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Abstract. Internet traffic is composed of flows, sets of packets being trans-
ferred from one computer to another. Some visualizations for understanding
the set of flows at a busy internet link are developed. These show graphically
that the set of flows is dominated by a relatively few “elephants”, and a very
large number of “mice”. It also becomes clear that “representative sampling”
from heavy tail distributions is a challenging task.
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1 Introduction

Internet traffic is composed of a large number of small “packets” flowing
from one computer to another. These packets are organized into flows that
represent blocks of data, such as file transfers. In this paper, a visualization is
developed for studying the nature of the population of flows passing through
a given internet link.
An example of the visualization is shown in Figure 1. The behavior of flows

over time is shown by representing each flow as a horizontal line segment,
whose left end point is the start time of the flow (i.e. the time of the first
packet), and whose right endpoint is the end time of the flow (the time of the
last packet). Thus each line segment represents the full time period where
the flow is “on”. For convenient visual separation of a reasonable number of
flows, a random height is added. This follows the spirit of the jitter plot idea
of Tukey and Tukey (1990). See also pages 121-122 of Cleveland (1993).
An interesting feature of the flows shown in Figure 1 is a very large number

of very short flows, and a few very long flows. The terminology “mice and
elephants” provides a useful metaphor for understanding this characteristic
of internet traffic: there are relatively few elephants, and a large number of
mice. Another way of thinking of mice and elephants is that the distribution
of lengths of the flows is heavy tailed.
The data shown in Figure 1 are HTTP (Web browsing) response times.

They were collected during a four hour period on a Thursday afternoon in
April of 2001. This time period was chosen to represent a “heavy traffic”
time. An HTTP response time is defined here as the time between the first
and last packets of a single HTTP data transfer. For more details on the data
collection and processing methods, see Smith, Hernandez-Campos, Jeffay and
Ott (2001).
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Fig. 1. Mice and Elephant display, showing HTTP flows. This is a random sample
of 5000 out of 104,839 flows overlapping a 3.75 minute time interval.

During the four hour time window, there were 6,870,022 total HTTP re-
sponses. If all of these were shown in Figure 1, then the image would be
useless, because it would be totally black. Sub-sampling is a natural ap-
proach to this problem.
One way to sub-sample is to reduce the time window. This is done in

Figure 1, where only flows which spend at least part of their life times in
the shown interval are considered. The interval has length 3.75 minutes =
4 hours / 43 (the reason for this choice will become apparent in Section 2),
and is centered in the full 4 hour range of the data. The vertical dashed
bars indicate the window of a further time restriction, that will be discussed
in Section 2. When the full 6,870,022 responses were sub-sampled to the
window of Figure 1, there were still 104,839 left. This is still far too many
to show all of the mice and elephants, without heavy overplotting.
Another approach to reducing the number that are shown is random sam-

pling. This was also done in Figure 1, where only a random sample of 5000
is shown. The number 5000 was the result of some experimentation with
the goal of pleasing visual effect. Larger numbers made some of these plots
“too busy”, and a smaller number seemed inefficient in terms of not showing
enough of the data.
Random sampling has very broad appeal as a means of finding a “repre-

sentative subsample”. Indeed this notion lies at the heart of a large number
of statistical procedures in routine use. However, random sampling has some
very serious drawbacks in the present case, because the distribution of lengths
is heavy tailed. In particular, since there are relatively quite few elephants,
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their chance of appearing in the random sample can be quite negligible, which
means they may not be properly represented in the visualization. This prob-
lem is investigated in Section 2. The problem becomes very clear from looking
across a range of different “scales” (time windows). An alternative visual-
ization is discussed in Section 2.
This mice and elephants visualization also provides visual insight into the

causes of the interesting and compelling theory that has been built up to ex-
plain phenomena that have been observed in internet traffic. This is discussed
in Section 3.

