Design Document
Sonic Zoom

Matthew Clark

Daniel Evans

Eden Kung

Patrick Dwyer
Architecture

Our architecture consists of both independent components and a data management/observation system.

Decomposition
Modules

[image: image1]
· Graphics/OS Entry (CMyD3DApplication, GTrackArray, GTrackSegment)

· Description: This module contains the main entry point from the operating system as well as the system-specific graphics code.

· Relationships: Maintains a CUberControl object, and calls the Control logic every frame. Observes Control, and Menu Control or Game Control as the case may be, to decide what to draw on the screen.

· Control (CUberControl)

· Description: Our game, like most, contains two main “modes”: the menu and the game itself. This module is used to keep track of which we are in, switch between them as necessary, and make calls to their frame-based logic. It also decides when to quit entirely.
· Relationships: Maintains two central members, a CMenuControl object and a CGameControl object, and makes calls to the currently active class every frame.
· Menu Control (CMenuControl)

· Description: This module keeps track of the menu states, and updates them as user input changes. It remembers what the player is selecting, and switches between menu modes if the player so chooses. The four choices in the menu are Training, Start Game, High Scores, and Quit. Sounds are directly controlled, as is text to speech, but graphics are done from the outside of this module.

· Relationships: Calls sound functions, can utilize text to speech, and maintains an IHighScores object in order to view high scores in the “High Scores” submenu.

· Game Control (CGameControl)

· Description: This module controls the game logic and flow while the player is in racing mode. It keeps track of the game states, as well as its array of CBaseEntity objects, which includes the player. In addition to managing game-play, the module handles the entering of high scores.

· Relationships: Maintains an ILevelLoader object, an IHighScores object, and a pointer to an array of pointers to CBaseEntity objects. Can call sound functions at will, and uses text to speech for announcing the level the player is on.

· Level Loading (ILevelLoader, IScriptSegment, IScriptLine)

· Description: This module performs two central functions: it reads a level file to create a database of level information, and can then be used to generate levels by randomly selecting that information.

· Relationships: Used by Game Control, uses File IO for file input.

· Entity Control (CBaseEntity, CCoin, CObstacle, CCamera, CPlayer)

· Description: This module represents the objects that interact within the game, including the coins, the obstacle, and the player. Each of those classes derives from CBaseEntity, which sets the interface for the run-time polymorphism used in Game Control’s entity array.

· Relationships: Used by Game Control, maintains an IEntVars that serves as its core data.

· Graphics/Physics/Sound Entities (IEntVars)

· Description: This module contains the core data used by the Entity Control module, Sound module, and Graphics module.

· Relationships: Serves as member data for CBaseEntity objects.

· Sound (soundfunc.cpp, soundfunc.h)

· Description: This module is responsible for all of the sounds in the game, both in the menu and the race, excluding text-to-speech. It creates sounds for all coins and obstacles, and updates their positional sound relative to the player. Sounds are played through a limited amount of sound channels, so this module is responsible for assigning sounds to channels and keeping track of which channels are being played, which channels are free, and which channels are finished playing sounds.
· Relationships: Sound functions are called by Menu Control and Game Control. Creating sounds for the coins and obstacles requires use of the Graphics/Physics Entities in IEntVars. Updating the player’s position for positional sound requires that updates from Entity Control CPlayer.
· Time (ITime)

· Description: This modules maintains a global time variable that can be observed by any module as it needs it.
· Relationships: Can be used by any module, is updated by the Graphics/OS module every frame.

· Input (IInput)

· Description: This module handles the key pressing events relating to the game (such as arrow keys, Space bar, and Esc).

· Relationships: Stores a boolean array list of whether or not a key is currently pressed down. A global pointer points to this array and recognizes when a key is pressed down.
· High Scores (IHighScores)

· Description: This module handles the functions that relate to High Scores in the game: checking a player’s score, storing the player’s name and score, storing a list of high scores, and reading the list so the player can hear it.
· Relationships: Maintains an IFileIO object to read in the high score list from a text file (this list is stored in two internal arrays). Maintains an OFileIO object to update the high score text file with new scores. Finally, it can utilize text to speech in order to read out the high score list.
· Text To Speech (ITextToSpeech)

· Description: This module handles the text to speech function for the entire game.
· Relationships: Uses Microsoft Speech SDK 5.1 (found in sapi.h) to speak any string that it is passed to it.
· File IO (IFileIO, OFileIO)

· Description: This module serves as a wrapper over whatever file input or output code exists for the compiler/os. IFileIO is used to read files, and OFileIO is used to write to files.
· Relationships: Both IFileIO and OFileIO use the fstream.h library in order to read and write to text files.
· Utilities (IRand, Vec3d)

· Description: This module contains classes of used to facilitate other modules.

· Relationships: Can be used by any other module.

Data

· Level file

· Description: This file is called by the Level Loading system, via the File IO system. It contains the level segments that are used to create a level.
· High Scores file

· Description: The High Score file is a text file that is stored locally with the Sonic Zoom program files. It holds the high scores of the local game: the players position in the list (i.e. #1), the player’s name, and the player’s score. The list currently holds 5 high scores.

· Relationships: When an IHighScores object is created, the High Score file is automatically read (by using IFileIO) into a database in the IHighScores class. When the list needs updating, the IHighScores class uses OFileIO to write the new high score list back into the same High Score file, so this file is always current. This file is also used for text to speech speaking of the High Scores as well as for output to the screen for viewing.
Detailed Modules

Module: Graphics/OS Entry

Associated classes: CMyD3DApplication, GTrackArray, GTrackSegment.

This module is centered on the class CMyD3DApplication, which is generated by the DirectX Software Development Kit’s integration with Visual Studio. CMyD3DApplication serves as a wrapper to the Direct3D interface, with all the necessary methods to initialize, clean-up, and resize the Direct3D window. It also includes methods with an interface to DirectInput, which we use to update our own input system. Our application modifies many of those built-in methods, while creating some of our own.

A quick reference on Direct3D: D3D uses three matrices, the projection, world, and view matrices, to render vertex information onto the back buffer, or the buffer of pixels that gets shown every frame. The vertex information must come out of vertex buffers—areas in memory with a sequence of data that represents vertices. A vertex format (FVF) is used to translate that data back into vertices when the buffer is streamed from.

Modified methods:

· InitDeviceObjects: Initializes device objects that do not depend on the window. We use this to load textures, our fonts, the sky model, and make a call to InitGameVertexBuffers.

