
 Scalable Dynamic Load Balancing for

 Task Parallel Programming Frameworks

The Challenge

Parallel computing is now the primary means to higher

performance for all applications. This imperative has

prompted the development of new task parallel

programming languages and libraries: Intel Thread

Building Blocks, Microsoft Task Parallel Library,

OpenMP 3.0, and IBM X10. Largely based on the work

stealing techniques developed as part of the experimental

Cilk language in the 1990's, the behavior of these

programming frameworks on modern platforms, such as

multi-core, is not well understood. The high level of

abstraction offered by the task parallel model makes

programming easier for many applications. However

performance is often hit-or-miss due to poor decisions or

overhead costs in the run time systems that manage

execution. Of particular concern is the scalability of

applications with inherently irregular and unpredictable

structure, which often require dynamic load balancing.

Snapshot showing parallel execution of a tree-structured computation

by three threads. Each thread executes a portion of the tree.

Our research group develops techniques to achieve better

load balancing and lower overhead costs to enable

efficient execution of applications programmed using the

task parallel model.

The Approach

We created the Unbalanced Tree Search (UTS)

benchmark, which presents a synthetic tree-structured

search space that is highly imbalanced. Since parallel

execution of the search requires continuous dynamic load

balancing to keep all processors engaged in the search,

UTS represents a challenging problem for parallel

systems. The implementation and evaluation of the

benchmark on different architectures and in different

parallel programming languages has allowed us to

uncover and resolve important issues: the tradeoff

between load imbalance and overhead costs of load

balancing operations, efficient discovery and transfer of

work between processors, and scalable termination

detection.

An example of tree-structured computation. Imbalance in the tree

necessitates significant load balancing efforts to achieve parallel

speedup in a multiprocessor traversal.

Department of Computer Science University of North Carolina at Chapel Hill January 2010

Highlights

 We are investigating techniques for dynamic

load balancing of parallel computations and

their application to run time systems for task

parallel programming.

 Our solutions push the envelope of scalability

while allowing higher-level abstractions for

the application programmer through parallel

programming frameworks.

 We are also applying our techniques to

enterprise applications such as business event

processing in cloud computing environments.

OpenMP Run Time Support for Tasks. Explicit task

parallelism provided in OpenMP 3.0 enables easier

expression of unbalanced applications. However,

performance evaluation of UTS in OpenMP 3.0 reveals

limited scalability using recent compiler and run time

systems. We have identified high overhead costs and load

imbalance in the run times as key contributors to poor

performance, and are working to improve run time

scheduler design and implementation to improve load

balance and lower overhead costs. We are also

experimenting with load balancing techniques that

incorporate locality-based heuristics. Our work is not

specific to OpenMP 3.0, but also extends to other task

parallel languages and libraries, such as IBM X10 and

Intel TBB. A particularly important research effort is the

design of performance models and measurement

frameworks to accurately predict and evaluate the impact

of scheduling techniques and run time systems.

Parallel speedup of the Unbalanced Tree Search benchmark achieved

using 1024 threads on a cluster. Over 85000 asynchronous dynamic

load balancing operations per second were performed during execution.

Business Applications. In a related project with IBM, we

are applying the techniques we have developed to

problems in the enterprise. Business applications

increasingly include components with complex structure

and large-scale parallel computing requirements. For

example, WebSphere Business Event Processing may

operate on a large stream of many disparate event types

with processing distributed over many processors in order

to meet real-time performance guarantees. Classic

business problems such as transportation logistics,

supply-chain planning, scheduling, and data mining are

solved using combinatorial optimization and enumeration

techniques, requiring parallel search of a large state space

of possibilities to obtain a timely answer.

Load imbalance during execution of Unbalanced Trees Search

Benchmark using OpenMP 3.0 tasks using the Intel (left) and Sun (right)

run time systems. Straight lines of data points indicate good load

balance while scattering indicates poor load balance.

Current Project Members

Prof. Jan Prins

Stephen Olivier

Collaborators

Prof. P. Sadayappan (Ohio State Univ.)

Prof. Chau-Wen Tseng (UMD at College Park)

James Dinan (Ohio State Univ.)

Research Sponsors

US Department of Defense, IBM

Selected Publications

Stephen Olivier, Jan Prins. Evaluating OpenMP 3.0 Run

Time Systems on Unbalanced Task Graphs.. Proc. of 5th

International Workshop on OpenMP (IWOMP 2009).

LNCS 5568. Matthias S. Muller, Bronis R. de Supinski,

Barbara M. Chapman (Eds.) Springer: Dresden, Germany,

June 2009. pp. 63-78.

 James Dinan, Stephen Olivier, Gerald Sabin, Jan Prins, P.

Sadayappan, Chau-Wen Tseng. A Message Passing

Benchmark for Unbalanced Applications. Simulation

Modelling Practice and Theory, 16 (9), 1177-1189,

October 2008.

 Stephen Olivier, Jan Prins. Scalable Dynamic Load

Balancing Using UPC. Proc. of 37th International

Conference on Parallel Processing (ICPP-08). Portland,

OR, September 2008.

 James Dinan, Stephen Olivier, Jan Prins, Gerald Sabin, P

Sadayappan and Chau-Wen Tseng. Dynamic Load

Balancing of Unbalanced Computations Using Message

Passing. Proc. of 6th Intl. Workshop on Performance

Modeling, Evaluation, and Optimization of Parallel and

Distributed Systems (PMEO-PDS 2007). Long Beach,

CA, March 2007.

 Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James

Dinan, P Sadayappan and Chau-Wen Tseng. UTS: An

Unbalanced Tree Search Benchmark. Proc. of 19th Intl.

Workshop on Languages and Compilers for Parallel

Computing (LCPC 2006). LNCS 4382. George Almasi,

Calin Cascaval, Peng Wu (Eds.) Springer: New Orleans,

LA, November 2006. pp. 235-250.

Keywords

Load balancing; Task Parallelism; Run Time Systems;

Parallel Programming Languages; Scalability; Search;

Business Event Processing

For More Information

Jan Prins

Phone (919) 962-1913

E-mail: prins@cs.unc.edu

http://www.cs.unc.edu/~prins

http://www.cs.unc.edu/~olivier/iwomp09.pdf
http://www.cs.unc.edu/~olivier/iwomp09.pdf
http://dx.doi.org/10.1016/j.simpat.2008.06.004
http://dx.doi.org/10.1016/j.simpat.2008.06.004
http://www.cs.unc.edu/~olivier/icpp08.pdf
http://www.cs.unc.edu/~olivier/icpp08.pdf
http://www.cs.unc.edu/~olivier/pmeo07.pdf
http://www.cs.unc.edu/~olivier/pmeo07.pdf
http://www.cs.unc.edu/~olivier/pmeo07.pdf
http://www.cs.unc.edu/~olivier/LCPC06.pdf
http://www.cs.unc.edu/~olivier/LCPC06.pdf