2 Deeper Look at Sampling Issues

In this section, sampling issues are carefully investigated. The key insights
come from the construction of mice and elephant plots over a wide range of
different time scales. An interesting sequence of views of this type may be
found following the link “Zoomed-in Views of Mice & Elephants in Thursday
Afternoon Trace” from the web page

http://www-dirt.cs.unc.edu/marron/MiceElephants/.

To save space, only a carefully selected few are shown as figures in this paper.
Figure 2 show the mice and elephants view over the full four hour time

interval. This can be thought of as “zooming out in time scale”. Once again
only a random sample of 5000 is displayed (to avoid massive overplotting).
The parallel bars near the center show the 3.75 minute time interval that is
used in Figure 1 (thus giving a visual impression of the amount of “zooming
out” that has been done). Figure 2 gives the impression that the traffic
is all mice, and there are no elephants, which is clearly different from the
impression of Figure 1. In particular, Figure 1 shows several elephants which
span the full time interval, while none of these are visible over the same time
interval in Figure 2.
The differences between Figures 1 and 2 are explained by the sampling

process. In particular, as noted by a number of authors (referenced in Sec-
tion 3), this distribution is quite “heavy tailed”, which means that one may
expect some very large values, but there will be only a very few of them. In
particular, a careful look showed that there were 116 flows (in the full data
set), that covered the full time range in Figure 1. Several of these show up in
Figure 1, because there 5000 flows were randomly selected from the 104,839
that intersected that time interval, i.e. the subsample was about 5% of the
total. Hence it is not surprising that about 6 of the 116 flows that cross the
full interval appear in Figure 1. But the sampling situation is far different
in Figure 1, where the 5000 flows were drawn from the full population of
6,870,022, i.e. the subsample is less than 0.1% of the total. Hence it is not
surprising that none of the 116 flows that completely cross the time interval
of Figure 1, appear in Figure 2.
Figure 3 show the effect of “zooming in” (from the view shown in Figure 1)

with respect to the time scale. Here the time interval is reduced to only the
rather short 14 second interval between the vertical dashed bars in Figure 1.
Once again, the view is radically different from that shown in Figure 1. This
time the visual impression is of far more elephants. This view even conveys
the impression that mice are a fairly negligible component of the population!
As above, this mistaken impression of the full population is the result of

random sampling. This time 5000 flows were randomly selected from the
6910 that intersect this time interval, i.e. about 83%. This time interval is
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Fig. 2.Mice and Elephant display, over a long 4 hour time interval. This is a random
sample of 5000 out of 6,870,022 total flows.

completely crossed by 163 flows (this might be viewed as surprisingly few,
since 116 flows crossed the 16 times longer interval shown in Figure 1). Since
most of these appear in the sample shown, the visual impression is dominated
by these elephants. Indeed a reasonable opinion is that overplotting has
occurred in Figure 3.
Figure 4 shows a sense in which Figure 3 is rather representative of the

data. In Figure the full 4 hour time interval is shown, but instead of random
sampling, the longest 5000 flows are shown. This is called the corresponding
“elephant plot”. This provides another way of seeing that this distribution
of flow lengths is very heavy tailed. As noted above, this is less than 0.1%
of the total data, and yet the smallest flows shown appear as dots (no visible
length at this time scale). This means that the other 99.9% of the data would
also appear as dots (if they could all be usefully plotted).
It is also interesting to view modifications of Figure 4, which zoom through

smaller values of the threshold k, where the largest k flows are shown (thus
k = 5000 is shown in Figure 4). This can be viewed following the link
“Elephants-only Views for Thursday Afternoon Trace” from the above web
page.
The Thursday afternoon time period shown here was chosen to represent

a peak traffic time. Similar plots were also constructed for the off peak time
period of Sunday morning.. The mice and elephants plots, as in Figures 1, 2
and 3, can be found following the link “Zoomed-in Views of Mice & Elephants
in Sunday Morning Trace”, and some elephant plots, as in Figure 4, can be
found following the link “Elephants-only Views for Sunday Morning Trace”
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Fig. 3. Mice and Elephant display, showing HTTP flows over a very narrow time
window. This is a random sample of 5000 out of 6910 flows overlapping a 14 second
time intervals.