· RestoreDeviceObjects: Initializes device objects that depend on the window, and must be reloaded whenever the window is changed (resized/maximized). We use it to load the projection matrix, set the render states our game uses, and reinitialize the menu screen vertex buffer, which depends on the size of the screen. RestoreDeviceObjects calls must also be made to the sky model and our fonts from here.
· InvalidateDeviceObjects: Calls to InvalidateDeviceObjects for the fonts and the sky model must be made here.
· DeleteDeviceObjects: The “SAFE_RELEASE” macro must be called on all textures, models, and fonts. This is the final cleanup, though it is called when switching to fullscreen. It is paired with InitDeviceObjects; anything initialized there must be released here or Direct3D will return an error.
· FrameMove: This is one of two methods called every frame from the main windows execution loop. We use it to make calls to UpdateInput, and the every-frame call to the Control module. We also update the Time module, and monitor Game Control for a change in the level. If there is a level change, this is where we update the GTrackArray object, making it the length of the new level and applying any modifications.
· Render: This is the second method called every frame by the main windows execution loop. It is used to decide what to draw; depending on the Control state it either calls the menu-related render function, RenderMenu, or the game-related member functions, RenderSky, RenderUpdateView, RenderTrackArray, and RenderGameObjects. The objects must be rendered last because they use transparency, and anything to be seen on the other side of them must be rendered in advance.
· RenderText: This method was used by the template-generated CMyD3DApplication to print debugging information to the screen. It has been modified to draw the Heads-Up Display system in the game: the text on the screen that tells you what level you’re on, how fast you’re going, how many coins you’ve picked up, etc.
· UpdateInput: This method controls access to the DirectInput interface. We use it to update our own Input module every frame.
New methods:

· InitGameVertexBuffers: This is used to create vertex buffers for the coin and obstacle objects, linked to by m_pObstacleVB and m_pCoinVB. These are essentially cubes, with normal and texture information added to the vertices. Though they are identical, we use two different buffers in case any future version might use separate models for coins and mines.
· LoadStaticTrackGeometry: When the GTrackArray object is modified, the corresponding vertex buffer must be first released and then created again, to allow for changes to the length or shape of the track. This method reads the vertex information contained by GTrackArray, and inputs it into a Direct3D vertex buffer.
· RenderMenu: This is the single call that draws the menu. First, it renders the menu background onto the screen. Then, it observes the Menu Control module to render text, depending on which part of the menu we are in (main, high scores, choose level…). Third, it has the ability to render a coin or obstacle box onto the screen to serve as an icon for what the player is currently selecting.
· RenderUpdateView: This method is used every frame while the player is in the racing part of the game. It takes the player’s location and orientation and translates that information into a view matrix. It also stores the player’s location, (m_vPos, m_fSkyboxX…) and the direction the player is pointing in (m_vPoint), for use in culling geometry in RenderTrackArray and RenderGameObjects. If the player is not active, the CCamera object from Game Control is used to decide on the view matrix.
· RenderTrackArray: This method renders the track vertex buffer. It goes through the buffer one triangle at a time, changing texture depending on what texture that part of the track represents. The player/camera position and direction is used to cull any triangles that are behind the player, or are outside of a certain drawing radius.
· RenderGameObjects: This method observes the Game Control module, and renders all coins and obstacles that appear in the Game Control’s array of entities. Once again, any objects that are behind the player or outside of the drawing radius are not drawn.
· RenderSky: This is a special rendering method, used to create the sky effect seen in the background. The sky model is rendered without using the z-buffer, so it is always behind other geometry, even though it is technically a small box that follows the player around. The sky model itself is one of Direct3D’s proprietary X models, so the ability to render it is well-established.
Vertex Definitions: There are two types of vertices we use. The first is a combination of a position vector, a normal vector, and two-dimensional texture coordinates. It is represented by the struct CUSTOM_VERTEX and is associated with the global variable D3DFVF_CUSTOMVERTEX. The second is the SCREEN_VERTEX struct, which includes vertex, color, and texture coordinates and is associated with D3DFVF_SCREENVERTEX. In this case, the vertices are pre-rasterized, in that they are the actual coordinates on the screen, and do not need to be changed by the world matrix.
Input Modifications: The struct InputDeviceState has been changed to only contain information relevant to us: the arrow keys, the space bar, and the escape key. The enum INPUT_SEMANTICS also has been changed to accommodate that input selection, as has the array g_rgGameAction[], all of which were included in the CMyD3DApplication template and subsequently changed to fit our game.
GTrackArray, GTrackSegment: These classes represent the track that is drawn during the racing part of the game. However, they are not part of either the secondary or primary requirements of the project. Essentially, GTrackArray is an array of GTrackSegment objects. GTrackSegment objects are quads that contain four vertices, normal, color, and texture information. GTrackArray has two creation modes: a flat track and a tunnel. The array can also be “warped” to produce the illusion that the track is on hilly terrain or is a spiral.
Module: Control
Associated Classes: CUberControl.
This module maintains the objects that represent both the Game Control module and the Menu Control module. Control chooses one to be active (always the menu to start with) and monitors the active module to determine if it should quit or switch to the other module.

Key Data: pointer to CGameControl object, pointer to CMenuControl object, and integer state member.
Associated States:

· EX_QUIT: This state is a dead-end, it will be picked up by the outside and used to quit.

· EX_MENU_INIT: The game is switching to the menu, and the menu object must be created and initialized

· EX_MENU: The user is in the menu system; make calls to its logic every frame, and monitor for either a switch to game-play or an indication that we should quit

· EX_GAME_INIT: The game is switching to the racing part, and the game object must be created and initialized.

· EX_GAME: The user is playing the game; make calls to its logic every frame, and monitor for a switch back to the menu.

Key Methods:

· Draw: This is the primary call from the outside, used every frame. It makes the main call to Think, and if we are in EX_GAME, also makes calls to Game Control physics and sounds methods.

· Think: This method determines what logic to execute depending on what the state of Control is. It calls each of the following methods if their associated state is the current state.

· LaunchGame: Initializes the CGameControl object, switches our state to game mode.

· LaunchMenu: Initializes the CMenuControl object, switches our state to menu mode.

· CleanupGame: Frees the memory associated with the CGameControl object and resets the pointer.

· CleanupMenu: Frees the memory associated with the CMenuControl object and resets the pointer.

· CheckGame: Makes a call to Game Control’s “Think” function every frame, checks to see if Game Control is quitting back into the menu.
· CheckMenu: Makes a call to Menu Control’s “Think” function every frame, checks to see if Menu Control is either trying to quit the program or wants to switch to the game mode.

