
Department of Computer Science University of North Carolina at Chapel Hill August 2010

The Challenge
With the recent advent of multicore technologies, mul-
ticore-based designs are being advocated for embedded
systems. The reasons for this are twofold. First, multicore
platforms offer greater computational capacity, with less
space, cabling, and power consumption. Second, they offer
the potential of replacing many interconnected processors
with fewer multicore processors that are easier to manage
and maintain. Of course, the main disadvantage of multi-
core designs is that software engineers now must explicitly
deal with parallelism. In addition, consolidating different
system components on a common platform requires mecha-
nisms for temporally, logically, and securely isolating compo-
nents, and such isolation is not straightforward to ensure.
Such problems will become only worse as next-generation
multicore systems become available, as such systems are
expected to exhibit greater heterogeneity than current ones.
In a heterogeneous platform, processing cores exist that have
different functional or performance characteristics.

Greater heterogeneity will be driven by physical limitations
that will eventually restrict per-chip core counts. When this
happens, chip makers will distinguish themselves not by of-
fering more or faster (general-purpose) cores, but by offer-
ing specialized hardware components that accelerate certain
computations. Even now, heterogeneity exists at different
levels in many commercial systems. One of the earliest no-
table examples of this was the IBM Cell Broadband Engine,
which has a general-purpose CPU and eight special-purpose
processing units on the same chip. More recently, many chip
makers have been espousing GPGPU configurations as the
new “standard computing platform”---in such a configura-
tion, a general-purpose (GP) machine, with one or more
cores, is paired with a sophisticated graphics processing unit
(GPU), which may consist of many cores. Such configura-
tions are part of a continuing evolution of co-processor-
based designs; systems with digital signal processors (DSPs)
or field-programmable gate arrays (FPGAs) as co-proces-
sors have been, and continue to be, in widespread use.

Unfortunately, heterogeneity makes multicore-related
programming challenges even more difficult. Efficiently
utilizing a multicore platform requires judicious resource
allocation. Resource allocation problems are notoriously
harder (and often provably so) when choices must be made
involving resources with different capabilities.

The Approach
In the real-time systems research community, prior work
on heterogeneous multiprocessor systems has emphasized
theoretical foundations. While such foundations are clearly

Enabling Next-Generation Multicore
Platforms in Embedded Applications

important, given this emphasis on theory, we currently
have very little understanding of how to efficiently manage
heterogeneous multicore systems when supporting actual
real-time workloads. In this project, we intend to re-examine
and expand prior theoretical research on heterogeneous
real-time computing; however, such efforts will be shaped
by associated prototyping efforts that more carefully exam-
ine implementation issues and overheads. Such prototyp-
ing efforts will build upon prior implementation-focused
efforts within our research group within the context of the
LITMUSRT project.

Regarding heterogeneity, we intend to consider the use of
both specialized, on-chip processors (as in Cell) and special-
ized off-chip processors (as in current GPGPU designs). We
also intend to consider incidental heterogeneity that occurs
due to high core counts: in systems with a large number of
cores, NUMA-like behavior inevitably results, and this can
be seen as a kind of heterogeneity, as code accessing data
that is “close by” in the memory hierarchy runs faster than
code accessing data that is “far away.”

Significance
The ultimate goal of this project is to provide a founda-
tion for the design of next-generation real-time operating
systems (RTOSs). Existing commercial RTOSs are rooted in
uniprocessor resource-allocation principles devised decades
ago and thus are completely ill-equipped to properly man-
age the complex multicore systems that are coming in the
near future.

Project Members
James Anderson, professor (PI)
Sanjoy Baruah, professor (PI)

Research Sponsor
U.S. Air Force Research Laboratory, Rome, NY

For More Information
Dr. James Anderson
Department of Computer Science
University of North Carolina at Chapel Hill
CB#3175, Frederick P. Brooks, Jr. Building
Chapel Hill, NC 27599-3175
Phone: (919) 962-1757
Fax: (919) 962-1799
E-mail: anderson@cs.unc.edu

http://www.cs.unc.edu/~anderson/projects/nextgen.html

