
Computing Planar Voronoi Diagrams in Double Precision:
A Further Example of Degree-driven Algorithm Design

David L. Millman
University of North Carolina

Chapel Hill, North Carolina, USA
dave@cs.unc.edu

Jack Snoeyink
University of North Carolina

Chapel Hill, North Carolina, USA
snoeyink@cs.unc.edu

ABSTRACT
Geometric algorithms use numerical computations to per-
form geometric tests, so correct algorithms may produce er-
roneous results if insufficient arithmetic precision is avail-
able. Liotta, Preparata, and Tamassia, in 1999, suggested
that algorithm design, which traditionally considers running
time and memory space, could also consider precision as a
resource. They demonstrated that the Voronoi diagram of
n sites on a U ×U grid could be rounded to answer nearest
neighbor queries on the same grid using only double preci-
sion. They still had to compute the Voronoi diagram before
rounding, which requires the quadruple-precision InCircle
test. We develop a “degree-2 Voronoi diagram” that can
be computed using only double precision by a randomized
incremental construction in O(n logn logU) expected time
and O(n) expected space. Our diagram also answers nearest
neighbor queries, even though it doesn’t even use sufficient
precision to determine a Delaunay triangulation.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
Robust computation, Low-degree primitives, Reduced pre-
cision, Voronoi diagrams, Post-office problems

1. INTRODUCTION
Geometric algorithms usually evaluate geometric primi-

tives (e.g., predicates like point/line comparison, left/right
turn tests, or constructions like computing the line through

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’10, June 13–16, 2010, Snowbird, Utah, USA.
Copyright 2010 ACM 978-1-4503-0016-2/10/06 ...$10.00.

two points or the intersection of two lines) by doing nu-
merical computation on coordinate values. Building geo-
metric algorithms on a tower of abstractions—including Eu-
clidean geometry, Cartesian coordinates, and exact arith-
metic on RealRAM—has greatly reduced the errors in pub-
lished papers on geometric algorithms in the last 20 years.
Researchers have developed many sophisticated ways to en-
sure that each layer of abstraction is implemented correctly
and efficiently, including the exact geometric computing para-
digm [5, 23], arithmetic filters [4, 11], and others [20, 21, 24].
Unfortunately, implementers often rely on the floating point
arithmetic supplied by current programming environments.
The numerical errors this introduces can undermine the en-
tire tower.

Liotta, Preparata, and Tamassia [16] suggested another
approach, which is to consider arithmetic precision to be a
resource that should be optimized by the design and analysis
of algorithms, much like the traditional resources of running
time and memory space. Liotta et al. [16] also suggested a
measure: the arithmetic degree of the predicates used. Most
geometric predicates evaluate the sign of a polynomial whose
variables are input values. Suppose that input variables can
be scaled to b bit integers. Then a degree k term can be eval-
uated in bk bits, and a polynomial can sum a such terms in
bk + log2 a bits. Thus, the degree k can be considered the
leading term that determines the precision required; we ig-
nore the carry bits, just as we ignore constants in the asymp-
totic measures used for time and space. (In fact, since most
evaluations need only the sign of the polynomial, the log2 a
can be avoided by Kahan summation [14].) This measure
has been used to develop algorithms for intersecting line
segments [1, 2, 17].

Liotta et al. [16] developed an implicit Voronoi diagram
to answer Post Office queries for n sites on a U × U grid
– finding the closest site to a query in O(logn) time and
O(n) space, and using predicates whose polynomials have
maximum degree 2. (We call degree 2 predicates “double
precision.”) Unfortunately, their algorithm must first com-
pute the entire Voronoi diagram before rounding it to their
structure; Voronoi computation requires the InCircle test,
which is an irreducible polynomial of degree 4. (They also
sort Voronoi vertices by y coordinate, making their algo-
rithm degree 5.) In subsection 2.1 we look at the degrees
of several predicates and algorithms; the degree of an algo-
rithm is the highest degree of its predicates.

We develop a new implicit Voronoi diagram structure that
we are able to compute by randomized incremental construc-

tion in O(n logn logU) expected time and O(n) expected
space, again using only double precision.

To appreciate the challenge in doing so, note that most
algorithms compute Voronoi diagrams by computing the De-
launay triangulation, which uses the degree 4 InCircle test
to verify that three points define an empty circle [12]. Our
algorithms will compute the closest sites only at grid points,
which is not enough information to obtain the dual Delaunay
triangulation.