Module: Game Control

Associated Classes: CGameControl

This module is the most robust of those created specifically for this game. It maintains the central array of CBaseEntity objects, and makes calls to them every frame, including the player. It then monitors the player to determine if the level is ending, either because the player is dead or he/she has reached the end of the game. The CGameControl class also is the place where the player enters his/her initials for a high score. All of the game logic is controlled from here.
Associated States:

· GAME_INIT: The player has just switched from the menu to the game. The sounds must be initialized, and the LevelLoadData method is called to create and load the Level Loading module.

· GAME_LEVELINIT: The next level is starting. First speaks the level number, then uses ILevelLoader to generate an array of CBaseEntity objects. Resets sounds.

· GAME_STARTING: The transition period when the level starts. For a few seconds, the player is inactive and the camera pans into the starting line. During this interval, the StartThink is called every frame.
· GAME_RACING: The player is in the main racing mode. RaceThink is called every frame.
· GAME_PAUSE: The player has paused the game. PauseThink is called every frame.
· GAME_LEVEL_SUCCESS: The interim period after the level has ended and before the next level has started. The LevelSuccessThink method is called every frame.
· GAME_HIGHSCORES: The player has died/tried to quit, and has earned a high score. HighScoresThink is called every frame.
· GAME_DEATH: The player has died, not gotten a high score, or finished entering his or her high score. Instructions on how to go back to the menu play, the credits play, and the DeathThink method is called every frame.

· GAME_QUIT: A dead end state. Nothing is called, and the Control module is expected to observe this and act accordingly.
Key Data: This module maintains a pointer to an array of points to CBaseEntity objects, which serves as the central entity array. It also maintains an ILevelLoader object, and can create an IHighScores object as needed. The level, score, coins, and lives statistics are all maintained here, as is the length of the level, the gameState, and the number of entities in the array. There are then a large number of timer values, in floating point form, measuring everything from when the level started to when it ended to small intervals until keys can be used again.
Key Methods:
· Think: The main call, and the first of three, every frame from the outside. Depending on the game state data member, calls one of the other think functions below. In the case of states without their own think, like level initialization, it does the logic itself.
· RaceThink: This method’s primary purpose is to call the Think function on every CBaseEntity object in the entity array. It also makes special calls to the CPlayer object in the array, including its input checking and its frame-by-frame update while the player is switching between lanes. The player is also observed in order to update the amount of coins he/she has, the number of lives he/she has left, and to check whether or not the player has died or crossed the finish line. When the level finishes or the player dies, CalcScore will be called. When the player dies, his/her score will be checked to see if it makes it into the high scores. For all entities that are moving, a call to CheckCollisions is made. The method also checks to see if the player has chosen to pause.
· StartThink: This method performs two central functions: first, it checks to see if the pre-level interval has ended, and if so, it switches to racing mode. Secondly, it makes a call to the CCamera object’s think function, and no one else’s, every frame. The method also handles pausing if the player so chooses.
· PauseThink: This method checks for two different inputs. If the player attempts to exit (hits escape) then the method checks for a high score. If one is found, it switches into high score mode. If one is not, it switches directly to death mode. If the player presses the spacebar, the game state is switched back to what it previously was, sounds are unpaused, and the amount of time spent in pause mode is kept track of.
· HighScoresThink: This method checks for input while periodically reminding the player the current state of the initials he/she is entering. The up and down keys cycle through letters from A to Z, and when the initials change they are read back to the player by text to speech. The spacebar and escape keys cycle from one initial to another: space goes forward, escape back. Every time the currently active initial changes, a sound plays notifying the player. If the spacebar is pressed on the third initial, the high score is submitted to the IHighScores object maintained by CGameControl, then the game switches to death mode. If the escape key is pressed on the first initial, the player switches to death mode without entering his/her score. A timer is maintained to remind the player every few seconds of what the full string of three initials currently is, and every time the initials are changed that timer is reset. It is important to give the initials in a string of the form “A.A.A.” The periods help ensure that each letter will be spoken individually.
· LevelSuccessThink: This method has a Boolean value associated with it to check if it has already been run. If it has not, on the first call to the method a sound is played congratulating the player, and ending with the words “your score is…” A timer is set up so that when that sound ends, text to speech chimes in with the numerical value of the player’s current score. After this sequence has finished, the method waits for user input, and if the escape key or spacebar is pressed, the game switches to level initialization, increments the level, and calls the CleanupEnts method.
· DeathThink: This method has a timer associated with it, timerDeathTransition, which is long enough for the initial death sound to play, notifying the player of his/her death. After this timer finishes, the player can press escape or the spacebar to exit back to the menu. If the player does not, however, the credits stream will play. It can be exited at any time. When the player quits, IFreeRacingSamples from the Sound module, as well as CleanupEnts and CleanupLoader are called. The IHighScores object is also freed.
· LevelLoadData: This is a simple but crucial method that makes a call to the ILevelLoader object’s Load method, and then switches the game state to level initialization.
· LevelGenerate: This method makes calls to ILevelLoader::Generate, setting the new entity array, ILevelLoader::getEntCount, to update how many entities are in that array, and ILevelLoader::getZEnd, to determine where the end of the level is. The method then finds the CPlayer entity in the new array, and makes the player’s lives integer match that of CGameControl. This is necessary because the CPlayer objects are destroyed and recreated every level, but we want lives to be persistent across the entire game. The method then switches to starting mode, and sets up the timer until the race starts.
· PlaySounds: This method cycles through the entity array until it finds the CPlayer object, and uses CPlayer’s IEntVars object to update the three-dimensional sounds in the game with a call to the Sound module’s IUpdateSounds method. This method is called from the outside by the Control module.
· CalcScore: This method calculates the score the player has earned over the last level. Initially, the score is simply the number of coins collected multiplied by a certain constant. However, if the player finishes the level faster than the minimum speed, the amount of possible bonus time (the time it takes to finish the level at max speed) is compared to the amount of bonus time the player earned, and this is used as a multiplier on the raw score. Thus, player’s are rewarded for going faster. If the lives integer has a value of zero, and therefore the player is dead, only the raw score is added.
· DoPhysics: In racing mode, this method cycles through each CBaseEntity object in the array and calls CBaseEntity::Physics. Otherwise, it does nothing.
· CheckCollisions: This method takes a pointer to a CBaseEntity object. It then cycles through each CBaseEntity object, subtracts the position vectors of first and the second, then checks to see if the length between them is less than the sum of their radii. If so, it calls the CBaseEntity::Hit methods for each object.
· SpeakLevelInfo: This method uses an ITextToSpeech object to speak strings in the form “Level 1,” where 1 is replaced by the current level.
· CleanupEnts: This method frees the heap memory associated with the array of CBaseEntity objects. It is called after each level ends, before the next is generated.
· CleanupLoader: This method calls ILevelLoader::Cleanup, forcing CGameControl’s level loading object to free its memory. It is called when the game is exiting completely.
Module: Menu Control
Associated Classes: CMenuControl

