A Slow Algorithm for Computing the Gabriel Graph with Double Precision

David L. Millman Vishal Verma

University of North Carolina at Chapel Hill

August 12, 2011
Given sites $S = \{s_1, \ldots, s_n\}$

Compute the Gabriel graph of S.
Given
sites $S = \{s_1, \ldots, s_n\}$

Compute
the Gabriel graph of S.

How much precision is needed to determine this?
E.g., Precision of testing if a point is inside a circle
Analyzing Precision[LPT99]

E.g., Precision of testing if a point is inside a circle

\[U = \{1, \ldots, U\}^2 \]
\[a, b, q \in U \]
Analyzing Precision \cite{LPT99}

E.g., Precision of testing if a point is inside a circle

\[\mathbb{U} = \{1, \ldots, U\}^2 \]
\[a, b, q \in \mathbb{U} \]
\[a = (a_x, a_y) \]
\[b = (b_x, b_y) \]
\[q = (q_x, q_y) \]
\[m = \left(\frac{a_x + b_x}{2}, \frac{a_y + b_y}{2} \right) \]
Analyzing Precision [LPT99]

E.g., Precision of testing if a point is inside a circle

\[U = \{1, \ldots, U\}^2 \]
\[a, b, q \in U \]
\[a = (a_x, a_y) \]
\[b = (b_x, b_y) \]
\[q = (q_x, q_y) \]
\[m = \left(\frac{a_x + b_x}{2}, \frac{a_y + b_y}{2} \right) \]

\[\text{IsKiller}(a, b, q) = \text{sign}(\|m - p\|^2 - \|m - r\|^2) \]
E.g., Precision of testing if a point is inside a circle

$$\mathbb{U} = \{1, \ldots, U\}^2$$

$$a, b, q \in \mathbb{U}$$

$$a = (a_x, a_y)$$

$$b = (b_x, b_y)$$

$$q = (q_x, q_y)$$

$$m = \left(\frac{a_x + b_x}{2}, \frac{a_y + b_y}{2}\right)$$

$$\text{IsKiller}(a, b, q) = \text{sign}(\|m - p\|^2 - \|m - r\|^2)$$

$$= \text{sign}(p_x r_x + q_x r_x - p_x q_x - r_x^2)$$

$$p_y r_y + q_y r_y - p_y q_y - r_y^2)$$
Analyzing Precision [LPT99]

E.g., Precision of testing if a point is inside a circle

\[U = \{1, \ldots, U\}^2 \]
\[a, b, q \in U \]
\[a = (a_x, a_y) \]
\[b = (b_x, b_y) \]
\[q = (q_x, q_y) \]
\[m = \left(\frac{a_x + b_x}{2}, \frac{a_y + b_y}{2} \right) \]

\[\text{IsKiller}(a, b, q) = \text{sign} \left(\|m - p\|^2 - \|m - r\|^2 \right) \]
\[= \text{sign} \left(p_x r_x + q_x r_x - p_x q_x - r_x^2 \right. \]
\[\left. + p_y r_y + q_y r_y - p_y q_y - r_y^2 \right) \]

\[\text{degree \ 2} \]
Precision of Two Well Known Predicates

Orientation\((a, b, q)\)
degree \(2\)

InCircle\((a, b, c, q)\)
degree \(4\)
Given
sites n sites S

Definition
an edge \overline{pq}
is in the Gabriel graph of S
if the closed disk
centered at the midpoint of \overline{pq}
with diameter $|\overline{pq}|$
contains no points of $S \setminus \{p, q\}$.
Given sites \(n \) sites \(S \)

Definition

an edge \(\overline{pq} \) is in the Gabriel graph of \(S \) if the closed disk centered at the midpoint of \(\overline{pq} \) with diameter \(|\overline{pq}| \) contains no points of \(S \setminus \{p, q\} \).
Proposed by: Gabriel and Sokal [GS69]

Compute Gabriel from Delaunay:
[MS80] $O(n)$ time, degree 6
[L96] $O(n)$ time, degree 2

Directly compute Gabriel graph:
Brute force, $O(n^3)$ time, degree 2
[MV11], $O(n^2)$ time, degree 2
Gabriel Graph

Proposed by: Gabriel and Sokal [GS69]

Compute Gabriel from Delaunay:
[MS80] $O(n)$ time, degree 6
[L96] $O(n)$ time, degree 2

