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Motivation
Numerical algorithms are an integral part of  many scientific, 
data mining, multimedia and high performance computing 
applications. They have been extensively studied in the 
literature. These algorithms are designed to achieve high 
accuracy as well as high memory bandwidth and computational 
throughput on the CPUs. Many optimized numerical libraries 
such as ATLAS, Intel Math Kernel Library (MKL), FFTW are 
available and widely used for different applications. Many of  
these libraries have been optimized for different CPUs (e.g. 
Intel’s MKL library is optimized for Intel processors). 

Over the last few years, graphics processing units (GPUs) have 
become as ubiquitous as floating point processors. Current 
GPUs are programmable vector co-processors designed 
primarily for graphics and rasterization applications. Current 
GPUs can perform up to 10x more operations per second 
and can have up to 10x higher memory bandwidth than 
conventional CPUs. Moreover, the GPUs can effectively hide 
the memory latency in data-parallel applications. As a result, 
GPUs are also well-suited for numerical algorithms. 

Our Approach
We give a brief  survey of  our recent work on developing novel 
algorithms to perform numerical computations on GPUs. 
Our algorithms use efficient data representations and pipeline 
the data processing instructions to different stages within a 
GPU. Within each stage of  the graphics pipeline, we utilize the 
data parallelism to achieve higher computational throughput. 
Furthermore, our algorithms use tiling strategies to improve 
the GPU cache efficiency. Specifically, we present GPU-based 
numerical algorithms for: 

LU and SVD Computations: LU decomposition and 
SVD algorithms are basic components for solving linear 
systems of  equations, eigen solvers and dimensionality 
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reduction techniques. Our algorithms proceed in multiple 
steps. In each step, the SVD algorithm [Bondhugula et 
al. 2006] applies a householder transformation while 
the LU-decomposition algorithm [Galoppo et al. 2005; 
Henson et al. 2005] involves multiply-and-add operations. 
Broadly speaking, these transformations are implemented 
using data-parallel vector operations on GPUs. For 
a matrix of  size n x n, our algorithms perform O(n) 
transformations. Therefore, our LU and SVD routines 
require O(n3) memory accesses and computations. We 
represent the matrices using 2D texture representations 
on GPUs. We use simple fragment programs to efficiently 
perform the transformations on GPUs. Our algorithms 
are able to effectively pipeline the memory accesses and 
data processing. Furthermore, our algorithms are able to 
achieve high memory throughput on GPUs.

Fast Fourier Transforms: Fast fourier transforms 
(FFTs) are fundamental for image-processing and signal-
processing applications. FFT algorithms proceed in logn 
steps for a signal with n real or complex values. Each step 
performs O(n) operations and the overall FFT algorithm 
requires O(n logn) operations. We have implemented the 
Stockham FFT of  a large 1D signal by transforming the 
input signal into a 2D data representation [Govindaraju et 
al. 2006; Govindaraju and Manocha 2006a; Govindaraju 
and Manocha 2006b]. During each stage of  the FFT, we 
decompose the input signal into data chunks with similar 
computations. The signal decomposition effectively 
reduces the number of  instructions performed per data 
element. Next, we apply a simple fragment program to 
perform the operations in each step to the data elements. 
We further reduce the instructions by storing common 
computations among data elements in temporary 2D 
arrays. We also extend our 1D FFT algorithm to perform 
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Figure 1: Performance of our numerical algorithms on three highend 
programmable GPUs released in 2004 (GeForce 6800), 2005 (GeForce 
7800), and 2006 (GeForce 7900). We observe a performance improvement 
of 1.3 – 3x per year on different numerical applications.

Figure 2: Observed memory performance of our numerical algorithms 
on a high-end NVIDIA 7900 GTX GPU and the peak sequential memory 
bandwidth on the 7900 GPU. The NVIDIA 7900 GPU has a peak sequential 
memory bandwidth of 51:2 GB/s. We observed a memory performance of 
32–55 GB/s in our numerical algorithms.



FFTs of  2D signals. Our 2D FFT algorithm first applies 
the 1D FFT algorithm to the rows and then on the 
columns. Overall, our FFT algorithm is memory efficient 
and is able to achieve high computational performance on 
1D real and complex single-precision signals. Moreover, 
the precision of  our GPU-based FFT algorithm is 
comparable to single-precision FFT algorithms (using 
IEEE 32-bit arithmetic) on CPUs. In practice, we have 
observed that the precision is close to 1:5 x 10-6 for 1D 
FFTs with tens of  millions of  values.

Dense Matrix Multiplication: The problem of  
matrix multiplication is inherently parallel and memory 
intensive – therefore, it can greatly benefit from the high 
computational throughput and memory performance 
of  GPUs. Our matrix multiplication algorithm uses 
pipelining strategies to map the computation to different 
stages of  the graphics pipeline. We further enhance 
the performance of  our algorithm using a modified 
blocking strategy based on our memory model for GPU 
computations [Govindaraju et al. 2006; Govindaraju and 
Manocha 2006a]. Our cache-optimized algorithm require 
O(n3) compute operations for multiplying n x n matrices 
and reduces the sequential memory accesses to O(n3+ 
n3/D) where D is a blocking parameter.

Sparse Matrix Vector Multiplication (SpMV): SpMV is 
a widely used kernel in various applications of  scientific 
computation and engineering. SpMV is notoriously 
known for indirect and irregular memory accesses due to 
poor temporal and spatial locality. We are implementing 
algorithms for parallalizing this computation on many 
cores and optimizing memory hierarchy using Block 
Compressed Sparse Row (BCSR) representation. 
We are using CUDA on NVIDIA G80. Our current 
implementation achieves 3.37 GFLOPS with 40.32 GB/s 
memory bandwidth. 

We have implemented our algorithms using OpenGL and 
tested the performance on a commodity PC with different 
GPUs, including NVIDIA GeForce 6800, 7800 and 7900. 
In practice, our algorithms are able to achieve 3–17G single-
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precision FLOPS of  performance on the different applications. 
Fig. 3 highlights the computational performance of  our GPU-
based algorithms and compare them to Intel math kernel 
library implementation on a high-end PC with dual AMD 
Opteron 280 processors. In our CPU implementation, we 
use all four threads to utilize all the available processors. In 
practice, the performance of  our GPU-based algorithms is 
comparable to optimized CPU-based algorithms. Fig. 2 shows 
the measured memory performance of  our algorithms and 
the peak sequential memory performance. Our algorithms are 
able to achieve 32–55 GB/s of  measured memory bandwidth. 
Fig. 1 highlights the performance of  our algorithms on three 
high-end NVIDIA GPUs, released in successive generations. 
We observe a 1:3–3x performance improvement per year.
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Figure 3: Normalized time spent in our numerical algorithms on a high-
end NVIDIA 7900 GTX GPU costing $500 and Intel’s MKL library routines 
on a dual Opteron 280 processors costing over $2000. Our experiments 
are conducted using single precision �oating point matrices of size 2K  2K 
or 4 million complex 32-bit �oating point values. Our CPU timings use all 
the four available processor cores for computation. Intel’s MKL library 
only provides LU routines with partial and full pivoting; we compare the 
performance for partial pivoting.