This module controls all of the player’s interaction with the menu. The main menu has four choices: “Training,” “Start Game,” “High Scores,” and “Quit.” The Start Game submenu allows the player to choose what level he/she wants to start from. The High Scores submenu displays and speaks the current list of high scores. Training plays the training stream, and Quit exits the program.
One distinguishing characteristic of this class is that it maintains its own input system. It has Booleans for each key, and these are true not just if the key is pressed but if the action is allowed. Because the game, and the menu especially, runs at many frames per second, we need to put an interval in between when a key has been pressed and when it can be pressed again. Doing this in every method individually would be tedious, hence there is a centralized system. If the Boolean values are true, the action is definitely permitted.

Key Data: There are three central pieces of data: the menu state, the integer that represents what the player is currently selecting on the main menu, and the level the player is currently set to start at. CMenuControl maintains its own input data, a series of Boolean values for each key. There are timers for various transitions and for each key (so that actions are not repeated hundreds of times a second). The class also maintains an IHighScores object that can be used to view/speak the current high scores.

Associated States:

· MENU_INIT: The menu is starting. Initialize sounds, play the start sounds, and switch to the main menu.

· MENU_SELECTING: This state represents the main menu. Call to SelectThink every frame.

· MENU_GAMESELECT: In this state, we are selecting what level to start the game on. Call to GameSelectThink every frame.

· MENU_HIGHSCORES: In this state, we are viewing the high scores. Call to HighScoresThink, but should only be for one frame.

· MENU_DOTRAINING: In this state, we are listening to the training speech. A call to TrainingThink every frame.

· MENU_DOGAMEPLAY: This is a dead-end state, to be picked up by the Control module in order to switch to game-play.

· MENU_DOQUIT: This is a dead-end state, to be picked up by the Control module in order to exit the program.

Key Methods:

· Think: The first action of this method is a call to the UpdateInputCommands every frame. From there, as long as the float value timerTransition is below the current time, logic calls to the lesser think functions depend on the menu’s current state.
· UpdateInputCommands: This method first resets all of the Boolean input values. They must be decided upon again every frame. The method then checks if each key is pressed and if the keys’ associated timers are up, so that they are allowed to be used. If so, the Boolean value is marked as true and the timer is pushed forward again. Finally, the method checks to see if keys are not pressed—and if they aren’t, it resets the timers. This way, if the player has taken his/her hand off of a key, that key can then be used at any time.
· SelectThink: This method first checks to see if it has already read the player the instructions for using the menu. If it hasn’t, it plays those instructions. If the player has pressed escape, the menu switches into its quit state. If the player presses the spacebar, the whatever menu option he/she is currently selecting chooses what state the menu transitions to. A timer is set up so that the player is reminded periodically of what option he/she is selecting. If the up or down arrow keys are pressed, the option the player is selecting is changed, and the timer is reset so that he/she is instantly told what is now being selected. When the reminder sound is played, the timer is pushed forward once again.
· GameSelectThink: This area of the menu allows the player to select from levels 1 through 20 as a starting point for their game. In this method, if the player presses the escape key, he/she goes back to the main menu. The currently selected level is a persistent member data that is manipulated by this method. If the spacebar is pressed, the menu switches to game mode, using the current level. The up/down and left/right keys change the currently selected level, and once again a timer is maintained to remind the player of what level they’re currently selecting. This time, however, that timer is not reset when the level changes—text to speech freezes the program, and the player may want to switch multiple levels, going from 1 to 20 without being stopped by text to speech. Instead, whenever the level switches we play a beeping sound. Shortly after there is no input, the timer will catch, text to speech will speak the numerical value of the level, and the timer will be pushed forward again. If the player attempts to go lower than 1 or higher than 20, nothing happens.
· HighScoresThink: This method is completely text to speech-oriented. Because text to speech freezes the program until it is done, this think method only needs to run once, and switches back to the main menu after it’s done. The only complication is a short timer that allows a few frames to go buy between the time when the high scores were loaded and when the speech begins, so that the graphics module can read the high scores to the screen.
· TrainingThink: This method has two functions. First, if the method has not yet been called, the training sound stream is played by a call to the sound module. Second, a timer is set so that once the stream ends, the player automatically goes back to the main menu. The escape key will also allow the player to leave the training section at any time.
Module: Level Loading
Associated classes: ILevelLoader, IScriptSegment, IScriptLine.

This module has a dual-purpose: it reads level information from a file, building an array that can be used to then later randomly generate levels of any size or difficulty. The level information is stored in “segments,” represented by IScriptSegment objects, which are arrays of “lines,” represented by IScriptLine objects. A line is simply the objects that are (or are not) in each of the three lanes at a given distance down the track; it is a cross-section of the pattern of objects that makes up the levels in the game. Segments, then, are the patterns that are randomly selected to form the long sequence of objects that makes up each level.

ILevelLoader and IScriptSegment maintain dynamically allocated arrays whose capacities are increased as segments or lines, respectively, are added to their databases. This process occurs once each time the player starts the game, so efficiency is not an issue.

The distinguishing feature of the Generate and GetDifficultyFromLevel methods is that they create levels from a relatively small amount of information. Level information is contained in the level file in the game directory, but it only contains segments of track from which levels might be created. The only contribution the level file makes to the final decisions on how to generate levels is that each segment contains a difficulty from 1 to 9, which is the relative difficulty of the segment and does not correspond directly to the game’s levels. The algorithms for Generate and GetDifficultyFromLevel take a small amount of information (the current level, and constants that define the spread of levels, i.e. how fast levels get more difficult) and create levels of steadily increasing difficulty. They are therefore fairly abstract.

ILevelLoader Key Data: A pointer to the array of pointers to segments, the current count of segments, the capacity of the array, and an integer value for the length of the level last generated.