Compute Delaunay, degree 4
Proposed by: Gabriel and Sokal [GS69]

Compute Gabriel from Delaunay: [MS80] $O(n)$ time, degree 6
[L96] $O(n)$ time, degree 2

Compute Delaunay, degree 4

Directly compute Gabriel graph: Brute force, $O(n^3)$ time, degree 2
Gabriel Graph

Proposed by: Gabriel and Sokal [GS69]

Compute Gabriel from Delaunay:
[MS80] $O(n)$ time, degree 6
[L96] $O(n)$ time, degree 2

Compute Delaunay, degree 4

Directly compute Gabriel graph:
Brute force, $O(n^3)$ time, degree 2
[MV11], $O(n^2)$ time, degree 2
Robustness Approaches

Approaches for implementing geometric algorithms with finite precision computer arithmetic:

- Rely on machine precision ($+\epsilon$) [NAT90,LTH86,KMP*08]
- Topological Consistency [S99,S01,SI90,SI92,SII*00,H01]
- Exact Geometric Computation [Y97,C92,ABO*97,BEP*97]
 - Arithmetic Filters [FW93,FW96,BBP01,DP98,DP99]
 - Adaptive Predicates [P92,S97,BF09]
 - Degree-driven algorithm design [L96,LPT99,BP00,BS00,C00,MS01,MS09,CMS09,MS10]
Given
sites \(S = \{s_1, \ldots, s_n\} \)

Arrangement of dual lines \(S^* \) and its trapezoidation
- Time: \(O(n^2) \)
- Space: \(O(n^2) \)
- Precision: degree 2

Gabriel graph
- Time: \(O(n^2) \)
- Space: \(O(n^2) \)
- Precision: degree 2
Point/Line Duality [dBCvKO08]

Primal
Point \(p = (p_x, p_y) \)
Line \(\ell = (y = \ell_m x + \ell_b) \)
Set of points \(S = \{ s_1, \ldots, s_n \} \)

Dual
Point \(p^\ast = (y = p_x x - p_y) \)
Line \(\ell^\ast = (\ell_m, -\ell_b) \)
Set of lines \(S^\ast = \{ s_1^\ast, \ldots, s_n^\ast \} \)
Given
dual lines $a^*, b^*, c^*,$ and d^*

Determine
if the x-coordinate of
$a^* \cap b^*$ is left of $c^* \cap d^*$.

$x\text{IntersectonOrder}(a^*, b^*, c^*, d^*)$
xIntersectonOrder\((a^*, b^*, c^*, d^*)\)

Given
points \(a, b, c,\) and \(d\)

Determine
if the slope of \(ab\) is less than \(cd\).

\[\text{xIntersectonOrder}(a^*, b^*, c^*, d^*)\]
xIntersectonOrder(a^*, b^*, c^*, d^*)

Given

points a, b, c, and d

Determine

if the slope of \overline{ab} is less than \overline{cd}.

\[
xIntersectonOrder(a^*, b^*, c^*, d^*) = \text{sign} \left(\frac{a_y - b_y}{a_x - b_x} - \frac{c_y - d_y}{c_x - d_x} \right)
\]
Given points \(a, b, c, \) and \(d \)

Determine if the slope of \(\overline{ab} \) is less than \(\overline{cd} \).

\[
x\text{IntersectonOrder}(a^*, b^*, c^*, d^*) = \text{sign}\left(\frac{a_y-b_y}{a_x-b_x} - \frac{c_y-d_y}{c_x-d_x}\right)
\]

\(\text{degree } 2 \)
Arrangement

For n dual lines S^*, we can compute the arrangement of S^* and its trapezoidation in $O(n^2)$ time and degree 2.
Circular Orderings

Given the arrangement of S^*, for site $s \in S$, we can compute the circular ordering of the sites in $S \setminus \{s\}$ around s in $O(n)$ time and degree \circledast.