Fortune’s sweep algorithm [10], computes the Voronoi di-
rectly, but uses a degree 6 predicate that orders two cir-
cumcircles by their extreme points. The notion of abstract
Voronoi diagrams [15] reduces Voronoi computation to or-
dering bisectors around Voronoi vertices, which again uses
InCircle. Sugihara and Iri’s incremental construction [22],
which tries to avoid geometric tests in favor of topological
inference, still relies on InCircle. In their algorithm, the ba-
sic step is to carve out the Voronoi cell of a newly inserted
site by walking through the current diagram. This doesn’t
seem to work without a notion of adjacency of cells, which
seems difficult to achieve with predicates of degree two.

In earlier work, we were able to implement an O(n log(n+
U))-time randomized incremental construction to compute
a reduced precision Voronoi diagram [19] using a degree 3
predicate for ordering bisectors along a line. In this paper,
we define a trapezoidation of approximate Voronoi cells that
is suitable for randomized incremental construction and use
a history DAG (directed acyclic graph) rather than a walk
to find which trapezoids need to be updated when a new site
is inserted.

The nearest-neighbor transform, known as the discrete or
digital Voronoi and related to the distance transform, com-
putes nearest sites for for every point in the grid, spending
at least Ω(U2) time. Breu et al. [3] showed that O(U2) was
achievable by computing a Voronoi diagram on the grid by
divide and conquer. Chan [7] and Maurer [18] independently
developed simpler algorithms that generalized to higher di-
mensions, and Cao et al. [6] gave a fast implementation on
GPU processors. These algorithms were described as de-
gree 5, although Chan observed that his was actually de-
gree 3, and could be improved to degree 2 with a little more
work; we previously defined the proxy trapezoidation [8] to
more compactly store the output of this degree 2 algorithm.
This paper extends the definition and shows how to con-
struct the structure directly in linear expected space.

2. DEFINITIONS AND NOTATION
In this section, we first establish some notation for familiar

concepts, such as Voronoi diagrams and trapezoid graphs,
then define some of the key concepts for our structure.

2.1 The Voronoi Diagram and Grids
Given a set of n sites S = {s1, . . . sn} in the plane, the

Voronoi diagram of S partitions the plane into maximally
connected regions with the same set of nearest neighbor
sites. Regions with one closest site are called Voronoi cells,
regions with two closest sites are called Voronoi edges, and
regions with three or more closest sites are called Voronoi
vertices. Building a point location structure on top of the
Voronoi diagram gives the classical solution to the Post of-
fice problem; after preprocessing the sites, you can determine
the closest site to a query point, q, in O(logn) time.

We restrict our sites and query points to a U × U integer

grid, denoted U. The discrete Voronoi diagram labels only
the grid points with their closest sites. Note that a line
bisecting two grid points might not hit any points of the
grid U. In building our structures, it will be convenient to
use the half-integer grid U2 = 1

2
[2U + 1]2 and the square

U = [1/2, U + 1/2]2 ⊂ R2. That way, at least the midpoint
between two sites (si + sj)/2 is on the half-integer grid. We
sometimes say that a point is single precision to mean that
it is on the grid U2.

Consider the degree of one basic construction and four
predicates for Voronoi diagrams. We use a model of com-
putation that includes constant-time arithmetic operations,
and consider computations both with and without floor or
integer division functions. For these basic predicates, floor
makes no difference.

VorVertex(a, b, c): A Voronoi vertex constructed from grid
point sites a, b, c ∈ U has coordinates that can be ex-
pressed as rational numbers of degree 3 over degree 2.

Point Comparison a ≺ b: Compare points by lexicographic
order, so that a ≺ b if and only if ax < bx or (ax =
bx and ay < by). Comparing grid points a, b ∈ U2

is degree 1, comparing a grid point with a Voronoi
vertex is degree 3, and comparing two Voronoi vertices
is degree 5.

q.Nearer(si, sj) or bij .side(q): A bisector bij = {p ∈ R2 :
‖p − si‖ = ‖p − sj‖} is the line equidistant to two
sites. Determining if a point q is on a bisector, or
determining the closer of the two sites, is degree two—
simply compare squared distances.

