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Abstract

This paper is part of a larger paper that studies tails of the duration distribution of In-
ternet data flows, and their “heaviness”. Data analysis motivates the concepts of moderate,
far and extreme tails for understanding the richness of information available in the data.
The data analysis also motivates a notion of “variable tail index”, which leads to a gener-
alization of existing theory for heavy tail durations leading to long range dependence. In
this part, the emphasis is on the theoretical implications.

1 Introduction

Mathematical and simulation modelling of Internet traffic, even at a single location, has proven
to be a surprisingly complex task, which has been surrounded by substantial controversy. A
simple view of the traffic, at any given point, is that it is an aggregation of “flows”, where each
flow is a set of packets with shared source and destination.

The first models for aggregated Internet traffic were based on standard queueing theory
ideas, using the exponential distribution to model flow durations. These models have the ad-
vantage of being tractable for standard time series analysis. But a number of studies of Internet
traffic have suggested that Internet flows often have heavy tailed duration distributions, and
that the aggregated traffic exhibits long range dependence, seee.g.Paxson (1994), Garrett and
Willinger (1994), Paxson and Floyd (1995) and Crovella and Bestavros (1996). An elegant
mathematical theory, seee.g. Mandelbrot (1969), Cox (1984), Taqqu and Levy (1986) and
Heath, Resnick and Samorodnitsky (1998), provides a convincing connection between these
phenomena.

A convenient conceptual view of this behavior is given in Figure 1. Individual flows
through a link are represented as horizontal lines (which start at the time of the first packet,
and end at the last). A random vertical height (“jittering”, seee.g.pages 121-122 of Cleveland
1993) is used for convenient visual separation. Their vertical aggregation constitutes the full
traffic passing through the link. The time durations (i.e., lengths) of the flows shown in Figure 1
appear to follow a “heavy tailed” distribution, in that there are a few very long flows (sometimes
termed “elephants”), and also many very small flows (sometimes termed “mice”). If these
durations were exponentially distributed with the same mean, then there would be far more
“medium size” flows, as shown in Figure 2 of Hannig, Marron, Samorodnitsky and Smith
(2001). These elephants cause the aggregated flow to be long range dependent. In particular,
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Figure 1: Mice and elephants visualization of IP flows. Shows how heavy tail durations can
lead to long range dependence of aggregated traffic.

even at rather widely separated time points, there will be some common elephants, resulting
in correlation between the total traffic at those time points. The above theory is a precise
mathematical quantification of this concept.

The data shown in Figure 1 were gathered from IP (Internet Protocol) packet headers,
during approximately 40 minutes on a Sunday morning in 2000, at the main Internet link of the
University of North Carolina, Chapel Hill. This time period was chosen as being “off peak”,
having relatively light traffic. An IP “flow” is defined here as the time period between the first
and last packets transferred between a given pair of IP sending and receiving addresses. For
more details on the data collection and processing methods, see Smith, Hernández-Campos,
Jeffay and Ott (2001). To eliminate visual boundary effects, only those flows which cross a
time window of the central 80 % are considered here. There were 115548 such flows, and to
avoid overplotting only a random sample of 1000 are shown in Figure 1.

While the above appealing framework of heavy tail duration distributions leading to long
range dependence appears complete, more recent work has questioned both the heavy tail du-
ration distributions, see Downey (2000), and Gonget al. (2001) and also the long range depen-
dence, see Cao, Cleveland, Lin and Sun (2001). The controversy surrounding the first question
is the main topic of the present paper. The second question has been resolved by appropriate
visualization across a wide range of “scales” by Hannig, Marron and Riedi (2001).

Downey (2000) suggests that the light tailed log-normal distribution may give a better fit
to many duration distributions than the heavy tailed Pareto. A naive view suggests that this is
inconsistent with the above theory, because heavy tails appear to be critical. However, Hannig,
Marron, Samorodnitsky and Smith (2001) show that contrary to previous notions, log-normal
durations arenot contradictory to long range dependence of the aggregated traffic.

Gonget al. (2001) present a number of important ideas on this topic. First, they point
out that one can never completely determine “tail behavior” (in the classical asymptotic sense)
of a distribution, based only on data. For example, each data set always has a largest data
point, and the underlying distributional behavior beyond that point (and frequently anywhere
within an order of magnitude or more of that point) cannot be reliably determined from the
data. This concept motivates their important idea that distributional properties should really be
investigated only over “appropriate ranges” of the data. In particular, any data set will contain
very rich information in some regions (e.g. in the “main body” of the distribution), and very



sparse information in others (e.g. in the “tails”).
A convincing and useful solution to the statistical problem of understanding the richness of

distributional information from a set of data is provided in the companion paper, Hernández-
Campos,et al. (2002b). Useful visual tools are applied to Internet traffic data in Section 2
(of that paper), which give a clear understanding of which distributional aspects are “important
underlying structure”, and which are “due to sampling variability”. A data set whose size
(number of flows well into the millions) is much larger than many of those that have appeared
in published papers is analyzed. A naive view of such a large data set is “now we know the
tail”. But more careful consideration from the above perspective suggests that the only effect
of a larger sample is that the region where we have a clear understanding of distributional
properties becomes larger (but there is still a region of uncertainty far enough out in the tails).

