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Abstract

This paper is part of a larger paper that studies tails of
the duration distribution of Internet data flows, and their
“heaviness”. Data analysis motivates the concepts of mod-
erate, far and extreme tails for understanding the richness
of information available in the data. The analysis also mo-
tivates a notion of “variable tail index”, which leads to a
generalization of existing theory for heavy tail durations
leading to long range dependence. The emphasis here is
on understanding heavy tails.

1. Introduction

Mathematical and simulation modelling of Internet traf-
fic, even at a single location, has proven to be a surpris-
ingly complex task, which has been surrounded by substan-
tial controversy. A simple view of the traffic, at any given
point, is that it is an aggregation of “flows”, where each flow
is a set of packets with shared source and destination.

The first models for aggregated Internet traffic were
based on standard queueing theory ideas, using the expo-
nential distribution to model flow durations. These models
have the advantage of being tractable for standard time se-
ries analysis. But a number of studies of Internet traffic have
suggested that Internet flows often have heavy tailed du-
ration distributions, and that the aggregated traffic exhibits
long range dependence, see e.g. [16, 8, 17, 4]. An elegant
mathematical theory, see e.g. [15, 3, 21, 12], provides a
convincing connection between these phenomena.

A convenient conceptual view of this behavior is given
in Figure 1. Individual flows through a link are represented
as horizontal lines (which start at the time of the first packet,
and end at the last). A random vertical height (“jittering”,
see e.g. pages 121-122 of [2]) is used for convenient visual

separation. Their vertical aggregation constitutes the full
traffic passing through the link. The time durations (i.e.,
lengths) of the flows shown in Figure 1 appear to follow a
“heavy tailed” distribution, in that there are a few very long
flows (sometimes termed “elephants”), and also many very
short flows (sometimes termed “mice”). If these durations
were exponentially distributed with the same mean, then
there would be far more “medium size” flows, as shown in
Figure 2 of [11]. These elephants cause the aggregated flow
to be long range dependent. In particular, even at rather
widely separated time points, there will be some common
elephants, resulting in correlation between the total traffic
at those time points. The above theory is a precise mathe-
matical quantification of this concept.

The data shown in Figure 1 were gathered from IP (Inter-
net Protocol) packet headers, during approximately 40 min-
utes on a Sunday morning in 2000, at the main Internet link
of the University of North Carolina, Chapel Hill. This time
period was chosen as being “off peak”, having relatively
light traffic. An IP “flow” is defined here as the time pe-
riod between the first and last packets transferred between a
given pair of IP sending and receiving addresses. For more
details on the data collection and processing methods, see
[20]. To eliminate visual boundary effects, only those flows
which cross a time window of the central 80 % are con-
sidered here. There were 115,548 such flows, and to avoid
overplotting, only a random sample of 1,000 is shown

While the above appealing framework of heavy tail dura-
tion distributions leading to long range dependence appears
complete, more recent work has questioned both the heavy
tail duration distributions, see [6, 9], and also the long range
dependence, see [1]. The controversy surrounding the first
question is the main topic of the present paper. The sec-
ond question has been resolved by appropriate visualization
across a wide range of “scales” by [10].

Downey suggests in [6] that the light tailed log-normal
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Figure 1. Mice and elephants visualization of IP
flows. Shows how heavy tail durations can lead to
long range dependence of aggregated traffic.

distribution may give a better fit to many duration distri-
butions than the heavy tailed Pareto. A naive view sug-
gests that this is inconsistent with the above theory, because
heavy tails appear to be critical. However, Hanning et al.
show in [11] that contrary to previous notions, log-normal
durations are not contradictory to long range dependence.

Gong et al. present in [9] a number of important ideas
on this topic. First, they point out that one can never com-
pletely determine “tail behavior” (in the classical asymp-
totic sense) of a distribution, based only on data. For exam-
ple, each data set always has a largest data point, and the
underlying distributional behavior beyond that point (and
frequently anywhere within an order of magnitude or more
of that point) cannot be reliably determined from the data.
This concept motivates their important idea that distribu-
tional properties should really be investigated only over “ap-
propriate ranges” of the data. In particular, any data set will
contain very rich information in some regions (e.g., in the
“main body” of the distribution), and very sparse informa-
tion in others (e.g., in the “tails”).

