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The Challenge 
We usually think of computers as good at mathematical 
calculations but, in fact, they often allow a small amount 
of error so that they can go fast: 1/3 might be stored as 
just the first 16 digits of 0.3333…, , so that 3*(1/3) < 1.  
This can cause problems when numerical 
calculations are used to figure out geomet-
ric relationships: rounding the coordinates 
of the point q actually takes it off the lines 
ac and bd that define it! 
 
You can sometimes see this in video 
games – your character might be able to 
put a hand inside a wall because the com-
puter is allowing a small error. And while 
you may enjoy the possibility to “cheat” 
in a video game, you would not want the 
software in an airplane or a surgical robot 
to violate the laws of nature in this way. 
Yet most techniques to avoid these errors require special 
programming and slow down both the development and 
execution of computer programs. 
 
The Approach 
Algorithm designers try to minimize use of resources of 
time and memory space. Our work considers arithmetic 
precision as another resource, and minimizes the degree 
of polynomials used in the geometric tests or predicates 
that are applied.   
For example, consider the problem of overlaying maps of 
roads and county boundaries. If the input is 2D points 
with b bit coordinates, then testing if two line segments 
intersect is degree 2 (double precision) but actually com-
puting the intersection is a rational polynomial with de-
gree 3 over degree 2.  Some algorithms that compute in-
tersections also sort them by x coordinate, which takes 
degree 5, or five-fold precision.  (Since computer hard-
ware usually provides fast double precision only, it is not 
surprising that occasional errors occur when you need 
quintuple precision!)  
 
Developing fast algorithms with limited precision requires 
creativity.  If you restrict yourself to degree two, you can 
determine whether two lines intersect, but you learn very 
little about where the intersection actually occurs, as in 
Figure 1.   
Treating precision as a limited resource brings to our at-
tention the high cost of sophisticated geometric operations.  
Moreover, it allows us to better guarantee that implemen-
tations of our algorithms are not only efficient, but also 
correct. 
 

The results 
Red and Blue Line Segment Intersection. The map 
overlay problem (and the related problems of polygon 
clipping in graphics and 2D Boolean operations in com-
puter-aided design) can be abstracted to the problem of 
building an arrangement from a set of red and blue line 
segments that have no red/red or blue/blue intersections.  
 

 
Figure 1: With double precision segments defined by endpoints, we 
cannot test the precise location of an intersection, much less sort inter-
section points by x-coordinate.  The restricted precision means that we 
may as well think of segments as curvy “spaghetti.” 
 
 
The classical approach to solving the problem is: first, 
identify all red/blue segment intersections; second, sort 
the intersection points; third build the arrangement.  
However, comparing intersection points of segments spe-
cified by their end points requires 5-fold precision.  Our 
group solved the red and blue segment intersection 
problem optimally in time, space and precision with an 
algorithm that takes only double precision.  
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Highlights 
• Design and analysis of algorithms to optimize 

not only the traditional metrics of running 
time and memory space, but also arithmetic 
precision required. 

• Near-optimal time, optimal precision algo-
rithms for computing a Voronoi diagram. 

• Optimal time and precision algorithm for 
computing a distance transform of an image.  

• Optimal algorithms for polygon overlay and 
Boolean operations. 

• The limitation of restricting precision forces 
creative new solutions of classic problems that 
have practical applications in CAD, image 
processing, GIS, molecular biology, and more.  



     
 
Figure 2: Left: The trapezoidation, in grey, of a Voronoi diagram, in 
black, of six sites. Right: The Voronoi Polygon Set, shown as white 
polygons, is a double precision representation of the grid points in each 
Voronoi cell. To recover the Voronoi diagram’s precise structure in the 
grey gaps requires more than double precision.  
 
Proximity Queries and Voronoi diagrams. Proximity 
query structures efficiently answer the question, "given a 
set of point sites in the plane and a query point, what is 
the closest site?"  Generalizations of these queries arise in 
fields ranging from geographic information systems to 
economics to physics.   
 
The classic proximity query structure is built from the 
Voronoi diagram, which partitions the plane into maxi-
mally connected regions with the same set of closest sites. 
As Figure 2 shows, this diagram is further broken down 
into trapezoids, which are stored in a data structure that 
can be searched efficiently. 
 
Unfortunately, a straightforward construction requires 6-
fold precision.  It has been known since 1999 that double 
precision query structures answering all single precision 
queries was possible, but it was not known how to build 
such a structure with less than 4-fold precision. Our group 
provided a new diagram, shown in Figure 3, that can be 
constructed with only double precision.  
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Figure 3: Left: Each white polygon of the Voronoi Polygon Set can be 
represented by an orange proxy segment.  Right: Our proximity 
query data structure is computable with only double precision. 
The trapezoids shaded in light blue contain all the grid points for 
which f is the closest site.   
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