InCircle(a, b, c, q): The basic predicate for Voronoi compu-
tation [9], InCircle determines whether q is inside the
circumcircle of a, b, c ∈ U. This could be done by com-
paring the squared distances from VorVertex(a, b, c) to
a and to q, which gives a degree 6 polynomial when you
clear fractions, but that polynomial can factor to give
the usual InCircle determinant, which is degree 4.

Orient(a, b, c): The orientation test, which reports if the
path a, b, cmakes a right turn, left turn, or goes straight,
is a determinant on the homogeneous coordinates of
the inputs. It is a degree 2 test on grid points, which
is the only way we will use it. Degree goes up by 2
for each Voronoi vertex: it takes degree 8 to determine
orientation for three arbitrary Voronoi vertices, and
degree-6 to determine the orientation of a grid point
relative to an edge of a triangulation of a Voronoi di-
agram. (Thus, one should avoid point location struc-
tures that first triangulate.)

2.2 Trapezoidation and Point Location
Any planar subdivision with line segments can be decom-

posed into trapezoids by making vertical cuts at the end-
points of each segment that extend until reaching another
segment. We define three different, but related, trapezoida-
tions in the next three subsections. Each trapezoid τ will
have top and bottom lines, and a left and right point, with
τ.left ≺ τ.right and both points on or between the top and
bottom lines. Each trapezoid may have up to four neigh-
bors, reached by crossing the vertical lines above or below
τ.left and τ.right , although if the subdivision is into mono-
tone regions, as in Figure 1, then each trapezoid has at most
two neighbors. When τ.left and τ.right have the same x co-
ordinate, we can still think of τ as a trapezoid since the
lexicographic order on points used by ≺ is consistent with

τ1

τ2
τ3

τ4
τ5

τ6

τ7

≺VorVtx(a, c, d)

≺VorVtx(c, d, f)

≺VorVtx(a, d, b)

bad.side

bcd.side bdf .side

bcf .side

≺ bcf ∩ BBox

τ1

τ2

τ4

τ5 τ6

τ3 τ7

a

b

c
d e

f

Figure 1: Trapezoidation of a small Voronoi diagram, and a piece of the trapezoid graph for the strip with
labeled faces, τ1, . . . , τ7.

skewing the points slightly, or rotating the vertical direc-
tion counter-clockwise. For example, the bisector of d and e
in Figure 1 is the bottom edge for an infinitesimally thin
trapezoid in the Voronoi cell of d and the top edge for an
infinitesimally thin trapezoid in the Voronoi cell of e.

Trapezoid graphs [9, ch. 6] support point location queries,
which identify the trapezoid containing a query point q. The
trapezoid graph is a directed acyclic graph (DAG) with three
types of nodes:

x-node: Stores a point v; compares a query q ≺ v. If both
q and v are grid points on U2, this test is degree 1; if
v is a Voronoi vertex, this test is degree 3.

y-node: Given a query point q and a line `, determine if q
is above, below, or on `. If ` is a bisector of two sites,
or if ` is defined by two grid points on U2, then this
test is degree 2. On the other hand, if ` is defined by
two arbitrary Voronoi vertices, this test is degree 6.

leaf node: Leaf nodes represent trapezoids, for which the
containing region is known.

Figure 1 shows a portion of the trapezoid graph for seven of
the trapezoids in a small Voronoi diagram.

Liotta, Preparata, and Tamassia [16] achieved a degree-
two post-office query by building a trapezoid graph for the
Voronoi diagram. The straightforward way, depicted in Fig-
ure 1, would be to use Voronoi vertices (and intersections of
bisectors with the bounding box) at x-nodes and bisectors
at y nodes. Liotta et al. improve this by a simple observa-
tion: since the queries are grid points, rounding non-integer
x nodes to half-integers reduces the degree of that test from 3
to 1 without changing any test results. They still used a de-
gree 5 algorithm to compute the Voronoi diagram. Our pre-
vious work [19] showed how to build their structure directly
with degree three in O(n log(n+ U)) expected time.

2.3 Voronoi Polygons on the Grid and Proxy
Trapezoidation

Define the Voronoi polygon CS(si) to be the convex hull
of the grid points of U2 in the closure of the Voronoi cell of
site si ∈ S. We omit the subscript S when the set of sites
is understood. Voronoi polygon C(si) is contained in the
Voronoi cell of si, and the containment may be proper. As
illustrated in Figure 2, the set of all Voronoi polygons may
leave gaps in U , even though they cover all the grid points.