A convincing and useful solution to the statistical prob-
lem of understanding the richness of distributional informa-
tion from a set of data is the first major goal of this pa-
per. Useful visual tools are applied to Internet traffic data in
Section 2, which give a clear understanding of which distri-
butional aspects are “important underlying structure”, and
which are “due to sampling variability”. A data set whose
size (number of flows well into the millions) is much larger
than many of those that have appeared in published papers
is analyzed. A naive view of such a large data set is “now
we know the tail”. But more careful consideration from the
above perspective suggests that the only effect of a larger
sample is that the region where we have a clear understand-
ing of distributional properties becomes larger (but there is
still a region of uncertainty far enough out in the tails).

A major result of the analysis of Section 2 is that the tail
of the distribution has some strong “wobbles”, of a type not
present in the tails of classical distributions such as the log-
normal or Pareto. It is tempting to attribute these wobbles
to sampling variability. However, the statistical visualiza-
tion suggests this is false. Deeper confirmation comes from
repeating the analysis for a number of additional data sets.
These not only exhibit the same amount of wobbles, but
even wobble exactly the same way in the same places. This
confirms the idea that these wobbles are important underly-
ing distributional phenomena, and not sampling artifacts.

What causes the wobbles? This question is considered
in Section 3. Several previously suggested distributional
concepts are combined to find models which do fit the data
(including wobbles) to the degree possible with the infor-
mation at hand, in an intuitively meaningful way. In par-
ticular it is seen that mixtures of either 3 log-normals or
else 3 double Pareto log-normals give an acceptable fit.
From a classical asymptotic tail index viewpoint, these two
distributions can be viewed as contradictory, since a mix-
ture of log-normals is “light tailed” (in particular having all
moments finite), while the fit double Pareto log-normal is
“heavy tailed” (with an infinite variance, i.e., second mo-
ment). This is another example of the interesting “distribu-
tional fragility” ideas raised by Gong et al. who made the
very important observation in [9] that frequently a variety
of models can give “good fit in the tails” (precisely because
the distributional information is very sparse there). Based
on the insights about variability that follow from our graph-
ics, this is very consistent, and highlights the fact that one
can never use data alone to distinguish between such mod-
els. Instead of debating which model is “right”, it makes
more sense to think about the “collection of models that are
consistent”, and what can be learned from them as a whole.
Consequences which hold for all of the reasonable models
then seem the most compelling.

A deep and important issue of this type is: What is the
impact of these statistically significant wobbles in the tail of
the duration distribution on the above elegant theory, sug-
gesting that heavy tails of the duration distribution cause
long range dependence? Downey provided in [5] interest-
ing statistical evidence of these wobbles, through an analy-
sis based on the concept of “tail index”. The classical def-
inition of “tail index”, from extreme value theory (see e.g.
Chapter 1 of [19] for an introduction) is the asymptotic rate
of decay of the (underlying theoretical) cumulative distri-
bution function. Downey analyzes an empirical version of
this, and shows that it often does not stabilize as one moves
out in the tail (completely consistent with the “wobbliness”
discussed above), and concludes that duration distributions
are “not heavy tailed”. He goes on to suggest that another
cause needs to be found for the observed long range depen-
dence in aggregated Internet traffic.



Another goal of the present paper is a deeper look at
these issues, from the above viewpoint of “understanding
tail behavior in various regions, with attention paid to sam-
pling variability”. This motivates refining the notion of
“tail” to cover three important cases. The part of the tail
that is beyond the last data point (thus with no information
at all in the data) is called the “extreme tail”. The part of
the tail where there is some data present, but not enough
to reliably understand distributional properties is called the
“far tail”. The part of the tail where the distributional in-
formation in the data is “rich” is called the “moderate tail”.
These concepts are heuristic, but they provide the needed
framework for understanding the analysis in Section 2.

