
CCCG 2011, Toronto ON, August 10–12, 2011

A Slow Algorithm for Computing the Gabriel Graph with Double Precision

David L. Millman Vishal Verma
Department of Computer Science, University of North Carolina at Chapel Hill∗

Abstract

When designing algorithms, time and space usage are
commonly considered. In 1999, Liotta, Preparata and
Tamassia proposed that we could also analyze the preci-
sion of an algorithm. We present our first steps towards
the goal of efficiently computing the Gabriel graph of
a finite set of sites, while restricting ourselves to only
double precision.

1 Introduction

Computers use finite precision arithmetic to test ge-
ometric relationships between objects. Sometimes, a
computer cannot provide a sufficient number of arith-
metic bits to guarantee that the tests are correct. It is
natural then to analyze the number of bits required to
correctly run an algorithm. One such model of analysis
was proposed by Liotta, Preparata and Tamassia [?].
They define the degree (or arithmetic complexity) of an
algorithm in terms of the arithmetic degree of its predi-
cates. One can then attempt to minimize the degree of
an algorithm, just like time and memory. This type of
analysis is known as degree-driven algorithm design, and
it tells us the amount of arithmetic precision required
to run the algorithm safely. In Section ??, we define de-
gree and arithmetic precision more formally. Arithmetic
precision is of special interest when running geometric
algorithms, that assume general position, on practical
datasets that are frequently close to being degenerate.
To avoid these issues of instability we have been working
on degree driven algorithms for constructing geometric
structures. In this paper we describe our first step to-
wards constructing the Gabriel graph robustly.

Given a finite set of sites S, an edge (si, sj) with
si, sj ∈ S is in the Gabriel graph of S if the edge main-
tains the Gabriel property, that is, the closed disk with
diameter sisj contains no points of S besides si and
sj . It is know that the Gabriel graph [?] is a subgraph
of the Delaunay triangulation. Matula and Sokal [?]
showed how to compute the Gabriel graph directly from
the Delaunay triangulation in time proportionate to the
number of sites in S.

Computing the Delaunay triangulation requires four
times the precision of the input coordinates, and Mat-

∗[dave,verma]@cs.unc.edu

ula and Sokal’s Gabriel graph algorithm uses six-fold
precision. Liotta [?] showed how to implement Mat-
ula and Sokal’s algorithm using only two-fold precision,
however, it still requires four-fold precision for comput-
ing the Delaunay triangulation. A natural question that
follows is, can we compute the Gabriel graph with only
two-fold precision?

The answer is yes! In Section ?? we show that we
can compute the Gabriel graph with two-fold precision
(albeit rather slowly).

2 Definitions and Notation

We begin by recalling how one can analyze arithmetic
complexity. Assume that the coordinates of our input
can be scaled to b-bit integers. Thus, we can think of the
sites of S as lying on the U ×U grid, notated as U. The
primitives of a geometric algorithm are called predicates,
which are tests of the signs of multivariate polynomials
with variables from the input coordinates. We say that
the degree of a predicate is the degree of the polynomials
to which it corresponds (for a degree d predicate we
sometimes say it uses d-fold precision). Furthermore, we
define the degree of an algorithm by the highest degree
predicate it evaluates.

Consider, for example, testing if point q is closer to
point p1 or p2 with p1, p2, q ∈ U. We can write this pred-
icate as sign(‖q − p1‖2 − ‖p− p2‖2). Which expands to
a degree 2 polynomial, thus, this predicate is degree 2,
(i.e., it uses two-fold precision). Another example (used
in Section ??) tests if the straight line path from p1 to p2
to q, with p1, p2, q ∈ U, forms a counterclockwise orien-
tation. This Orientation(p1, p2, q) predicate, tests the
sign of the determinant of the homogeneous coordinates
of p1, p2 and q, and is also degree 2.

Next, recall the point/line duality [?] that maps a
point p = (px, py) to a line p∗ := (y = pxx − py) and a
line l := y = mx + b to a point l∗ := (m,−b). The set
S∗ is the set of lines, dual to the set of sites of S. We
notate the arrangement of the lines in S∗ is A(S∗) and
the Gabriel graph of S as G(S).

3 Arrangements of Dual Lines

It is know that for a set of line segments, defined by
their endpoints, computing an arrangement requires

23rd Canadian Conference on Computational Geometry, 2011

four times the input precision and computing its trape-
zoidation requires five times the input precision [?]. In
this section, we show that for a set of lines, defined
as duals of points, computing an arrangement and its
trapezoidation can be solved with double precision.

