCS) of objects. Given n ob-
jects that are potentially colliding P1, ...,
Pn, we present a linear time two-pass ren-
dering algorithm to test if an object PiPiP is i is i
fully visible against the remaining objects,
along a view direction. Occlusion queries
are used to test if an object is fully visible

or not. To test if an object P is fully visible against a P is fully visible against a P
set of objects S, we fi rst render S into the frame buf-S into the frame buf-S
fer. Next, we set the depth function to GL GEQUAL
and disable depth writes. The object P is rendered P is rendered P
using an occlusion query. If the pixel pass count re-
turned by occlusion query is zero, then the object P
is fully visible and therefore, does not collide with S.
Using this formulation, we prune objects PiPiP that do i that do i
not overlap with other objects in the environment.
The algorithm begins with empty frame buffer and

http://gamma.cs.unc.edu/FAR

The environment consists of more than 40K triangles
and 150 leaves. Our algorithm, FAR, can compute all
the collisions in about 35 msec per time step.

Team Members
Ming C. Lin, professor
Dinesh Manocha, professor
Naga Govindaraju, research assisant professor

Research Sponsors
U.S. Army Research Offi ce
Defense Advanced Research Projects Agency
Intel Corporation
National Science Foundation
Offi ce of Naval Research

Selected Publications
Govindaraju, N., S. Redon, M. Lin, and D. Manocha.
CULLIDE: Interactive collision detection between
complex models in large models using graphics hard-
ware. ACM SIGGRAPH/Eurographics Workshop on
Graphics Hardware, 2003.

Govindaraju, N., M. Lin, and D. Manocha. Fast and
reliable collision culling using graphics processors.
ACM Symposium on Virtual Reality Software and Technol-
ogy, 2004.

Govindaraju, N., M. Lin, and D. Manocha. Quick-
CULLIDE: Fast Inter- and Intra-Object Collision
Culling Using Graphics Hardware. To appear in the
Proc. of IEEE Virtual Reality Conference, 2005.

Key Words
Geometric algorithms, graphics hardware

For More Information
http://gamma.cs.unc.edu/FAR

Non-Rigid Motion: A non-rigid simulation in which leaves collide with
branches of the tree. The environment has more than 40K triangles and
150 leaves. Average collision query time is 35 ms.

proceeds in two passes as follows:
In the fi rst pass, we rasterize the primitives in the
order P1, ..., Pn testing if they are fully visible. In this n testing if they are fully visible. In this n
pass, if a primitive PiPiP is fully visible, then it does not i is fully visible, then it does not i
intersect any of the objects P1, ..., PiPiP -1. In the second
pass, we perform the same operations but render the
primitives in the order Pn, .., P1. In this pass, if a
primitive PiPiP is fully visible, then it does not intersect i is fully visible, then it does not intersect i
any of the objects Pn, .., PiPiP +1. At the end of two
passes, if a primitive is fully visible in both the passes,
the primitive does not interfere with the remaining
primitives and is removed from the PCS. The view
directions are chosen along the world-space axes and
collision culling is performed using orthographic
projections.

In order to resolve sampling errors, we compute the
Minkowski sum of a sphere whose radius is a func-
tion of the viewport resolution and frame-buffer
precision and each primitive P, and use it for per-P, and use it for per-P
forming reliable collision culling.

Results
We utilize the GPU for fast and reliable prun-
ing of primitive pairs and perform exact in-
terference tests on the CPU. We have imple-
mented this collision culling algorithm on a
Pentium IV PC with NVIDIA GeForce FX
5950 card. Our results are demonstrated on
two complex simulations as shown in the
supplementary images and video at http://
gamma.cs.unc.edu/FAR

Dynamically generated objects: A breaking
object simulation in which a bunny composed
of 35K polygons falls on a dragon composed
of 112K polygons and fractures the dragon.
As the simulation progresses, hundreds of
broken pieces are introduced and our algorithm
takes 30 - 60 ms to compute all collisions.

Tree with falling leaves: In this scene, leaves
fall from the tree and undergo non-rigid motion.
They collide with other leaves and branches.

Dynamically Generated Objects: A breaking object simulation
in which a bunny composed of 35K triangles falls on a dragon
composed of 112K triangles and decomposes the dragon. Our
algorithm takes 30 – 60 ms to compute all the collisions during
the simulation.