2. Duration distribution analysis

In this section a different data set from that of Fig-
ure 1 is analyzed. This time HTTP responses, gathered
from the UNC main link during April of 2001 are consid-
ered. “Flow” is now defined to be the set of packets as-
sociated with a single HTTP data transfer, and “flow du-
ration” is the time between the first and last packets. To
allow study of diurnal effects, packets were gathered over
21 four hour blocks (seven days, three different periods on
each day). The total number of HTTP flows over the four
hour blocks ranged from ˜1 million (weekend mornings)
to ˜7 million (weekday afternoons). The HTTP duration
distributions are analyzed separately for each of these 21
time blocks. The 21 analyses were surprisingly similar, so
to save space, only the results for Thursday morning are
shown for most purposes. However the other analyses can
be conveniently viewed in files indicated below, in the web
page http://www.cs.unc.edu/Research/dirt/
proj/marron/VarHeavyTails/.

2.1. Pareto tail fitting

Figure 2 shows how well the Thursday morning HTTP
duration distribution (based on ��� �������
	������
�

data points)
is fit by the standard Pareto distribution. The visual device
used here is called a Q-Q plot, because it allows graphical
comparison of the quantiles of a “theoretical Pareto distri-
bution” with the quantiles of the data set. In particular the
solid curve is constructed by plotting theoretical quantiles
on the horizontal axis against the sorted data values on the
vertical axis (on a log-log scale, to avoid a few large values
dominating the picture). If the data quantiles were the same
as the theoretical quantiles (this should approximately hap-
pen when the fit is “good”), the solid curve should follow
the 45 degree line (dashed). See [7] for a good overview of
Q-Q plots, and a variety of related statistical tools.

For better insight into which part of each distribution is
represented by which part of the solid curve, labelled plus
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Figure 2. Pareto Q-Q plot (solid) for the Thursday
morning response duration data. Compare to 45
degree line (dashed) and simulations (dotted).

signs are shown for some selected quantiles. One reflec-
tion of the heavy tail nature of these data is the fact that
the 0.99 quantile (only 1 percent of the data are larger than
this) appears near the middle of this display. This shows
that there are very few “elephants” (the data on the upper
right), and a very large number of “mice” (the bulk of the
data on the lower left). The particular Pareto distribution
shown here was chosen by quantile matching. In particu-
lar the two Pareto parameters  and � were chosen to make
the theoretical and empirical 0.8 and 0.99 quantiles (shown
as small circles) the same. Thus the solid curve crosses the
dashed line at these quantiles.

The Pareto distribution, i.e., the closeness of the solid
line to the dashed curve, might be deemed “acceptable”.
There is some “wobbling”, which one might expect to be
due to the natural sampling variability. On the other hand,
the sample size is quite large, so maybe the amount of wob-
bling is statistically significantly greater than could be ex-
pected from truly Pareto data. The dotted curves provide a
visual device for simple understanding of this issue. They
are an overlay of 100 simulations of data sets of the same
size, ��� ��������	����
�
�

, from the same Pareto distribution.
If the data were truly Pareto, then the wobbles of the solid
curve would lie mostly within the dotted envelope. This is
roughly true for the very largest data values, but generally
the wobbles veer far outside of the dotted envelope (which
for much of the range of the data is so close to the dashed
line that it disappears underneath), showing this difference
is statistically significant, and thus not due to the natural
sampling variation. A clear conclusion is that the Pareto
distribution is not a precise fit to these data (not surpris-
ing with a sample so large). A similar analysis, with very
similar conclusions, of all 21 time blocks is available in the