We begin by observing that for non-parallel lines p∗

and q∗, the the x-coordinate of the point `∗ = p∗ ∩ q∗ is
the slope of line ` =←→pq , which is (py − qy)/(px − qx).

Observation 1 The x-coordinate of the intersection of
two dual lines is represented by a rational polynomial of
degree 1 over degree 1.

For three dual lines, p∗, q∗, and r∗, where p∗ and q∗

intersect r∗, by Observation ?? and clearing fractions,
we compare the x-ordering of the intersection points
with degree 2. We call this the OrderOnALine(p∗, q∗, r∗)
predicate.

By using the OrderOnALine predicate in an incremen-
tal construction of an arrangement (such as [?, Chapter
8.3]) we achieve a degree 2 construction. Furthermore,
we can use the OrderOnALine predicate to add the ver-
ticals into the arrangement and get its trapezoidation.

Lemma 1 For n dual lines S∗, we can compute the
arrangement of S∗ and its trapezoidation in O(n2) time
and degree 2.

4 Gabriel Graphs

Next, we describe how to construct the Gabriel graph in
O(n2) using degree 2, and begin by defining the primi-
tives of our construction. Let D(p, q) be the closed disk
with pq as the diameter. We say that a site s kills the
edge (p, q) if s lies in D(p, q). Let m be the midpoint of
pq. The degree 2 predicate IsKiller(p, q, s) compares
the squared distance between m and s and m and p to
determine if s kills edge (p, q).

Given the arrangement A(S∗) and a site si ∈ S we
would like to compute the circular orderings of the sites
in S \ {si} around si. Consider the line s∗i , each ver-
tex vj ∈ A(S∗) that lies on s∗i corresponds to a line
though si and some other site sj ∈ S. As mentioned
in Section ??, the slope of ←→sisj is the x-coordinate of
vj , thus, by walking along s∗i in A(S∗) we find a set of
lines, though si ordered by slope, which gives the circu-
lar ordering of the sites of S \ {si} around si.

Constructing a circular ordering for a site is a purely
topological operation on the arrangement A(S∗) and
uses degree 0. For each site s, computing the circu-
lar ordering takes time proportional to the number of
vertices that lie on s∗, which is O(n).

Lemma 2 Given A(S∗), for site s ∈ S, we can com-
pute the circular ordering of the sites in S\{s} around s
in O(n) time and degree 0.

s

si
sk

sj

uk

Figure 1: sj lies in the part of Dl(s, si) that is to the
left of ~ssk. This part of Dl(s, si) is a subset of Dl(s, uk),
which itself is a subset of Dl(s, sk).

Once we have computed a circular ordering of S \{s}
around each s ∈ S, in O(n) time we can compute the
Gabriel edges incident at s. The key idea behind this
step is captured in Lemma ??.

We number the circularly ordered sites in S \{s} in a
counterclockwise manner starting with any s0 ∈ S \ {s}
i.e. ~ssi+1 is the first ray counterclockwise from ~ssi at
s. Let Dl(s, si) denote the closed semicircular disk that
has ssi as the diameter and lies to the left of ~ssi. We
say sj kills the edge (s, si) from the left if and only if sj
lies in Dl(s, si). Then,

Lemma 3 If sj lies in Dl(s, si) and ∀k ∈ {i, i +
1, . . . , j−1}, sk /∈ Dl(s, si), then sj also lies in Dl(s, sk),
∀k ∈ {i, i+ 1, . . . , j − 1}

Intuitively, the above lemma says that if sj is the first
site (in a counterclockwise sense) that kills (s, si) from
the left, then sj kills all (s, sk), i ≤ k ≤ j − 1, from the
left. Figure ?? gives a brief idea of the lemma and the
proof.

Proof. Since i ≤ k ≤ j − 1 and sk /∈ Dl(s, si), the
segment ssk intersects the circular part of the bound-
ary of Dl(s, si) at some point uk. For every point
p ∈ Dl(s, uk),∠spsk ≥ ∠spuk > π/2. Thus p also lies
in Dl(s, sk). Hence Dl(s, uk) ⊂ Dl(s, sk).

Let H be the closed half plane that lies on left of the
line ~suk. For every point p ∈ Dl(s, si) ∩ H,∠spuk ≥
∠spsi > π/2. Thus (Dl(s, si) ∩H) ⊂ Dl(s, uk). Using
this with the subset relation from the previous para-
graph we have (Dl(s, si) ∩H) ⊂ Dl(s, sk). Since sj lies
in (Dl(s, si) ∩H) it also lies in Dl(s, sk). �

Let L be the circular linked list of sites of S \ {s}
circularly ordered around s. Algorithm ?? efficiently
identifies sites s′ ∈ L such that the edge (s, s′) is killed
from the left by some site in L. Such vertices are marked
dead by the algorithm. A similar algorithm is used to
identify the sites s′′ such that the edge (s, s′′) is killed

CCCG 2011, Toronto ON, August 10–12, 2011

from the right. The edges that are killed neither from
left nor right belong to the Gabriel graph.

