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Abstract. We develop an algorithm to compute
the Voronoi diagram (or distance transform) of n sites
(feature pixels) in a U × U grid using double preci-
sion, instead of the usually 4-fold precision InCircle
test. Our algorithm runs in O(U2 + n log U) time.

1 Introduction

Geometric algorithms use numerical computations to
perform geometric tests, so correct algorithms may
produce erroneous results if they require more arith-
metic precision than is available. Liotta et al. [5]
suggested analyzing the precision of an algorithm by
the maximum degree of its predicates. They demon-
strated that a Voronoi diagram of sites on a grid could
be reduced from a degree 6 to a degree 2 point loca-
tion structure that correctly answers “Post Office”
queries: find the nearest site to a query grid point.
They still used degree 4 InCircle tests to compute the
Voronoi before reducing it; Millman and Snoeyink [6]
recently were able to start with a restricted Voronoi
diagram computed with degree 3 predicates.

The distance transform of a U×U pixel image I can
use the Voronoi diagram to label each pixel of I with
its closest feature pixel; Breu et al. [1] showed that
this could be done in O(U2) time. Their algorithm
used InCircle (degree 4). Chan [2] generalized to com-
pute the d-dimensional discrete Voronoi diagram in
O(Ud) time; his algorithm can be implemented using
predicates of degree 3.

The distance transform can be computed using de-
gree 2 computations by simply comparing squared
distances to all feature pixels; in fact, Hoff and oth-
ers [4] implement this idea in graphics hardware to
compute 2D and 3D discrete Voronoi diagrams very
quickly, albeit in Θ(nU2) total work, and with the
fixed resolution of the screen and precision of the Z-
buffer.

We show how to compute the 2D discrete Voronoi
diagram with double precision in O(U2) expected
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time with a scan line algorithm. The 2D discrete
Voronoi diagram requires O(U2) space and answers
post office queries in constant time. In some situa-
tions this memory requirement is too large and only
O(log n) time post office queries are required. For
these situations we describe an intermediate degree 2
data structure called the Voronoi Polygon Set that
requires only O(n log U) space and adds no time com-
plexity. Finally, we create a post office query struc-
ture from the Voronoi Polygon Set in O(n log n) ex-
pected time using O(n) expected space that answers
post office queries in O(log n) expected time with de-
gree 2 predicates.

2 Geometric Preliminaries

Let U = {1, . . . , U}, and given a set of n feature pix-
els, called sites, S = {s1, . . . , sn} in U2 the Voronoi
Polygon Set partitions U2 into n convex polygons
{C(s1), . . . , C(sn)} where C(si) is the convex hull of
the grid points in closure of the Voronoi cell of si. We
call each C(si) a Voronoi Polygon, and each polygon
stores a leftmost and rightmost grid point. Figure 1
shows that gap regions may remain between Voronoi
Polygons; without higher degree predicates, it seems
difficult to determine neighboring Voronoi cells across
gaps.

For the remainder let hi denote the horizontal line
y = i and `j denote the vertical line x = j.

Figure 1: Left: The Voronoi Polygon Set of sites
randomly chosen on a grid. To recover the Voronoi
diagram’s precise structure in the gray gaps seems to
require higher degree predicates. Right: A close-up
of a complex gap.



3 Discrete Voronoi Diagram

Given grid size U and a set of n sites S we special-
ize Chan’s algorithm for computing the 2D discrete
Voronoi diagram [2] in O(U2) expected time but us-
ing degree 2 predicates only.

Bin: First sort the sites of S by x breaking ties
with y. Then partition S into U lists where Si =
{s ∈ S | sx = i}, a list for each vertical grid line `i.

Preprocess: For each Si solve the 1D problem of
marking each grid point on `i with its closest neighbor
in Si. Let R = {R1, . . . , RU} where list Rj contains
s ∈ S such that there exists a grid point q on hj with
mark(q) = s. Preprocessing constructs R where each
Ri has at most U sites.

Scan line: For each vertical line hj corresponding
to Rj , label each grid point p on hj with its closest site
in S. The labels are stored in a list Ij of tuples (s, a, b)
where grid points in the interval [a, b] on hj have site
s as a label. This creates U lists {I1, . . . , IU} each
with at most U intervals. The interval lists encode
the discrete Voronoi diagram.

Space and time analysis omitted for abstract.
Bin compares degree 1 coordinate values, Prepro-

cess and Scan line compare degree 2 squared dis-
tances. Therefore, we compute the Discrete Voronoi
diagram in degree 2.

4 Post Office Query Structure

We describe an O(U2) space algorithm for clarity and
point out that the Voronoi Polygon Set can be built
one scan line at a time to reduce memory.

Given the interval set from the previous section,
an alternative output is an expected O(n) size data
structure for solving post office queries in O(log n)
expected time with degree 2 predicates. Computing
this uses O(U + n log U) space and expected O(U2 +
n log n) time.

Compress: For each interval set Ij , merge the
intervals of Ij into the Voronoi Polygon Set of rows
{1, . . . , j − 1}. Update the leftmost and rightmost
grid points of modified Voronoi Polygons.

Build: Represent each Voronoi Polygon C(si) with
a segment from a leftmost to rightmost grid point
and a link to associated site si. Build the trapezoid
graph [3] of the representative segments.

Space and time analysis omitted for abstract.
Compress and Build evaluate degree 2 orientation

predicates on grid points and compare degree 1 x-
coordinates. Thus, building the polygon set and
trapezoid graph are degree 2.

Given a query point q, we solve post office queries
on the trapezoid graph in O(log n) expected time by

locating the trapezoid containing q [3]. The trape-
zoid is defined by at most two non-vertical segments
each with an associated site. The post office query is
answered by the site closer to q.

Point location uses the same predicates as building
the trapezoid graph with the addition for comparing
degree 2 squared distances. Therefore, point location
is degree 2.

5 Conclusion

Our algorithm provides an exact method for com-
puting the discrete Voronoi diagram and a post of-
fice query structure on a point set with single preci-
sion coordinates in double precision. The algorithm
is simple to implement and degeneracies are easily
handled.

We believe that our algorithm is a good candidate
for parallelization. Each scan line step is indepen-
dent; horizontal slabs can be processed concurrently
and merged with a parallel reduce. We would like to
investigate parallelizing our algorithm on graphical
processing units since they show impressive results
for Hoff et al. [4] and our algorithm does not require
any libraries for robust computation.

We believe that our algorithm may generalize in di-
mension and apply to the discrete Power and furthest
point Voronoi diagrams while maintaining degree 2
algebraic complexity. However, it is still unknown if
a post office query structure is computable in sub-
quadratic time with degree 2 predicates.
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