
Department of Computer Science University of North Carolina at Chapel Hill April 2007

Motivation
Numerical algorithms are an integral part of many scientific,
data mining, multimedia and high performance computing
applications. They have been extensively studied in the
literature. These algorithms are designed to achieve high
accuracy as well as high memory bandwidth and computational
throughput on the CPUs. Many optimized numerical libraries
such as ATLAS, Intel Math Kernel Library (MKL), FFTW are
available and widely used for different applications. Many of
these libraries have been optimized for different CPUs (e.g.
Intel’s MKL library is optimized for Intel processors).

Over the last few years, graphics processing units (GPUs) have
become as ubiquitous as floating point processors. Current
GPUs are programmable vector co-processors designed
primarily for graphics and rasterization applications. Current
GPUs can perform up to 10x more operations per second
and can have up to 10x higher memory bandwidth than
conventional CPUs. Moreover, the GPUs can effectively hide
the memory latency in data-parallel applications. As a result,
GPUs are also well-suited for numerical algorithms.

Our Approach
We give a brief survey of our recent work on developing novel
algorithms to perform numerical computations on GPUs.
Our algorithms use efficient data representations and pipeline
the data processing instructions to different stages within a
GPU. Within each stage of the graphics pipeline, we utilize the
data parallelism to achieve higher computational throughput.
Furthermore, our algorithms use tiling strategies to improve
the GPU cache efficiency. Specifically, we present GPU-based
numerical algorithms for:

LU and SVD Computations: LU decomposition and
SVD algorithms are basic components for solving linear
systems of equations, eigen solvers and dimensionality

•

Efficient Numerical Algorithms on
Graphics Hardware

reduction techniques. Our algorithms proceed in multiple
steps. In each step, the SVD algorithm [Bondhugula et
al. 2006] applies a householder transformation while
the LU-decomposition algorithm [Galoppo et al. 2005;
Henson et al. 2005] involves multiply-and-add operations.
Broadly speaking, these transformations are implemented
using data-parallel vector operations on GPUs. For
a matrix of size n x n, our algorithms perform O(n)
transformations. Therefore, our LU and SVD routines
require O(n3) memory accesses and computations. We
represent the matrices using 2D texture representations
on GPUs. We use simple fragment programs to efficiently
perform the transformations on GPUs. Our algorithms
are able to effectively pipeline the memory accesses and
data processing. Furthermore, our algorithms are able to
achieve high memory throughput on GPUs.

Fast Fourier Transforms: Fast fourier transforms
(FFTs) are fundamental for image-processing and signal-
processing applications. FFT algorithms proceed in logn
steps for a signal with n real or complex values. Each step
performs O(n) operations and the overall FFT algorithm
requires O(n logn) operations. We have implemented the
Stockham FFT of a large 1D signal by transforming the
input signal into a 2D data representation [Govindaraju et
al. 2006; Govindaraju and Manocha 2006a; Govindaraju
and Manocha 2006b]. During each stage of the FFT, we
decompose the input signal into data chunks with similar
computations. The signal decomposition effectively
reduces the number of instructions performed per data
element. Next, we apply a simple fragment program to
perform the operations in each step to the data elements.
We further reduce the instructions by storing common
computations among data elements in temporary 2D
arrays. We also extend our 1D FFT algorithm to perform

•

Figure 1: Performance of our numerical algorithms on three highend
programmable GPUs released in 2004 (GeForce 6800), 2005 (GeForce
7800), and 2006 (GeForce 7900). We observe a performance improvement
of 1.3 – 3x per year on different numerical applications.

Figure 2: Observed memory performance of our numerical algorithms
on a high-end NVIDIA 7900 GTX GPU and the peak sequential memory
bandwidth on the 7900 GPU. The NVIDIA 7900 GPU has a peak sequential
memory bandwidth of 51:2 GB/s. We observed a memory performance of
32–55 GB/s in our numerical algorithms.

FFTs of 2D signals. Our 2D FFT algorithm first applies
the 1D FFT algorithm to the rows and then on the
columns. Overall, our FFT algorithm is memory efficient
and is able to achieve high computational performance on
1D real and complex single-precision signals. Moreover,
the precision of our GPU-based FFT algorithm is
comparable to single-precision FFT algorithms (using
IEEE 32-bit arithmetic) on CPUs. In practice, we have
observed that the precision is close to 1:5 x 10-6 for 1D
FFTs with tens of millions of values.

