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1 Introduction

The Voronoi diagram is the classic proximity query
structure. It finds the nearest point from a finite set
S to a given query point q and it is the partition of
the plane into the maximal connected regions. The
Voronoi diagram’s topological structure can be com-
puted using four times the precision of the input, but
representing its vertices requires five times the input
precision. Furthermore, using the Voronoi diagram to
solve proximity queries in O(log n) requires six times
the precision of the input and query points. Liotta,
Preparata, and Tamassia [3] have derived a structure
from the Voronoi diagram whose computation re-
quires five times the precision of the input, but which
supports proximity queries in O(log n) time, using
only two times the input precision. In this paper, we
show how this structure can be computed directly,
using at most triple precision in O(n(log n + log g))
time where g is the bisector length.

Computing Voronoi diagrams is a well studied
problem and many optimal algorithms have been pro-
posed [1]. These algorithms rely on correct predicates
to handle the numerical issues that arise upon imple-
mentation but do not let the complexity of predicate
implantation affect the design of the algorithm.

Methods for handling numeric issues in geometric
algorithms fall into a few categories: rounding, ex-
act geometric computation [5], arithmetic filters [2],
topological consistency [4] and degree-driven algo-
rithmic design [3]. This paper falls into the last group
of degree-driven design.

2 The Cell Graph

Given a set of n sites S = {s1, s2, . . . , sn} whose coor-
dinates are b-bit integers, we would like to construct
the implicit Voronoi diagram V ∗(S) of [3], which con-
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sists of a topological component, the planar embed-
ding represented by a suitable structure such as a
doubly connected edge list [1] and a geometric com-
ponent, which for each vertex (vx, vy) of the Voronoi
diagram of S, the implicit Voronoi diagram, V ∗(S)
stores the half integers v∗x, v∗y , where v∗x = vx when
vx is an integer and v∗x = bvxc + 1

2 when vx is not.
We define vy in a similar manner.

To construct V ∗(S) we create a structure called a
cell graph that encodes all the information of V ∗(S)
and maintains connectivity and orientation informa-
tion used for incremental updating. Any Voronoi ver-
tex on a grid point and any grid cell containing one
or more Voronoi vertices is a cell vertex. When differ-
entiation is necessary, we refer to the former as a grid
cell vertex and the latter as a non-grid cell vertex.
For each edge (u, v) ∈ V (S) if u is mapped to cu and
v is mapped to cv, then the edge (cu, cv) ∈ C(S). We
call (cu, cv) a cell edge. Each cell edge corresponds
to a Voronoi edge, b, and stores the two sites defin-
ing b. In addition, each cell vertex v maintains a
circular doubly-linked list of cell edges with the same
ordering as Voronoi edges entering the grid cell that
v represents.

From the cell graph we can create the structure of
[3] by leaving grid cell vertices where they are and
snapping non-grid cell vertices to half gird points.
In the following sections we describe the predicates
and operations used in a randomized incremental con-
struction for the cell graph.

3 Predicates and Operations

Two sites s1, s2 on a grid determine a bisector, b12

that partitions the grid into points closest to s1, s2

or equidistant and on b12. Using this observation we
describe predicates for testing a grid cell against a
bisector, enumerating grid cells containing bisectors
and locating grid cells of bisector intersections.

Given two sites s1, s2 and a grid cell G, deciding
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if the bisector of s1 and s2 is in G takes constant
time and requires degree two computation, through
computing the squared distances of the grid points of
G. Furthermore we can use the information derived
in this predicate to decide the cardinal directions that
a bisector stabs a grid cell if at all. We call this the
bisectorInCell predicate.

Given two sites s1, s2 and a grid cell G that b12

stabs we can compute the intersection points of b12

and the grid cell using degree three computations in
constant time. Usually, the intersection of two bi-
sectors requires degree five predicates, but by taking
advantage of the fact that we are intersecting b12 with
horizontal or a vertical line, we can simplify the com-
putation.

Given s1, s2, and a direction to walk, we define a
bisectorWalk operation to be a traversal of a subset
of the cells that b12 passes though. Using the bisec-
torInCell predicate, we can walk b12 starting at the
midpoint of s1s2 with computations of maximal de-
gree two in O(log g) where g is the length of the walk.

The previous predicates and operations can be used
to compute the bisectorIntersection operation. Given
four non collinear sites {si, i = 1, . . . , 4}, the grid cell
that contains the intersection of the bisector of s1, s2

and s3, s4 can be computed using maximal degree
three predicates in O(log g), where g is the distance
between the intersection of the bisectors and the mid-
point of segment s1s2.

4 Incremental construction

Next we describe the randomized incremental con-
struction (RIC) [1] of the cell graph, and begin with
three non-collinear sites s1, s2, s3. As these sites are
non-collinear they form a Voronoi vertex. Using the
bisectorIntersection operation with b12 and b13, we
can determine the grid cell where this vertex resides.

Assume that we have already constructed a cell
graph of n − 1 sites and that we would like to insert
site sn. We proceed in the standard RIC fashion for
computing Voronoi diagrams, by first locating the cell
containing sn and carving out the region of sn similar
to the method used in [4]. Instead of the normal RIC
method that actually computes the intersection point
of bisectors we use the bisectorIntersection operation
to find the grid cell G where the intersection of two
bisectors occur.

Finding G has two cases, either there is no cell
vertex corresponding to G or one already exists. In
the first case, we just create a new cell vertex and

update cell edges. Care must be taken if a cell vertex
cv already exists. First, we add the new cell edge to
cv appropriately ordered. Next we walk around the
cell edges of cv in the direction that cell edges are
removed. This can be determined by the side of the
bisector sn is on.

As each insertion will cause an expected constant
number of vertices, faces and edges to be modified the
only additional penalty we incur with this method
as apposed to the standard RIC algorithm is the
O(log g) for each segment intersection. This gives
us that the cell graph of n sites can be constructed
in O(n(log n + log g)) where g is the bisector length
using computations of maximal degree three. As the
the cell graph subsumes all the information encoded
in V ∗(S), it can also support nearest neighbor queries
in O(log n) time with degree two computations.

5 Conclusions

This paper presented a method for computing the im-
plicit Voronoi diagrams of [3] in O(n(log n + log g))
where g is the bisector length using a maximal of
degree three predicates. Furthermore, to our knowl-
edge this is the first algorithm that allows for such
a construction without fully computing the Voronoi
diagram.
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