ILevelLoader Key Methods:

· Load: This method first creates an IFileIO object that opens the game’s level database file. It then cycles through every line in the file, interpreting the commands in order to build lines, which it adds to segments, which it adds to the segment array. (See the level data definition). The algorithm is simple: the method looks for the command to start a segment, then looks for either a difficulty command or a series of line commands (for each of which it creates and adds an IScriptLine object) until it reads a command to end the current segment. The process then repeats until the file has been read completely. There is very little error checking; the level file must be pristine.
· GetDifficultyFromLevel: Given the integer value of the level being created, this method returns a semi-randomly selected segment difficulty which has a value between 1 and 9. The algorithm depends on three inputs: the aforementioned level, and two header-defined constants: the starting level and the level at which each difficulty will have an equal chance of being chosen. Because there are 9 segment difficulties, the levels between the starting level and the final level are divided into 9 different “sectors” of equal length. At the start level, the first segment difficulty is 100% likely to be chosen. As the player increases in levels, going from the first sector (which starts at the starting level) into the second, the likelihood that the second difficulty level will be chosen gradually (depending on the difference between the two level constants) increases until the first and second segment difficulties are equally likely to be chosen. The third segment difficulty increases from sector 1 to sector 3, the fourth from sector 2 to sector 4, and so on, until at the final sector, sector 9, all segment difficulties have an equal chance of being chosen. Sector 9 also coincides with the high level constant, which determines at which level the game can get no more difficulty.
· Generate: This method returns a pointer to an array of CBaseEntity objects for use by CGameControl. It takes an integer value that represents the level the player is currently on. The algorithm first divides all IScriptSegment objects in ILevelLoader’s array into 9 separate arrays sorted by difficulty. The method then enters a loop that continues until a certain number of lines (a constant) have been added to the level. A call to GetDifficultyFromLevel returns the difficulty of the segment to add, and a segment is randomly selected from the array corresponding to that difficulty. The method then cycles through all of the lines in the IScriptSegment object, creating the objects associated with those lines. These objects are created as either CCoin or CObstacle objects, cast as CBaseEntity objects, and are added to a temporary array for that segment, which is then copied into the array to be returned at the end of the method. Once the requisite number of lines/objects has been added into the entity array, the end of the level is determined to be a short distance past the furthest object, and the pointer to the new array is returned to CGameControl.
· AddSeg: Adds an IScriptSegment object to the array of pointers to IScriptSegment objects, checking to see if the capacity on the array has been reached. If it has, this method first calls IncreaseSegCap.
· IncreaseSegCap: Allocates a larger array to hold IScriptSegment objects, then copies the old array into the new.
IScriptSegment Key Data: Diffificulty integer value, the number of lines in the array, the current array capacity, and a pointer to the array.

IScriptSegment Key Methods:
· AddLine: Adds an IScriptLine object to the array, checking to see if the capacity of the array needs to be increased.

· IncreaseCap: Creates a new array of increased capacity, then copies the IScriptLine objects from the old array into the new.

· Cleanup: Frees the heap memory associated with the class.

IScriptLine Key Data: Integer of the command type, an array of three integers representing the objects in each lane, and an array of two integers for arguments.

 Module: Entity Control
Associated Classes: CBaseEntity, CCoin, CObstacle, CPlayer, CCamera

The classes CCoin, CObstacle, CPlayer, and CCamera all inherit from CBaseEntity, which serves as the interface used by Game Control in its manipulation of game objects. Entities are the play objects that move and interact with each other and the game itself.
CBaseEntity Data Interface: Maintains an IEntVars object, which is inherited by derived classes and serves as their core data and interface with the Graphics and Sounds modules.

CBaseEntity Method Interface:

· Think: This method is called at intervals by Game Control, and appropriate logic of derived classes should go here.

· Spawn: This method is used to initialize the relevant data. Should be overloaded as necessary.

· Remove: This method is used to remove the entity from play, any actions needed upon removal go here.

· Hit: This method is called whenever this entity collides with another. It receives a pointer to the CBaseEntity object that was hit by this one.
· isPlayer: This method should return false unless it is the derived CPlayer class.

· Physics: This method is not overloaded; it is called by Game Control every frame and updates the position vector depending on the velocity vector, and the orientation vector depending on the angular velocity.
CCoin Key Data: None that is not inherited.
CCoin Key Methods:

· Spawn: Initializes the IEntVars data, customized for the coin class.

· Hit: Plays a coin pick-up sound, calls Remove on itself.
· Remove: Renders the coin invisible, inaudible, unable to collide with other objects, and dead.

CObstacle Key Data: None that is not inherited

CObstacle Key Methods:

· Spawn: Initializes the IEntVars data, customized for the obstacle class.

· Hit: If the victim is the player, it plays an explosion sound, and calls its own Remove method.

· Remove: Renders the obstacle invisible, inaudible, unable to collide with other objects, and dead.

CPlayer Key Data: Maintains its own count of coins and lives, maximum and minimum speeds, the time until it is no longer stunned, and the information related to switching from one lane to another.
CPlayer Associated States:

· PL_NOT_PLAYER: Not used by the player.

· PL_ACCELERATING: The maximum and minimum speeds the player can travel at are changing, either because it’s the beginning of the level or because we are accelerating again after hitting an obstacle.

· PL_STRAIGHTAWAY: The player is headed down the track; there are nothing special happening.

· PL_HIT: The player has been hit by an obstacle. This is vestigial, it is not really used currently because the transition from hit to stunned happens immediately.
· PL_STUNNED: The player was hit by an obstacle, and is now stunned for a certain amount of time.

· PL_DEAD: The player has run out of lives, and is dead.