Dense Matrix Multiplication: The problem of
matrix multiplication is inherently parallel and memory
intensive – therefore, it can greatly benefit from the high
computational throughput and memory performance
of GPUs. Our matrix multiplication algorithm uses
pipelining strategies to map the computation to different
stages of the graphics pipeline. We further enhance
the performance of our algorithm using a modified
blocking strategy based on our memory model for GPU
computations [Govindaraju et al. 2006; Govindaraju and
Manocha 2006a]. Our cache-optimized algorithm require
O(n3) compute operations for multiplying n x n matrices
and reduces the sequential memory accesses to O(n3+
n3/D) where D is a blocking parameter.

Sparse Matrix Vector Multiplication (SpMV): SpMV is
a widely used kernel in various applications of scientific
computation and engineering. SpMV is notoriously
known for indirect and irregular memory accesses due to
poor temporal and spatial locality. We are implementing
algorithms for parallalizing this computation on many
cores and optimizing memory hierarchy using Block
Compressed Sparse Row (BCSR) representation.
We are using CUDA on NVIDIA G80. Our current
implementation achieves 3.37 GFLOPS with 40.32 GB/s
memory bandwidth.

We have implemented our algorithms using OpenGL and
tested the performance on a commodity PC with different
GPUs, including NVIDIA GeForce 6800, 7800 and 7900.
In practice, our algorithms are able to achieve 3–17G single-

•

•

precision FLOPS of performance on the different applications.
Fig. 3 highlights the computational performance of our GPU-
based algorithms and compare them to Intel math kernel
library implementation on a high-end PC with dual AMD
Opteron 280 processors. In our CPU implementation, we
use all four threads to utilize all the available processors. In
practice, the performance of our GPU-based algorithms is
comparable to optimized CPU-based algorithms. Fig. 2 shows
the measured memory performance of our algorithms and
the peak sequential memory performance. Our algorithms are
able to achieve 32–55 GB/s of measured memory bandwidth.
Fig. 1 highlights the performance of our algorithms on three
high-end NVIDIA GPUs, released in successive generations.
We observe a 1:3–3x performance improvement per year.

Team Members
Dinesh Manocha, Phi Delta Theta/Matthew Mason
Distinguished Professor
Naga K. Govindaraju, assistant research professor (now at
Microsoft Research)
Nico Galoppo, graduate research assistant
Michael Henson, graduate research assistant
Vinay Bondhugula, graduate research assistant
Scott Larsen, graduate research assistant
Sashi Kumar Penta, graduate research assistant

Research Sponsors
U.S. Army Research Office
Disruptive Technology Office
National Science Foundation
Defence Advanced Research Projects Agency
RDECOM

References
Bondhugula, V., Govindaraju, N. K., and Manocha, D.
“Fast singular value decomposition on graphics processors,”
Technical report, University of North Carolina at Chapel
Hill, 2006.

Galoppo, N., Govindaraju, N., Henson, M., and Manocha, D.
“Lu-gpu: Efficient algorithms for solving dense linear systems
on graphics hardware,” Supercomputing, 2005. Proceedings of
ACM/IEEE SC 2005 Conference. 2005.

Govindaraju, N. K., and Manocha, D. “Cache efficient
numerical algorithms using graphics hardware,” Technical
Report, University of North Carolina at Chapel Hill, 2006.

Govindaraju, N. K., and Manocha, D. “Gpufftw: High
performance power-of-two fft library using graphics
processors,” available online: http://gamma.cs.unc.edu/
GPUFFTW. 2006.

Govindaraju, N. K., Larsen, S., Gray, J., and Manocha, D. “An
efficient memory model for scientific algorithms on graphics
processors,” Technical report, University of North Carolina
at Chapel Hill, 2006.

Henson, M., Galoppo, N., Govindaraju, N., and Manocha,
D. “Lugpu: Library for solving dense linear systems on
graphics hardware,” available online: http://gamma.cs.unc.edu/
LUGPULIB. 2005.

http://gamma.cs.unc.edu/Numeric

Figure 3: Normalized time spent in our numerical algorithms on a high-
end NVIDIA 7900 GTX GPU costing $500 and Intel’s MKL library routines
on a dual Opteron 280 processors costing over $2000. Our experiments
are conducted using single precision oating point matrices of size 2K 2K
or 4 million complex 32-bit oating point values. Our CPU timings use all
the four available processor cores for computation. Intel’s MKL library
only provides LU routines with partial and full pivoting; we compare the
performance for partial pivoting.