Define the cell proxy of si, denoted PS(si), to be the
line segment from the minimum to the maximum point of
CS(si), as illustrated in the middle of Figure 2. Because the
n Voronoi polygons can actually have a total of Θ(n logU)
sides, we will often prefer to work with the n proxy segments
instead. Define the proxy trapezoidation to be the vertical
visibility map of all cell proxies, as shown in the same figure.
Note that the proxy trapezoidation for a set of n sites S has
at most 3n+1 trapezoids, and is canonical—it is completely
determined by the sites.

In [8], we observed that if we can compute a proxy trape-
zoidation, then we can use it to answer post office queries
using degree 2, because only the sites contributing the top
and bottom proxies are candidates for the closest sites to
the grid points inside a proxy trapezoid. (Note that the
only grid point actually on a vertical side is the endpoint of
a proxy segment that defines the side, and we already know
the neighbor of a proxy – the lexicographic ordering used by
≺ implicitly perturbs grid points directly above a defining
endpoint into the trapezoid to the right, and directly below
a defining endpoint into the trapezoid on the left.)

Lemma 1. If q ∈ U is a query point in a trapezoid τ with
τ.top = P (si) and τ.bottom = P (sj) then q is in C(si) or
C(sj).

Proof. Suppose that some grid point q ∈ τ belongs in a
different Voronoi polygon C(sk). Since the Voronoi polygons
are convex and non-overlapping, the cell proxy P (sk) must
pass through trapezoid τ , which is a contradiction.

Corollary 2. Given cell proxies PS(si) for all si ∈ S,
one can build a point location structure that answers post
office queries in O(logn) expected time and linear expected
space.

Proof. We simply use randomized incremental construc-
tion of the trapezoid graph of the proxy trapezoidation, as
in [9, ch. 6]. A query determines the trapezoid τ that con-
tains the query point q using degree 1 tests at x-nodes and
degree 2 orientation tests at y-nodes. We can then use the
degree 2 q.Nearer() test to decide which of the two candidate
sites is closer.

2.4 Voronoi Trapezoidation and Conflicts
A few additional concepts will help us describe a random-

ized incremental construction of the proxy trapezoidation.

a

b

c
d e

f

a

b

c
d e

f

a

b

c
d e

f

Figure 2: Left: Voronoi polygons of sites on a grid may leave gaps. Middle: Proxy trapezoidation of proxy
segments, which connect the maximal and minimal points in a Voronoi polygon. The lexicographic order
for points implies that grid points that appear on the vertical segments are actually in trapezoids to the left
or right, unless they are proxy segment endpoints. Thus, f is in the trapezoid that contains d, a is in the
trapezoid above the proxy for d, and there is an infinitesimally thin trapezoid between the endpoints of the
proxies for c and d. Right: Splitting trapezoids of the proxy trapezoidation by bisectors gives the Voronoi
trapezoidation.

First, if we split each trapezoid of the proxy trapezoidation
with the bisector of sites donating the proxies at top and bot-
tom, then we obtain the Voronoi trapezoidation depicted at
the right of Figure 2. This trapezoidation is also canonical,
since it is derived from the proxy trapezoidation.

It is important to note that we don’t actually compute
y-coordinates of bisectors; the top and bottom pointers just
point to line equations for proxies, bounding box sides, or
bisectors, each of which can be represented as a degree 2
polynomial. All left and right points are proxy endpoints
or bounding box corners, and all are from U2. Thus, we
observe:

Lemma 3. One can test if a grid point q is inside a given
trapezoid τ of a Voronoi trapezoidation in constant time us-
ing degree 2.

In the Voronoi trapezoidation every trapezoid τ intersects
some proxy P (si) and either a bisector bij or a bounding
box side; we set site(τ) = si and bisector(τ) = bij (or the
bounding box side in the latter case).

The trapezoids with site(τ) = si cover the Voronoi poly-
gon C(si) and therefore contain all grid points in the Voronoi
cell of si. We can’t really say how the covering trapezoids
relate to the true Voronoi cell of si; clearly they may miss
portions of the cell on the left and right ends, because they
all use the proxy P (si) as top or bottom. As the striped
trapezoids in Figure 2 show, they don’t necessarily form a
convex region and may contain more or less than the true
Voronoi cell – all we guarantee is that they contain the grid
points of C(si). This means that it would be difficult to
bound the work necessary to insert a new site s by walking
through the Voronoi trapezoidation of existing sites.