We now give a brief overview of Algorithm ??. Given
a site u ∈ L, we define left victims(u) as a subset of
S \ {s} such that for each site v ∈ left victims(u), u is
the first (when walking left along the list L) site to kill
the edge (s, v) from left. Lemma ?? says that the set
left victims(u) is contained in a continuous sublist of
L that starts on the right of u and only contains sites w
such that (s, w) is killed from left by u. This observation
is used in the inner while loop of Algorithm ?? to find
a sublist Lu such that: (a) each site in Lu has a killer
in (u∪Lu); and (b) the union of the left victims of the
sites in (u∪Lu) is a subset of Lu. Due to (a), we know
that the sites in Lu can be killed from left and hence
they are marked dead. Due to (b), for any remaining
site v ∈ L\Lu, if the edge (s, v) is killed from left then v
belongs to the set of left victims of some site in L\Lu.
Thus, to find the remaining left victims, we process
the smaller list L \ Lu.

Algorithm 1: KillFromLeft(S, s, L)

Make a copy Lleft of L;
Initialize the unseen values of each site in L to true;
Initialize the dead values of each site in L to false;
u = any site in Lleft;
while u→unseen do

u→unseen = false;
killer = u;
current = u→ right;
while killer6=current do

if killer ∈ Dl(s, current) then
current→dead = true ;
current = current→ right;

else
killer = killer → right;

end

end
Lu = the sublist of Lleft, that is to the right of
u and left of current;
Delete Lu from Lleft;
u = u→left;

end

Testing if killer ∈ Dl(s, current) uses degree 2 pred-
icates isKiller and Orientation, thus, the above al-
gorithm runs in O(|L|) time and is degree 2.

Lemma 4 Given the circular ordering of S \ {s}
around s, in O(n) time and degree 2, we can find the
Gabriel edges incident at s.

For completeness, we describe the three steps for con-
structing the Gabriel graph of a set of n sites S with

degree 2. First, compute A(S∗), which by Lemma ??
takes O(n2) time and degree 2. Second, for each site
si ∈ S compute the circular ordering of the sites of
S \ {si}, which in total, by Lemma ??, takes O(n2) and
degree 0. Third, for each site si ∈ S, use the circular or-
derings to compute the set of Gabriel edges in which si
is a member, which in total, by Lemma ??, takes O(n2)
and degree 2.

Corollary 5 We can compute the Gabriel graph in
O(n2) time using degree 2.

5 Conclusion and Open Problems

Even though an O(n2) construction is too slow for prac-
tical applications, Corollary ?? tells us that we can at
least compute the Gabriel graph with degree 2 and do
better than brute force. In contrast, we simply can-
not compute the Delaunay triangulation with degree 2.
Two questions follow.

Firstly, can we compute the Gabriel graph in sub-
quadratic time with degree 2? It may be of interest to
note that the grid size does not appear in the running
time of the algorithm. Thus, the algorithm still termi-
nates if we let the step size of the grid shrink to zero.

Secondly, since we cannot compute the Delaunay tri-
angulation with degree 2, can we compute a triangu-
lation that is in some sense close to Delaunay? With
degree 2 we can compute the convex hull and Gabriel
graph, but which edges should we add to complete the
triangulation?

References

[1] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag New York, Inc., 3rd edition,
2008.

[2] K. R. Gabriel and R. R. Sokal. A new statistical ap-
proach to geographic variation analysis. Systematic Zo-
ology, 18(3):pp. 259–278, 1969.

[3] G. Liotta. Low degree algorithms for computing and
checking gabriel graphs. Technical report, Providence,
RI, USA, 1996.

[4] G. Liotta, F. P. Preparata, and R. Tamassia. Robust
proximity queries: An illustration of degree-driven algo-
rithm design. SIAM J. Comput., 28(3):864–889, 1999.

[5] A. Mantler and J. Snoeyink. Intersecting red and blue
line segments in optimal time and precision. In Discrete
and Computational Geometry, number 2098 in LNCS,
pages 244–251. Springer Verlag, 2001.

[6] D. W. Matula and R. R. Sokal. Properties of Gabriel
Graphs Relevant to Geographic Variation Research and
the Clustering of Points in the Plane. Geographical
Analysis, 12(3):205–222, 1980.