David L. Millman, Vishal Verma
Gabriel Graph with Double Precision
Lemma

If \(s_j \) lies in \(D(s, s_i) \) and \(\forall k \in \{i, \ldots, j-1\} \) \(s_k \in D(s, s_i) \), then \(s_j \) also lies in \(D(s, s_k) \), \(\forall k \in \{i, \ldots, j-1\} \).
Lemma

If s_j lies in $D_l(s, s_i)$ and $\forall k \in \{i, \ldots, j - 1\}$ $s_k \in D_l(s, s_i)$, then s_j also lies in $D_l(s, s_k)$, $\forall k \in \{i, \ldots, j - 1\}$.
Determine Edges

Given the circular ordering of $S\{s\}$ around s, in $O(n)$ time and degree 2, we can find the Gabriel edges incident at s.
Determine Edges
Given the circular ordering of \(S = \{ s \} \) around \(s \), in \(O(n) \) time and degree 2, we can find the Gabriel edges incident at \(s \).
Circular Ordering Around a Site to Gabriel Edges

Given the circular ordering of $S\{s\}$ around s, in $O(n)$ time and degree 2⃝, we can find the Gabriel edges incident at s.

David L. Millman, Vishal Verma

Gabriel Graph with Double Precision
Circular Ordering Around a Site to Gabriel Edges

Determine Edges

Given the circular ordering of $S = \{s\}$ around s, in $O(n)$ time and degree 2, we can find the Gabriel edges incident at s.

![Diagram showing Gabriel edges](image-url)
Circular Ordering Around a Site to Gabriel Edges

Determine Edges

Given the circular ordering of \(S = \{s\} \) around \(s \), in \(O(n) \) time and degree 2, we can find the Gabriel edges incident at \(s \).
Circular Ordering Around a Site to Gabriel Edges

Determine Edges

Given the circular ordering of $S \{s\}$ around s, in $O(n)$ time and degree 2, we can find the Gabriel edges incident at s.

David L. Millman, Vishal Verma
Gabriel Graph with Double Precision
Circular Ordering Around a Site to Gabriel Edges

Determine Edges

Given the circular ordering of \(S \) around \(s \), in \(O(n) \) time and degree 2⃝, we can find the Gabriel edges incident at \(s \).
Circular Ordering Around a Site to Gabriel Edges

Determine Edges

Given the circular ordering of \(\{ s \} \) around \(s \), in \(O(n) \) time and degree 2, we can find the Gabriel edges incident at \(s \).
Circular Ordering Around a Site to Gabriel Edges

Determine Edges

Given the circular ordering of $S\{s\}$ around s, in $O(n)$ time and degree 2, we can find the Gabriel edges incident at s.

David L. Millman, Vishal Verma
Circular Ordering Around a Site to Gabriel Edges

Determine Edges

Given the circular ordering of \(S \{s\} \) around \(s \), in \(O(n) \) time and degree 2, we can find the Gabriel edges incident at \(s \).

David L. Millman, Vishal Verma

Gabriel Graph with Double Precision
Circular Ordering Around a Site to Gabriel Edges

Determine Edges

Given the circular ordering of $S\{s\}$ around s, in $O(n)$ time and degree 2, we can find the Gabriel edges incident at s.

David L. Millman, Vishal Verma

Gabriel Graph with Double Precision
Determine Edges

Given the circular ordering of $S \setminus \{s\}$ around s, in $O(n)$ time and degree 2, we can find the Gabriel edges incident at s.

Circular Ordering Around a Site to Gabriel Edges
Algorithm for Computing the Gabriel Graph

Given
sites \(n \) sites \(S \)

Compute
Gabriel graph of \(S \)

1. Compute arrangement \(S^* \)

2. For each \(s \in S \)
 1. compute the circular ordering of \(S \setminus s \) around \(s \).
 2. determine the set of Gabriel edges in which \(s \) is incident.
Given
sites \(S = \{s_1, \ldots, s_n\} \)

Arrangement of dual lines \(S^* \) and its trapezoidation
- Time: \(O(n^2) \)
- Space: \(O(n^2) \)
- Precision: degree 2

Gabriel graph
- Time: \(O(n^2) \)
- Space: \(O(n^2) \)
- Precision: degree 2
Open problems

Can we...

- compute the Gabriel graph with sub-quadratic time and space in degree 2?
- compute a triangulation “close” to Delaunay?
- treat precision as a limited resource (like time and space) when solving other algorithmic problems?
Open problems

Can we...

- compute the Gabriel graph with sub-quadratic time and space in degree 2?
- compute a triangulation “close” to Delaunay?
- treat precision as a limited resource (like time and space) when solving other algorithmic problems?

Thank you!

Contact:
Dave Millman
dave@cs.unc.edu
http://cs.unc.edu/~dave