CPlayer Key Methods:

· Spawn: Initializes IEntVars object, customized for the player class. Also initializes CPlayer variables as if it’s the constructor.
· Think: This method is used primarily for two player states: accelerating and stunned. When the player is stunned, this method checks a timer to see if the stun effect has ended. If it has, the player is pointed back down the track, angular velocity is neutralized, and the player state is turned to accelerating. If the player is accelerating, this method increases the minimum and maximum speeds by a fraction. If the minimum and maximum speeds the player can travel at have reached the global min and max speeds (the constants, as opposed to the player’s variable), the player state switches to PL_STRAIGHTAWAY.
· Hit: If the other entity the player has hit is a coin, the number of coins the player has is incremented. If, on the other hand, the other entity is an obstacle, the player’s lives are decremented, the player’s speed is set to 0, the player’s state is switched to stunned, and the player is given an angular velocity, making him/her spin in a circle. If the number of lives the player had before the hit was zero, the player is marked as dead, to be observed by Game Control.
· isPlayer: Returns true. Can be used to see if a CBaseEntity morph is actually a CPlayer object.
· SwitchBegin: This method is called when the player first begins to switch from one lane to another. It calls IPlay3DSound in the Sounds module to play a sound off to the side the player is switching towards. If the player is on level 5 or lower, the lane the player is switching to is also spoken by the Sounds module.
· SwitchCheck: If the player is currently switching, this method adds a fraction to the x-value of the player’s position vector. The velocity the player should move at is determined by the distance between the lanes divided by the (constant) interval to switch in, and this is multiplied by the interval of time the current frame represents. The method then compares the player’s position with the intended position. If it has been reached, the player’s position is snapped to the destination, a sound is played to announce the end of the switch, and the player’s switch state is changed back to normal.
· HandleInput: If the player is accelerating or on the straightaway, this method checks for input. It is called from the outside by Game Control every frame. If the player is pressing up or down, the player’s speed is increased or decreased. The equation, once again, is the distance between the maximum and minimum values divided by the time (constant) it would take to go from maximum to minimum, times the fraction of a second the frame represents. If the player is not switching and has pressed the right or left key, a switch is initiated. The initial lane is stored, the destination lane is set, the player’s switch state is set to active, and SwitchBegin is called.
CCamera Key Data: The camera class contains its own camera state, it’s own camera type, a vector with the origin to end up at, and timers describing how long the camera will pan.

CCamera Associated States/Types:

· CAMSTATE_INIT: Used when the camera is not yet active.

· CAMSTATE_ACTIVE: The camera is being used, Game Control is in its starting state.

· CAMSTATE_DEAD: The camera is no longer being used.

· CAMTYPE_STARTER: The camera starts just above and behind the player start location, and falls down as the game starts.

· CAMTYPE_OVERLOOK: The camera starts further above and far ahead of the track, and falls backwards as the game starts.

CCamera Key Methods:

· Spawn: Initialize the IEntVars object, customized for the camera class.
· Think: If the camera is in its inactive state, this method chooses a camera type randomly, and calls either InitOverlook or InitStarter, depending on that chosen type. If the camera is active, the camera’s origin is changed from its initial point to the target origin (usually the player start point) over the course of its lifetime.
· InitOverlook: This initializes the camera to be ahead and above the track, then sets the camera state as active.
· InitStarter: This initializes the camera to be behind and above the track, then sets the camera state as active.
Module: Graphics/Physics/Sound Entities

Associated Classes: IEntVars

This module is the core data used by the Entity Control module as its physics and state data, by the graphics module to draw entities to the screen, and by the sound module to update the three-dimensional game sounds.

Associated States:

· ENT_COLLIDABLE: This entity can collide with other entities.
· ENT_AUDIBLE: This entity should emit a sound.
· ENT_VISIBLE: This entity should be drawn.
· ENT_MOVABLE: This entity should have its physics processed.
· ENT_MOVING: This entity is moving, should be checked for collisions.
· ENT_PLAYER: This entity is the player.
· ENT_DEAD: This entity should be ignored entirely.
· OBJ_NONE: This object is not one of the choices/has not been initialized.

· OBJ_PLAYER: This object is a player.

· OBJ_COIN: This object is a coin.

· OBJ_OBSTACLE: This object is an obstacle

· OBJ_CAMERA: This object is a camera.

· SWITCH_NO: This entity is not switching

· SWITCH_LEFT: This entity is switching to the left.

· SWITCH_RIGHT: This entity is switching to the right.

Key Data:

· Origin: The location of the entity is Cartesian coordinates.
· Orientation: For the player, this is the direction he/she is pointing in. For other objects, it is the rotation of each axis.
· Speed: The speed of the entity, in floating points per second.
· Velocity: The velocity directional vector.
· Angular Velocity: The angular velocity.
· Radius: The collision radius, objects within this will collide with this entity if they are both collideable.
· Entity Flags: These are the ENT_ style flags
· Object Type: These are the OBJ_ style types.
· Player State: These are the PL_ style state (see Entity Control)
· Switch State: These are the SWITCH_ style states.
· Channel ID: This is the channel being used by this entity in the Sound module.
· Has Sound: This is a Boolean determining whether this entity is playing a sound.
· Think Time: This is the time until the entity will think next.
Module: Time
Associated classes: ITime

This module maintains a global time value during game-play. It can be accessed from anywhere in the code. The ITime class originally kept its own time, but after the switch to Direct3D it made more sense to use the DirectX timing utility to update ITime every frame.
Key Data: This module maintains a central value that represents the current time, as well as a second value that represents the time that elapsed between the current frame and the last. Time is measured in seconds.
Key Methods:

· getTime: This method returns the current time value.
· getRaw: This method returns a raw value of milliseconds, and is used by the Utility module to generate random numbers.
· reportFrameInterval: This method returns the amount of time that elapsed between the last frame and the current.
· DXFrameUpdate: This method takes a time and an elapsed time value, and updates the module’s member data accordingly. It is intended to be used inside the Graphics/OS module.
Module: Sound
Associated classes: None, functions in soundfunc.cpp and soundfunc.h
This module is responsible for all of the sounds in the game, both in the menu and the race, excluding text-to-speech. It creates sounds for all coins and obstacles, and updates their positional sound relative to the player.

Key Data: pointer to Entity Array entArray object in order to have the positions of all coins and obstacles, pointer to CPlayer object in order to have the player’s position

Key Methods: These methods are all called by either CGameControl or CMenuControl, depending on whether the sound is for the menu or for the race.

· IInitializeMenuSounds, IInitializeRaceSounds: These methods initialize the menu sounds and race sounds respectively. They load sound samples into memory and open any streams that will be played.

· IPlayMenuSound, IPlayStationarySound, IPlay3DSound: These methods are very similar. They are used to play all the sounds other than the sounds for coins and obstacles. IPlayMenuSounds is for all menu sounds, while IPlayStationarySound and IPlay3DSound are for the race sounds. All three functions take as an argument the type of sound being played, which directly corresponds to a sound file (.wav or .mp3). IPlay3DSound also takes the player’s position and velocity. Initially, these functions also took volume as an argument, but we found that it was unnecessary, so it’s no longer used. Furthermore, IPlayStationarySound takes the position as an argument, but this is not used.

· IResetRaceSounds: This method resets the sounds for each new level. It is called before every level. The player’s position is defaulted to the center lane, all coins and obstacles have their sounds reset, and the engine sound is started.