Consider a subset of sites R ⊆ S. We say a site sk 6∈ R is
in conflict with trapezoid τ of the Voronoi trapezoidation of
R if and only if there exists a g ∈ τ∩U2 such that ‖g−sk‖ <
‖g−site(τ)‖, i.e. if some grid point in τ is closer to sk than
to site(τ). We extend the conflict to the proxy trapezoid
whose split produced τ , as well. We call g a witness to the
conflict.

In the next section we will give a detailed description of
how to maintain the proxy/Voronoi trapezoidations as sites
are inserted. As in many randomized incremental construc-
tions, we will find it useful to keep the history DAG of the

proxy trapezoidation: as a new site is added, some old trape-
zoids will be deleted and their area filled with new trapezoids
– the parents of a new trapezoid will be the minimal set of
old trapezoids that cover all the grid points that it contains.
This implies that we can trace conflicts through history:

Lemma 4. If site s ∈ S is in conflict with a trapezoid τ
of the history DAG, then it is in conflict with at least one
parent of τ .

We will actually be able to use a trapezoid graph to store
the history of updates, so parents and children will not be ex-
plicit in the data structure, but they will serve a role in the
analysis. For sites S, let D2-Voronoi(S) denote the proxy
trapezoidation with its history represented in a trapezoid
graph, along with the Voronoi trapezoidation implied by in-
troducing bisectors in each trapezoid.

3. CONSTRUCTION
In this section we give the details of our degree 2 random-

ized incremental construction (RIC). We assume that the
sites have been shuffled randomly; let Si = {s1, s2, . . . , si}.
We further assume that we have built the proxy trapezoi-
dation and its history that constitute D2-Voronoi(Si−1) and
want to obtain D2-Voronoi(Si) by inserting si.

After observing how incremental construction affects the
Voronoi polygons and proxy segments, as defined in Sec-
tion 2.3, we introduce a few more predicates and construc-
tions for grid points in trapezoids. Finally, we describe the
updates to the trapezoidation, and analyze the expected
time and space.

Lemma 5. In an incremental construction, a Voronoi poly-
gon on the grid can only shrink:

∀s ∈ Si−1, CSi(s) ⊆ CSi−1(s),

and a proxy segment changes if and only if the new site si

is in conflict with at least one of its endpoints:

∀s ∈ Si−1, PSi(s) 6= PSi−1(s) ⇐⇒
si conflicts with an endpoint of PSi−1(s).

3.1 Predicates and Constructions
We will continue to use a model of computation in which

arithmetic operations are constant-time. Computations do
not use floor or integer division unless otherwise stated.

Lemma 6. (i) Determining if bisector bij intersects the
vertical segment rt with r, t ∈ U2 takes degree 2 and constant
time. (ii) Determining the shortest subsegment ab ⊂ rt with
a, b ∈ U2 that intersects bij takes degree 2 and log ‖r − t‖
time, or constant time if floor is allowed.

Proof. For (i), compare the result of bij .side() on the
two endpoints of rt. (ii) can use floor, or can binary search
with bij .side().

Lemma 7. There is a degree 2 procedure HullVertices(),
taking O(logU) time, that computes the convex hull of the
grid points, if any, that lie in a region bounded by a constant
number of bisectors or lines defined by two grid points.

o

v

Figure 3: Each darker triangle’s hypotenuse at left
is an increasingly accurate rational representation of
the slope of segment ov; the GCD walk reuses these at
right to compute the convex hull of the grid points
below ov.

Proof. Euclid’s GCD algorithm, when interpreted geo-
metrically, gives the sequence of best rational approxima-
tions to an arbitrary slope, ordered by increasing denomina-
tor. Kahan and Snoeyink [13][Lemma 4.6] turned this into
a procedure HullVertices(o, v) that takes the origin, an ar-
bitrary point v, and computes the convex hull of the grid
points in the bounding box of ov that are on or below ov.
Their procedure runs in Θ(log(‖o−v‖) time and is degree 2;
the highest degree predicate is the orientation test on grid
points. The lower bound applies because the convex hull of
grid points in the intersection of O(1) halfplanes may have
this many vertices.