above web page.
In addition to allowing conclusions of the above type, the

visualization in Figure 2 also begins to provide an answer
to the question: where do the data provide clear distribu-
tional information? The information is clearly very strong
(in the sense that the dotted envelope is completely under-
neath the dashed curve) up to nearly the 0.9999 quantile
(the point where only 0.01% of the data are larger). This
region includes both the “body of the distribution”, and the
“moderate tail”. Note that this includes HTTP responses of
all sizes up to about 1.2 megabytes (perhaps the term “ele-
phants” can be used for responses that are larger than this,
among the collection of HTTP traffic), and there are about
560 of these among the 5.6 million total responses. For the
top 500 responses distributional information is understand-
ably sparser, but the dotted envelope in Figure 2 suggests
that some useful insights may still be available, even up to
about the 0.99999 quantile (where only the top 50 data val-
ues lie). This region is termed the “far tail” of this distri-
bution. Finally the “extreme tail” is the region larger than
the biggest data point (the right end of the solid curve), 980
megabytes for this data set.

Downey suggests in [6] that the log normal fit may be
expected to be better. A similar analysis to Figure 2 was
performed, with the log-normal replacing the Pareto, but the
results seemed slightly worse. In particular, in addition to
the tail wobbliness observed here, there is also substantial
curvature away from the dashed line. Such a picture is not
included here, because it is tangential to the main points of
this paper, but full results can be viewed at the web page.

2.2. Variable Tail Index

A strength of the Q–Q visualization shown in Figure
2 is that it allows precise comparison to a given distribu-
tion, coupled with immediate understanding of the sampling
variability (shown by the dotted envelope), and thus of the
moderate, far and extreme tails. A weakness of the Q-Q vi-
sualization is that it can only be constructed in the context of
a particular theoretical distribution. An obvious choice for
the theoretical distribution may not be available, especially
to model the “tail wobbles” apparent in Figure 2.

A common alternate visualization of tail behavior in
data, which has the advantage of not being tied to any the-
oretical distribution, is the log log Complementary Cumu-
lative Distribution Function (CCDF) plot, shown in Figure
3, for the same data as in Figure 2. In this view, the sorted
data values (called “empirical quantiles” in Section 2.1, and
appearing on the vertical axis in Figure 2) are plotted on the
horizontal axis, while the corresponding CCDF (an equally
spaced grid, from 0 to 1) is plotted on the vertical axis.

If the data came from a Pareto distribution, the curve in
Figure 3 would be nearly linear, and the slope of the line
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Figure 3. Log log CCDF plot for the Thursday morn-
ing response duration data. Shows wobbly tail,
inconsistent with most standard distributions.

would be the Pareto shape parameter (also called “tail in-
dex”)  . Again for clarity as to where the data lie in this
plot, some selected quantiles are indicated. Matching these
with the corresponding quantiles in Figure 2 shows an inter-
esting correspondence. In particular, the wobbles in Figure
2 correspond directly with the wobbles in Figure 3.

A serious weakness of the graphic in Figure 3 is that
it shows nothing about the important underlying statistical
variability, and thus provides no indication of the boundary
between the moderate and far tails. It is natural to suspect
that the wobbles are just artifacts of the sampling process,
and can be ignored. However, the deep analysis of Figure
2 suggests that these wobbles are systematic, not random,
variation.

A similar analysis, for all 21 time blocks is available at
the same web page This file may be the most interesting of
those posted, because it is rather surprising how similar all
21 of these curves look. In particular they lie nearly on top
of each other, over a surprisingly large range of the data.

Another view of this is given in Figure 4, where the
same log log CCDF plot is shown, for all 21 four hour time
blocks, as an overlay. The similarity of the curves in this
figure provides a very different confirmation of the lesson
learned from Figure 2: the wobbles in the tail are system-
atic, not due to sampling variability. This time the variabil-
ity is studied by replicating the experiment over some dif-
ferent time blocks. One goal of this study was to understand
diurnal (i.e., time of day and day of week) effects. Such ef-
fects have a large impact on total traffic and system usage,
driven by easily understandable differences in user behav-
ior. We expected this obviously differing user behavior to
also have a major impact on response size distributions (e.g.,
during peak times, more “business” web browsing, with stu-
dents and faculty looking for educational resources, staff
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Figure 4. Log log CCDF plots for response dura-
tion data for all 21 time blocks. Note very similar
pattern, showing “wobbles” are not sampling arti-
facts.

browsing e-commerce sites etc., with more multimedia rich
recreational browsing being done at off peak times) Thus we
found the constancy of distribution over time blocks quite
surprising.