· IUpdateSounds: This method updates the positional sound for all of the coins and obstacles during the race. This is the most important of the sound functions, and is called every game frame. The function goes through all of the coin and obstacles entities for the level and checks whether or not they are in “hearing range”. The hearing range is set to be (3 * player’s max speed), so that the player has at least 3 seconds to react to any coins or obstacles. When any coins or obstacles enter the hearing range, their sound is turned on. When they pass the player, their sound is turned off so that the player knows that they can’t hit the coin or obstacle anymore. It is necessary to turn sounds on and off because there is a limited amount of sound channels that can be used, depending on the hardware. This method is also responsible for updating the player’s position when he changes lanes so that the positional sound can be updated. Lastly, this method also updates the engine sound based on the player’s speed. When the player goes faster, the engine sound’s frequency gets higher, which sounds like the engine is revving up.

· IPauseSounds, IUnpauseSounds: These methods pause and unpause the game. Fmod has a function that pauses all sound channels, and can then unpause them also.

· IResetSounds: This method stops all sounds in all sound channels.

· IFreeRacingSamples, IFreeMenuSamples: These methods free racing sounds and menu sounds from memory. Since we don’t want too many samples taking up too much memory, we split the game for sound purposes into the menu and the race. When the game goes from menu to racing, IFreeMenuSamples is called to remove menu samples from memory, and then IInitializeRaceSounds is called to load the racing samples into memory. Vice versa for going from the race to the menu.

· ICloseFmod: This method shuts down the sound system. It stops all sounds in all channels, frees all sound samples, and closes fmod. It is used when the user exits the game.

Fmod overview: Fmod’s most important function is managing sound channels. Sounds are played through a limited amount of sound channels, so this fmod is responsible for assigning sounds to channels and keeping track of which channels are being played, which channels are free, and which channels are finished playing sounds.
How players locate objects via sound: Players can locate objects using sound by two methods. The first is with positional sound. Headphones make it much easier to discern positional sound. Sounds also get louder as they get nearer. The second method is via different tones. Each lane has a tone (i.e. musical notes like C#, D, Eb, etc). So even without positional sound, players will know that a low tone means the object is in the left lane and a high tone means the object is in the right lane.

Choice of sounds: The coins and obstacles sound different so that players can pick them apart, even when they’re in the same lane and thus have the same tone. The coins have constant, light tones, while the obstacles have louder, harsher, and pulsing tones which are an octave lower than the coin tones. Obstacles stand out more since it’s more important to avoid obstacles than to collect coins. The pulsing sound of the obstacles allows the player to pick out coin tones when the obstacles aren’t momentarily silent.

MP3 vs. Wav: We found that Fmod cannot do 3D sound using mp3 files. Therefore, most of our sound files are wavs. This also makes it easier to edit them. Only the long streaming files are mp3s so that they can be much smaller in size.

Module: Input
Associated class: IInput.

This module keeps track of the key press events in the game. It stores the list of keys (arrow keys, Space bar, and Esc) as a Boolean array that tells whether or not the key is currently pressed down. A global pointer points to this list so the game control can determine when a key is pressed.

Data:

· listOfKeys: Boolean array that stores the Boolean values of whether or not a key is pressed down. Each key maps to one element in the array. The size of the array is set by the constant NUM_KEYS.

Public methods:

· pressDown: This method accepts an integer key as a parameter, and when it is called, it sets the corresponding entry in listOfKeys to true (which means that particular key is pressed down currently).

· pressUp: This method accepts an integer key as a parameter, and when it is called, it sets the corresponding entry in listOfKeys to false (which means that particular key is not pressed down currently).

· isKeyPressed: This method accepts an integer key as a parameter. It returns the corresponding Boolean value in listOfKeys, so if the key is pressed down, true is returned; false is returned otherwise. If the key is not found in listOfKeys, it returns false.

Module: High Scores
Associated class: IHighScores.

This module keeps track of the High Score functions in the game. It consists of only one class: IHighScores. The interface of this class allows any other class to declare an object of type IHighScores and to use most of its functions.

Data:

· d_filename: Default filePath, a string defined when the constructor is called.

· nameList: Array of strings that holds the high score list of players’ names. The size of the array is constant NUM_IN_LIST.

· scoreList: Array of ints that holds the high score list of players’ scores. The size of the array is constant NUM_IN_LIST.

Public methods:

· writeList: This method calls the private member function writeListToFile and sends the filename as a parameter. writeList can accept a string filename, or it can just be called without a parameter, in which case it uses the default filename.

· speakList: This method maintains an ITextToSpeech object, which it uses to speak the current high score list. Each line of the nameList and scoreList are appended together to form a string that is sent to the ITextToSpeech class for speaking.

· checkScore: This method can either take just a player’s score as a parameter, or both a name and a score. If just the score is given, the method checks to see whether the score is larger than the lowest score in scoreList and returns either true or false. If the name is also given, the method checks for a high score. If the player’s score is higher than the lowest score, the player’s name is added to the correct position on nameList, and the score is added to the correct position on scoreList. This list is then written to the high score file (by using writeListToFile) and a congratulatory message is spoken (using an ITextToSpeech object).

Private methods:

· fillLists: Maintains an IFileIO object, which it uses to read in a high score text file. Each line of the file is broken into its name and score components, and these are stored in the nameList and scoreList arrays.

· writeListToFile: This method maintains an OFileIO object, which it uses to write the high score list to the high score text file. Each element of the nameList and the scoreList is written to the file in its correct position. writeList and checkScore both call this method.

Module: Text to Speech
Associated class: ITextToSpeech.

This module handles the Text to Speech function for the game. It consists of only one class: ITextToSpeech. The interface of this class allows any other class to declare an object of type ITextToSpeech and to use the function speakText to speak any string. Microsoft Speech SDK 5.1 is used for our text to speech needs, and it is not multithreaded, therefore everything else in the game freezes while the text is being spoken, and there is no way to stop the speech after it has started.

Public method:

· speakText: This method receives as a parameter a string. First, it initializes COM, since Microsoft Speech SDK 5.1 is a COM-based application. The default voice (a COM object) is then set up. The string is then converted into type CString, which is an easier string object for the Speak function to utilize. The Speak function (found in the ISpVoice class of sapi.h) is then called to actually speak the string that was given to speakText. Finally, COM is uninitialized.

Module: File IO
Associated classes: IFileIO, OFileIO.