With a small modification, their procedure can start from
a unit segment between grid points, from Lemma 6(ii), and
follow a bisector within a region. We call this operation the
GCD walk. In each step we evaluate the degree 2 predicates,
bisector side, and orientation for grid points. The walk
takes time proportional to the log of the maximum side of
the bounding box of the region in which it runs. This re-
mains bounded by O(logU).

This has two useful corollaries.

Corollary 8. Predicate si.inConflict(τ) determines if
si is in conflict with trapezoid τ of the Voronoi trapezoida-
tion in O(logU) time and degree two.

Proof. Suppose that su = site(τ), as in Figure 4. We
can use the GCD walk to determine the convex hull of grid
points that are in τ between τ.left and τ.right and bounded
by bisector(τ) and bui, takingO(logU) time and degree 2.

For the next corollary, and as shown with a dash-dotted
line in Figure 4, the proxy of any convex hull of grid points is
the line segment from the minimum to the maximum under
lexicographic order (≺).

Corollary 9. Given a site si in conflict with a trapezoid
τ of the Voronoi trapezoidation, findProxies(si, τ) constructs,
in O(logU) time and degree 2, the proxies for two con-
vex hulls of the grid points in trapezoid τ of the Voronoi
trapezoidation—those that are closer to site(τ), and those
that are closer to si.

τ

PSi−1(su)

bui

bisector(τ)

e

Figure 4: Suppose that new site si is in conflict with
a Voronoi trapezoid τ , with su = site(τ). As drawn,
τ.top is proxy PSi−1(su) and τ.bottom = bisector(τ).
The new bisector bui cuts the shaded area from τ ,
which is the convex hull of the grid points that wit-
ness the conflict by being closer to si than su. The
dash-dotted line depicts the proxy of si in τ .

3.2 Incremental construction
Now, suppose that we have constructed D2-Voronoi(Si−1).

We update the proxy trapezoidation and its history as we
insert the new site si using three step. The first step, Find
Conflict, identifies the set of trapezoids of D2-Voronoi(Si−1)
that are in conflict with si. The second step, Proxy Update,
finds the new proxy PSi(si) and updates all other proxies
that changed on the insertion of si. The third step, Trape-
zoidation Update splits and merges proxy trapezoids to re-
flect these proxy changes, and updates the trapezoid graph
to capture the history, producing D2-Voronoi(Si).

Find Conflict:.
We collect the trapezoids of the D2-Voronoi(Si−1) that

are in conflict with si by traversing the history DAG. Start-
ing at the root, we visit only those trapezoids that are in
conflict with si, or whose parent was in conflict with si. At
each trapezoid, we test for conflict by Corollary 8, spending
O(logU) time and degree two. By Lemma 4, if there is a
conflict, it persists all the way to the root, so we will find it.

Proxy Update:.
Adding si to Si−1 creates a new proxy PSi(si) for si, and

usually forces some old proxies to be updated, for exam-
ple, proxy PSi−1(su) in Figure 4. Thanks to Lemma 5, we
can identify which proxies must be updated by testing their
endpoints: In Figure 4, trapezoid τ is defined in part by end-
point e of proxy PSi−1(su). Testing e.Nearer(si, su) identi-
fies, in constant time and degree 2, whether this proxy must
be updated. Moreover, we can find all proxies to update
by testing only those that define trapezoids in conflict with
si, since an endpoint that witnesses the need to update the
proxy is also a gridpoint that witnesses a conflict with si.

For each Voronoi trapezoid τ in conflict with si, we can
apply Corollary 9 to find the min and max grid points in
the regions that we obtain if we split τ by the bisector of
site(τ) and si. The min and max grid points identified from
regions on the si side of the bisector become the endpoints
of the new proxy PSi(si). Similarly, for any proxy that is
updated, we take the min and/or max points identified from
the regions closer to the corresponding site. Thus, we spend
O(logU) time and degree 2 on each trapezoid in conflict
with si.

Trapezoidation Update:.
Having identified the updates to proxies, we must now

update the trapezoidation and the trapezoid graph. We do
this in four substeps.

First, we add all new proxy endpoints, splitting the trape-
zoids that contain them. In the trapezoid graph, the corre-
sponding leaves (trapezoids to split) become x-nodes that
point to two new leaf nodes (the results of the splits).