The striking similarity of the wobbles shown in Figure
4 suggests that it is worth trying to understand and perhaps
to model them. This is done in Section 3, where it is seen
that mixtures, either of three log-normal or of three dou-
ble Pareto log-normal distributions provide a good fit. The
mixture components are then used to cast light on likely
phenomena for generation of the wobbles.

In the second part of the companion paper, [14], it is seen
that, as noted in [5] the log log CCDF is also very useful for
understanding “effective tail index”. In particular, the slope
of the curve in Figure 3 can be taken as a notion of “effective
tail index” (multiplied by -1). See Section 3 of [14] for more
details and some deep theoretical implications.

3. Improved distribution modelling

Figures 2 and 4 provide a strong suggestion that the wob-
bles in the tail of the distribution represent important under-
lying structure. In this section, that structure is modeled,
which provides a vehicle for potential explanations. Section
3 of [9] contains a good overview of possible mechanisms
for generation of duration distributions of the type observed
above.

Downey presented in [6] some attractive arguments for
why distributions of file sizes could be expected to be log-
normal. The main idea is that most files are modifications
of other files, and that such modifications are often effec-
tively viewed as “multiplicative changes” in the file size.

Aggregation of a sequence of independent changes of this
type may result in a multiplicative central limit theorem,
thus yielding a log-normal distribution. While Downey was
working explicitly with file sizes, such mechanisms seem to
be at play with response size distributions as well.

Reed presents in [18] the double Pareto log-normal dis-
tribution, which is the product of a double Pareto random
variable (having density proportional to ��� � �

�
for �����

and to �	�


�
�

for ���� ) with an independent lognormal
random variable. This distribution can be viewed as extend-
ing Downey’s ideas by incorporating an independent expo-
nential number of random shocks. Allowing the number
of multiplicative shocks to be random not only seems a lit-
tle more realistic, it has the large advantage of yielding a
Pareto-like polynomial tail of the distribution. This feature
is quite interesting, especially in view of Figure 2, where it
is seen that the Pareto gives a fit to the actual response size
distribution that is not completely unreasonable.

Figure 5 assesses the goodness of fit of the double Pareto
log-normal distribution, to the data shown in Figures 2 and
3. This time the view is again the log log CCDF, so the
solid curve is the same as in Figure 3. The dashed curve
shows the log log CCDF for a double Pareto log-normal
distribution with parameters chosen for good visual im-
pression. Some attempts at maximum likelihood estima-
tion failed, perhaps because the parameters are nearly not
identifiable (observed during the visual fitting process), or
because there are multiple local solutions generated by the
wobbles. To visually reflect the level of sampling variabil-
ity, once again 100 simulated data sets, also of the same
size ��������������������� , were drawn, and the resulting log log
CCDFs are also plotted. In the same spirit as Figure 2, the
dotted envelope gives easy visual insight into the separation
between the moderate and far tails, i.e., where the distribu-
tional information in the data is rich, and where it is sparse.

The dashed curve in Figure 5 is nearly linear over much
of its range, showing that its tail corresponds closely to that
of a Pareto (which is exactly linear). This property is not
shared by the log-normal, although it can hold approxi-
mately over a quite wide range of quantiles, which drives
the results of [11]. This asymptotic, i.e., extreme tail, con-
vergence of the double Pareto log-normal log log CCDF to
linear may be a conceptual advantage over the log-normal.

The dotted envelope in Figure 5 shows that while the
double Pareto log-normal seems to head globally in the right
direction, it is still far from a “good fit” (which happens
when the solid curve lies mostly in the dotted envelope). As
observed in Section 2, all of the departures are caused by
wobbles in the tail of the distribution of the response size
data, and happen in the moderate tail.