This module handles the file input and output of our game. File input is needed when the level segments are read in and when the high score list needs to be read. File output is used when the high score list needs to be saved or updated. The library fstream.h and the associated functions are used in these classes.

IFileIO
Data:

· f: This is the input filestream, type: ifstream.

Public methods:

· OpenFile: This method takes a string filename as a parameter and opens that file to be read.

· ReadLine: This method reads the current line of the input text file. It then uses a simple tokenizer to break up the string into words, placing the words into a vector<string> object. It then returns the vector. The next call of ReadLine automatically reads the next line.

· isFileEnded: This method checks to see if the file has been completely read by calling eof() on the input filestream object. It returns true if the file is ended, false otherwise.

· CloseFile: This method closes the input filestream.

OFileIO
Data:

· o: This is the output filestream, type: ofstream.

Public methods:

· OpenFile: This method takes a string filename as a parameter and opens that file to be written to.

· WriteLine: This method takes a string as a parameter and writes that string as a line to the output file.

· CloseFile: This method closes the output filestream.

Module: Utility
Associated classes: IRand, Vec3d

This module contains utility classes that can be used by any other class. IRand is a random number generator, and Vec3d is a three-dimensional vector class with all the necessary overloaded operators and methods.

IRand Key Methods:

· Rand: Combines the “rand” function from the standard C library with the getRaw method of the Time module in order to produce a random integer value.

Vec3d Key Data: X, Y, and Z values.

Vec3d Key Methods:

· -,==,!=,+,-,*,/: These are the standard vector operators.

· Length: This returns the length of the vector.

· Normalize: This returns a vector that is the normalized version of this vector.

Data, in detail
Data: Level File

Relationships: This file is called by the Level Loading system, via the File IO system. It contains the level segments that are used to create a level.

Level system: The level file contains level segments that can vary in length. These segments are then randomly pieced together to form a level. The level file is parsed based on key words.

Examples of level segment:

segment start

difficulty 1

line _ _ _

line _ _ _

line _ _ _

line _ _ _

line _ _ C

line _ _ _

line _ _ _

line _ _ _

line _ _ _

line _ _ _

segment end
segment start

difficulty 4
line _ _ _

line _ _ _

line B _ _

line _ _ _

line _ _ C

line _ _ _

line _ _ _

line _ _ _

line _ _ _

line _ _ _

segment end
segment start

difficulty 9

line _ _ _

line _ _ _

line _ C _

line _ _ B

line _ B _

line C _ _

line _ _ C

line B _ _

line _ _ _

line _ _ _

segment end
The file must follow these specifications. The “segment start” indicates the start of a segment, “difficulty 1” indicates the segment is of difficulty 1, “segment end” indicates the end of a segment, and “line” shows a line in the segment. There are three lanes, and so three positions in each line. “C” indicates a coin, “B” indicates an obstacle, and “_” indicates a blank space.
Difficulty: The level segments vary in difficulty, from level 1 difficulty to level 9 difficulty. To differentiate between the difficulty levels in the segments and the levels in the game, we will only refer to the game levels as “levels”. The difficulty segments get harder by increasing the number of objects, and by shortening the time between objects. The Level Loading system uses an algorithm to create a level based on difficulty segments. For example, level 1 will be made entirely of difficulty 1 segments; level 10 might be made of 50% difficulty 1 segments, 30% difficulty 2, 15% difficulty 3, and 5% difficulty 4; level 25 might be made of 20% difficulty 6, 30% difficulty 7, 30% difficulty 8, and 20% difficulty 9. Refer to the Level Loading system documentation for more information about the level loading algorithm.
Data: High Scores file
The High Score list is a text file that is saved locally with Sonic Zoom’s other program files. It holds a player’s position, name, and score. The format of the file is extremely rigid, any deviations from the format could cause the program to terminate or result in lost data.

Format:

· Three fields per line: The first field is a single integer (since we only are storing the top five scores) which tells the position of the player on the high score list. This is used just to help the text to speech engine when the list is spoken.

The second field is a string consisting of the player’s name (initials which they enter). The general format for the name is three letters, each followed by a period (and NO spaces between the letters). If another format for the name is used, the text to speech engine can still read it as long as it is one string with no spaces.

The third field is an integer consisting of the player’s score.

· One space between fields: The IInput object reads the text file, tokenizes each line into words, and stores the words into a vector of strings. The method used to separate the string is a space, so each field should be separated by a space.

· One line equals one high score: Only put one high score (which consists of the position, name, and score) per line. The remaining fields after the first three on each line will not be read.

· General Format:
Pos Name Score

Pos Name Score

Pos Name Score

Pos Name Score

Pos Name Score

· Sample Format:

1 M.W.C. 90

2 E.Y.K. 84

3 D.C.E. 81

4 P.M.D. 30

5 F.K.E. 0
Design Decisions

Our foremost design decision involved the level system. Originally, we were divided among two extremes; some wanted to have each line randomly generated, others wanted every level in the game to be scripted by hand. We ultimately decided on a middle ground, using established patterns, or segments, to randomly construct our levels. This enabled the levels to have some specific structure, while also allowing us to scale difficulty up and down with algorithms instead of by designing hundreds of lines for each level.
The second design decision involves the coordinate system that governs game-play. There is no real “track” that the player races down, only conventions about what different coordinates mean. For instance, the player’s movement is restricted (except when he/she is switching) to three x-values, or lanes, one of which is x = 0. The player always starts at the origin of the Cartesian coordinate system, and proceeds to head in the positive z-direction. These two conventions, the three constant x-values and the z-values from 0 and above, are used by the player, the level loading system, Game Control, and other systems that do not query some central authority or talk directly to each other. Those basic assumptions about coordinates are the glue that holds everything together.
Though the final product is heavily integrated with Direct3D, the original design for this project has us using OpenGL for graphics. Halfway through development, we were forced to switch to Microsoft’s graphics API. This did not affect our architecture too much, but it did make a fairly drastic change in the way our modules relate to each other. Previously, the Game Control and Menu Control modules were slated to make their own calls to OpenGL functions, effectively handling their own drawing. With Direct3D, and the template offered by the DirectX SDK, this relationship flipped completely. The Graphics module now observes Game Control and Menu Control, deciding what to draw based on their states and data. For a project of this scale, both are acceptable solutions.
Level

System

Game

Logic

User Input

Graphics

Sounds

Utilities

Text To Speech

Input

Time

High Scores

File IO

Level Loading

Graphics/Physics/Sound Entities

Entity Control

Sound

Game control

Control

Menu Control

Graphics/OS