Second, we add the segment for the new proxy PSi(si) by
walking through the trapezoidation, splitting and merging
trapezoids as needed. This operation is the same as in any
trapezoidation of line segments, and the corresponding up-
dates to the trapezoid graph can be found in textbooks [9,
ch. 6]. Briefly, if k trapezoids are crossed by the proxy,
then the corresponding k leaves are replaced by copies of a
y-node for the segment, which point to k + 1 new leaves for
the resulting trapezoids. (Note that some of the trapezoids
crossed may not have been found in the history since they
may not have witnesses to conflicts. They did, however, have
witnessed conflicts on both ends. This is important, because
we could not afford to go walking through trapezoids look-
ing for possible grid points to include in the Voronoi polygon
CSi(si).)

Third, we shorten the old proxies that need to be updated.
Notice that trapezoids that simply replace PSi−1(s) with a
shorter PSi(s) as the top or bottom change geometrically,
but do not need to change their representations. Thus, this
operation is like the inverse of adding a proxy in step two: we
erase PSi−1(s) from those trapezoids that do not intersect
PSi(s), merging and splitting as needed.

Fourth, we merge any adjacent trapezoids whose left and
right boundaries are defined by grid points that used to be
proxy endpoints but are no longer. In the trapezoid graph
this just redirects pointers to corresponding leaves.

Lemma 10. The leaves of the trapezoid graph correspond-
ing to new trapezoids in the proxy trapezoidation of Si are
O(1) deeper than the leaves for their parent trapezoids in the
proxy trapezoidation of Si−1.

Proof. Each update in substeps 1–3 adds a single level to

the trapezoid graph, and each trapezoid of the proxy trape-
zoidation can be involved in at most 4 updates (to top, bot-
tom, left, and right).

3.3 Analysis
We can use Mulmuley’s general framework of stoppers and

triggers (or definers and killers, as described in [9, ch. 9.3])
to analyze the expected time and space for this D2-Voronoi.

Lemma 11. The expected size of the D2-Voronoi on n
sites is linear in n.

Proof. The fact that the proxy trapezoidation is canon-
ical and has linear size implies that the expected amount
of work to update while inserting one segment is constant.
Thus, the expected size over n insertions is linear.

Lemma 12. The expected time to build the D2-Voronoi on
n sites is O(n logn logU).

Proof. The general analysis framework says that the to-
tal number of conflicts that have to be chased through his-
tory is O(n logn). Each conflict is handled by predicate
inConflict and construction findProxies, which give a
multiplicative factor of logU . Each update to the trape-
zoid graph adds at most a constant number of nodes to
the search path, so the total time to do the updates is
O(n logn logU).

4. CONCLUSION AND OPEN PROBLEMS
Ten years ago Liotta et al. [16] described a structure for

solving post office queries in double precision. We are happy
to report that their structure can also be built efficiently in
double precision. To our knowledge, this is the first con-
struction of a planar Voronoi diagram with double precision
in sub-quadratic time. We plan to implement the current al-
gorithm to compare with exact arithmetic implementations
for building Voronoi diagrams.

It is interesting to note that a randomized incremental
construction using the degree 4 InCircle test can be imple-
mented to run in O(n logn) time, that our earlier degree 3
algorithm is in O(n logn + n logU), while this degree 2 al-
gorithm is in O(n logn logU). Is there inherent loss of effi-
ciency with restricted predicates? Any lower bound above
Ω(n logn) would be interesting.

Actually, we believe that by maintaining dynamic convex
hulls of grid points in trapezoids and using binary search
to test if a witness to a conflict exists before applying our
lemmas to extract proxies, we can improve the current al-
gorithm’s running time to O(n logn log logU +n logU). We
omit this from the abstract because we prefer the relative
simplicity of the current algorithm, and because we would
like to reduce the complexity to O(n logn + n logU) in the
degree 2 case as well.

What other problems are amenable to solution with limi-
tations on the precision? In particular, since degree 2 suffices
to compute squared Euclidean distance in any dimensions,
what can be said about higher dimensional Voronoi diagrams
using restricted predicates?

5. REFERENCES
[1] J.-D. Boissonnat and F. P. Preparata. Robust plane sweep

for intersecting segments. SIAM J. Comput.,
29(5):1401–1421, 2000.

[2] J.-D. Boissonnat and J. Snoeyink. Efficient algorithms for
line and curve segment intersection using restricted
predicates. Comput. Geom. Theory Appl., 16(1):35–52,
2000.