The distributions considered so far do not have the flex-
ibility to capture the wobbles, because their tails are inher-
ently smooth. While there are many ways to generate prob-
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Figure 5. Log log CCDF plot for the Thursday morn-
ing HHTP response duration data, together a visu-
ally fit double Pareto log-normal (dashed curve).

ability distributions with wobbly tails (e.g., by using “piece-
wise” approaches), the most intuitively appealing is mixture
modelling. Mixture models arise very naturally in the con-
text of a population that is composed of several subpopu-
lations. Wobbles of the type observed above result when
these subpopulations have very different distributions.

Figure 6 shows the result of fitting a mixture of three
double Pareto log-normal distributions to the same response
size data set as above. The format is the same as in Figure
5. A mixture of two was able to explain a large share of the
wobbliness, but not all, so the mixture of three is shown here
(see web page). As noted above, double Pareto log-normal
parameters even for a single population do not appear to
be straightforward to estimate. This problem becomes far
more challenging for mixture models, where estimation is
notoriously slippery, even for mixtures of simple distribu-
tions. Hence the parameters of the dashed fit have again
been tuned for good visual impression (through a painstak-
ing trial and error process). The fit is excellent, and the only
substantial departure is on the lower right, the far tail, where
the dotted envelope reveals that the variability is mostly well
within that expected from the sampling process.

While the fit in Figure 6 looks impressively good (espe-
cially for such a large sample size), it is important to resist
the urge to “conclude that these data come from this model”.
First off, it must be kept in mind that the family of mixture
distributions is extremely broad, and if enough components
are included, almost any distribution can be well approxi-
mated. For example, the visual device of the dotted enve-
lope steers one away from the temptation to add a fourth
mixture component to “explain” another wiggle beyond the
0.99999 quantile. This could be done, but it would be gross
“overfitting”, because that wiggle can not be separated from
the random sampling noise. Second off, it is important to re-
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Figure 6. Log log CCDF plot for the Thursday morn-
ing response duration data, together a visually fit
mixture of 3 double Pareto log-normals.

call the “distributional fragility” ideas of [9], and that there
are likely to be a family of different distributions that fit.

This point is made in Figure 7, which is the same as Fig-
ure 6, except that now a mixture of three log-normals is fit
to the data. As above, a mixture of two log normals was
attempted, but was not satisfactory, (see web page). Again
the population parameters were fit by trial and error.

The fit in Figure 7 is again impressively good. A mi-
nor exception is for the extreme observations in the right
part of the far tail, where the solid curve leaves the dot-
ted envelope. This suggests that the log-normal tail is not
exactly right (which makes intuitive sense when compar-
ing Downey’s conceptual model with Reed’s), but it is very
close, and could clearly be captured by adding just one more
mixture component.

As noted above, these two distributions are quite differ-
ent in terms of classical asymptotic tail behavior. But the
important point is that they are very similar in the moderate
tail, and thus can not be distinguished using only the data.
Hence, several models should be kept in mind for later anal-
ysis, and for simulation.

Models which fit as well as those shown in Figures 6 and
7, should be able to cast new insights in to the phenomena
at hand. This calls for careful consideration of the chosen
parameters. The larger version of this paper, [13], reports
on the numerical values of the parameters of each of the
three log-normal distributions that are mixed to fit the data
in Figure 7. These parameters allow a simple and appealing
explanation of the subpopulations. About 55% of the HTTP
responses come for a population with sizes in the neighbor-
hood of an order of magnitude of � ��� bytes, which could
be tiny layout images and small HTML pages (such as er-
ror status pages and navigation bars in multi-frame pages).
Most of the rest of the traffic has sizes with order of mag-
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Figure 7. Log log CCDF plot for the Thursday morn-
ing response duration data, together a visually fit
mixture of 3 log-normals.

nitude in the neighborhood of � ��� bytes, which perhaps in-
cludes most standard HTML text pages and images. But
there is a significant subpopulation of far larger sizes, with
sizes roughly in the neighborhood of � ��� , that perhaps are
software, multimedia content and PDF documents.