from the above web page.
A clear lesson is that random sampling is not an effective method for choos-

ing a “representative sample” for internet data, or indeed data from heavy
tail distributions that appear elsewhere, e.g. financial and environmental con-
texts. This is an interesting exception to the usual lesson taught in elemen-
tary statistics courses, in the special case of heavy tail distributions. An
interesting open problem is how can a representative sample be chosen, for
this type of visual impression, in heavy tailed contexts? There are related
open sub-sampling problems (with perhaps different answers), for other pur-
poses. For example, internet traffic data sets in generally tend to be large,
and often need to be subsampled to efficiently store for later analysis and
comparison. How can such a sample be made “representative”?

3 Related Theory

The mice and elephants plots presented in this paper provide visual insight
into some important theoretical results often applied to Internet traffic data.
The main idea is that heavy tailed flow length distributions give rise to long
range dependence in the aggregated traffic.
The heavy tail of the flow length distribution has been observed by Garrett

and Willinger (1994), Paxson (1994), Crovella and Bestavros (1996). See
Downey (2001) for an alternative view, and some apparently contradictory
ideas. The controversy raised by Downey was resolved by Gong, Liu, Misra
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Fig. 4. Elephants display, showing the 5000 largest HTTP flows, over the longer 4
hour time window.

and Towsley (2001) and by Hernandez-Campos, Marron, Samorodnitsky and
Smith (2002). The latter paper is a particularly detailed study, with more
than usual attention paid to statistical issues, such as careful accounting for
sampling variability.
Beautiful mathematics showing how heavy tailed flow lengths lead to long

range dependence can be found in Mandelbrot (1969), Cox, D. R. (1984),
Taqqu and Levy (1986), Leland, Taqqu, Willinger and Wilson (1994), Crov-
ella and Bestavros (1996), Heath, Resnick and Samorodnitsky (1998), Resnick
and Samorodnitsky (1999). A recent and general version of this can be found
in Hernandez-Campos, Marron, Samorodnitsky and Smith (2002).
Plots such as Figure 1 give a clear intuitive view of how a few elephants

create long range dependence. The corresponding short range situation is
illustrated in Figure 5. Figure 5 is based upon a simulated set of flows,
whose starting times are the same as those in the original full data set
(n = 6, 870, 022). However, the lengths of the flows are simulated from
an exponential distribution, where the mean is taken to be the sample mean
from the mean lengths. The exponential flow length distribution is the foun-
dation of classical queueing theory, and is well known to result in short range
dependent aggregated traffic. Although the mean flow length is the same
as in Figure 1, the visual impression of the flows in Figure 5 is radically
different: there are no elephants. How can the mean lengths be the same
when there are no elephants? This happens because the mice in Figure 1 are
smaller than those in Figure 5. This is not visible here, but can be seen by
zooming in further, follow the link “Zoomed-in Views of Mice & Elephants in
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Fig. 5. Mice and Elephant display, showing simulated Exponentail (with the same
mean) HTTP flows over the same time window as Figure 1.

Synthetic Version of Thursday Afternoon Trace” from the above web page.
Because there are no elephants in Figure 5, when the traffic is aggregated

into bins, the correlations between the counts fall off quickly. However, when
a few elephants, such as shown in Figure 1 enter the picture, the correlations
between bin counts die off far more slowly, creating long range dependence.
An aspect of the distribution of flows not studied here is the distribution of

the flow starting times. Recent analysis of these may be found in Cleveland,
Lin and Sun (2000), Nuzman, Saniee, Sweldens and Weiss (2002) and Marron,
Hernandez-Campos and Smith (2001).
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