[3] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear
time Euclidean distance transform algorithms. IEEE
PAMI, 17:529–533, 1995.

[4] H. Brönnimann, C. Burnikel, and S. Pion. Interval
arithmetic yields efficient dynamic filters for computational
geometry. Discrete Applied Math., 1–2:25–47, 2001.

[5] C. Burnikel, J. Könemann, K. Mehlhorn, S. Näher,
S. Schirra, and C. Uhrig. Exact geometric computation in
LEDA. In SCG ’95: Proceedings of the Eleventh Annual
Symposium on Computational Geometry, pages 418–419,
1995.

[6] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan. Parallel
banding algorithm to compute exact distance transform
with the GPU. In I3D ’10: Proc. 2010 Symp. on
Interactive 3D Graphics and Games, New York, NY, USA,
2010. ACM.

[7] T. M. Chan. Faster core-set constructions and data-stream
algorithms in fixed dimensions. Comput. Geom. Theory
Appl., 35(1):20–35, 2006.

[8] T. M. Chan, D. L. Millman, and J. Snoeyink. Discrete
Voronoi diagrams and post office query structures without
the incircle predicate. In Proceedings of the Nineteenth
Annual Fall Workshop on Computational Geometry, 2009.
http://cs.unc.edu/~dave/mySite/media/papers/CMS09_
FWCG.pdf.

[9] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications.
Springer-Verlag New York, Inc., 3rd edition, 2008.

[10] S. Fortune. A sweepline algorithm for Voronoi diagrams.
Algorithmica, 2:153–174, 1987.

[11] S. Fortune and C. J. Van Wyk. Static analysis yields
efficient exact integer arithmetic for computational
geometry. ACM Trans. Graph., 15(3):223–248, July 1996.

[12] L. Guibas and J. Stolfi. Primitives for the manipulation of
general subdivisions and the computation of Voronoi. ACM
Trans. Graph., 4(2):74–123, 1985.

[13] S. Kahan and J. Snoeyink. On the bit complexity of
minimum link paths: Superquadratic algorithms for
problems solvable in linear time. Comput. Geom. Theory
Appl., 12(1-2):33–44, 1999.

[14] W. Kahan. Pracniques: Further remarks on reducing
truncation errors. Commun. ACM, 8(1):40, 1965.

[15] R. Klein. Concrete and Abstract Voronoi Diagrams, volume
400 of Lecture Notes Comput. Sci. Springer-Verlag, 1989.

[16] G. Liotta, F. P. Preparata, and R. Tamassia. Robust
proximity queries: An illustration of degree-driven
algorithm design. SIAM J. Comput., 28(3):864–889, 1999.

[17] A. Mantler and J. Snoeyink. Intersecting red and blue line
segments in optimal time and precision. In Discrete and
Computational Geometry, number 2098 in LNCS, pages
244–251. Springer Verlag, 2001.

[18] C. R. Maurer, Jr., R. Qi, and V. Raghavan. A linear time
algorithm for computing exact Euclidean distance
transforms of binary images in arbitrary dimensions. IEEE
Trans. Pattern Anal. Mach. Intell., 25(2):265–270, 2003.

[19] D. L. Millman and J. Snoeyink. Computing the implicit
Voronoi diagram in triple precision. In WADS, volume 5664
of LNCS, pages 495–506. Springer Verlag, 2009.

[20] D. Priest. On properties of floating point arithmetics:
numerical stability and the cost of accurate computations.
Ph.D. thesis, Dept. of Mathematics, Univ. of California at
Berkeley, 1992.

[21] J. R. Shewchuk. Adaptive precision floating-point
arithmetic and fast robust geometric predicates. Discrete &
Computational Geometry, 18(3):305–363, 1997.

[22] K. Sugihara and M. Iri. Construction of the Voronoi
diagram for ‘one million’ generators in single-precision
arithmetic. Proc. IEEE, 80(9):1471–1484, Sept. 1992.

[23] C.-K. Yap. Towards exact geometric computation. Comput.
Geom. Theory Appl., 7(1-2):3–23, 1997.

[24] C. K. Yap. Robust geometric computation. In Handbook of
Discrete and Computational Geometry, pages 927–952.
CRC Press, Inc., Boca Raton, FL, USA, 2nd edition, 2004.