We speculate that within each subpopulation, Downey’s
ideas of multiplicative averaging are indeed generating dis-
tributions similar to the log-normal. But the full distribution
does not look log-normal, because there is not so much av-
eraging occurring that could bridge the subpopulation gap.

The double Pareto log–normal distributions have more
parameters. The numerical values of the parameters used
in Figure 6 are given in [13]. Many of the parameters are
surprisingly similar to the corresponding log-normal param-
eters given above. This is because large tail parameters,
make the Pareto mixture factor close to 1, and thus negligi-
ble, so the distribution is nearly log-normal. Again there is
a strong suggestion that Reed’s ideas of population gener-
ation are working on these subpopulations, but these three
are separated by too many orders of magnitudes for their
differences to be averaged out.

Interesting possibilities for future work include a more
careful identification of the subpopulations, and a study of
how they evolve over time. Also new subpopulations are
likely to appear in the future. Finally it would be of keen
interest to extend this type of analysis to other types of TCP
traffic (only HTTP is studied here), which would likely in-
clude other interesting subpopulations, such as file-sharing
applications.

3.1. Other Data Sources

An important question about the modelling discoveries
made above is: how well do they generalize? In particular,

we have only taken a deep look at HTTP response sizes
from the UNC main link, and these population properties
could be artifacts of only that location.

To study this issue we have applied a similar analysis
to more HTTP response size data sets, derived from the
archives of the National Laboratory for Applied Network
Research (http://www.nlanr.net/). We first ana-
lyzed traces from the University of Auckland, and found
quite similar structure. The trace collection consists of
seven 24-hour long header traces taken at the Internet ac-
cess link of the University of Auckland in mid April, 2001.
We derived a response duration data set following the same
procedure we developed for the UNC traces. Graphics are
not shown here to save space, but they can be found in the
above web page. The lessons from these follow the same
train of thought as above. No single distribution provides
an acceptable fit, but a mixture of three double Pareto log-
Normal distributions gives an excellent fit, using somewhat
different parameters.

To investigate whether the main points also extend be-
yond universities, we next analyzed data from the New
Zealand Internet Exchange (NZIX). At the time of the traffic
capture, NZIX served as a peering point for six telecommu-
nication companies. The traces comprise 6 days of packet
headers collected in July 2000. Again the lessons were very
similar, so it is not worth showing the full analysis here (see
web page for this). This time, the most important result, the
good fit of a mixture of three double Pareto log-Normal dis-
tributions, is shown in Figure 8. Here � � � ����� � ��� HTTP
responses were found in a four hour period between 8 AM
and noon, during April of 2000. The fit is of similar high
quality as that shown for the UNC data in Figures 6 and
7. Hence, the main ideas of this paper appear to carry over
very well to other contexts.

4. Conclusions

The larger paper, [13], from which this was drawn made
two major contributions of interest to the networking com-
munity.

The first contribution (detailed here) was the presenta-
tion of a number of useful techniques for the study of heavy
tailed distributions in network modelling. The concepts of
“extreme”, “far” and “moderate” tail regions facilitate un-
derstanding of how sampling variation affects this mod-
elling. Simulation, combined with appropriate graphical
display, is useful for identification of these regions. Mixture
models provide a natural method for finding interpretable
subpopulations. Mixtures of 3 double Pareto log-normals
accurately model HTTP response sizes.

The second contribution (appearing elsewhere as [14], to
meet the page requirements of these proceedings) was the
generalization of the “classical” theory of heavy tail dura-
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Figure 8. Log log CCDF plot for the Thursday morn-
ing response duration data, together a visually fit
mixture of 3 double Pareto log-normals, for data
from the New Zealand Internet Exchange.

tions leading to long range dependence, in a well motivated
and relevant direction. The data analysis suggested that a
serious gap in the relevance of the classical theory is the as-
sumption of a fixed tail index (central to the usual definition
of “heavy tailed”). This problem was overcome using the
more realistic concept of “variable tail index”, and a more
general theory was established in which this improved no-
tion of “heavy tailed” was shown to still lead to long range
dependence (in terms of polynomial decay of the autoco-
variance function).
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