A major result of the analysis of Section 2, of Hernández-Campos,et al. (2002b), is that
the tail of the distribution has some strong “wobbles”, of a type not present in the tails of
classical distributions such as the log-normal or Pareto. It is tempting to attribute these wobbles
to sampling variability. However, the statistical visualization suggests this is false. Deeper
confirmation comes from repeating the analysis for a number of additional data sets. These
not only exhibit the same amount of wobbles, but evenwobble exactly the same way in the
same places. This confirms the idea that these wobbles are important underlying distributional
phenomena, and not sampling artifacts.

What causes the wobbles? This question is considered in Section 3, of Hernández-Campos,
et al. (2002b). Several previously suggested distributional concepts are combined to find
models which do fit the data (including wobbles) to the degree possible with the information
at hand, in an intuitively meaningful way. In particular it is seen that mixtures of either 3 log-
normals or else 3 double Pareto log-normals give an acceptable fit. From a classical asymptotic
tail index viewpoint, these two distributions can be viewed as contradictory, since a mixture
of log-normals is “light tailed” (in particular having all moments finite), while the fit double
Pareto log-normal is “heavy tailed” (with an infinite variance,i.e., second moment). This is
another example of the interesting “distributional fragility” ideas raised by Gonget al. (2001),
who made the very important observation that frequently a variety of models can give “good fit
in the tails” (precisely because the distributional information is very sparse there). Based on the
insights about variability that follow from our graphics, this is very consistent, and highlights
the fact that one can never use data alone to distinguish between such models. Instead of
debating which model is “right”, it makes more sense to think about the “collection of models
that are consistent”, and what can be learned from them as a whole. Consequences which hold
for all of the reasonable models then seem the most compelling.

A deep and important issue of this type is: What is the impact of these statistically signif-
icant wobbles in the tail of the duration distribution on the above elegant theory, suggesting
that heavy tails of the duration distribution cause long range dependence? Downey (2001)
provided interesting statistical evidence of these wobbles, through an analysis based on the
concept of “tail index”. The classical definition of “tail index”, from extreme value theory (see
e.g. Chapter 1 of Resnick (1987) for an introduction) is the asymptotic rate of decay of the
(underlying theoretical) cumulative distribution function. Downey analyzes an empirical ver-
sion of this, and shows that it often does not stabilize as one moves out in the tail (completely
consistent with the “wobbliness” discussed above), and concludes that duration distributions
are “not heavy tailed”. He goes on to suggest that another cause needs to be found for the
observed long range dependence in aggregated Internet traffic.

Another goal of the present paper is a deeper look at these issues, from the above viewpoint
of “understanding tail behavior in various regions, with attention paid to sampling variability”.



This motivates refining the notion of “tail” to cover three important cases. The part of the
tail that is beyond the last data point (thus with no information at all in the data) is called
the “extreme tail”. The part of the tail where there is some data present, but not enough to
reliably understand distributional properties is called the “far tail”. The part of the tail where
the distributional information in the data is “rich” is called the “moderate tail”. These concepts
are heuristic, so there is no sharp boundary,e.g., between the far and moderate tail, but these
concepts provide the needed framework for understanding the data analysis given in Section 2
of Herńandez-Campos,et al. (2002b).

Another visualization, shown in Section 2, of the present paper is an “effective tail index
plot”, showing that, as observed by Downey (2001), indeed the tail index does not seem to
stabilize as one moves farther out in the tail. This indeed suggests that the simplest models from
extreme value theory are not applicable. But there is a richer tail index theory, based on the
idea of “regular variation”, which allows for wobbliness, as long as the wobbliness diminishes
as one moves out in the tail. This theory is described, and related to the data in Section 3.1,
where it is also seen that tail wobbles in the duration distribution “are somewhat smoothed”
in the autocovariance of the aggregated traffic. This richer extreme value theory allows for
wobbles in the tail of the duration distribution, and also implies long range dependence in the
aggregated traffic (according to the conventional theory).

While a regular variation assumption is consistent with all that is observed in the data,
it is not completely satisfying, because it leans on a type of asymptotics that involves even-
tual stabilization of the tail index (even if the stabilization is “slow”). Worse, it appears to be
ultimately driven by far and extreme tail behavior, where the information in the data is unac-
ceptably sparse. This motivates understanding other ways in which heavy tailed durations can
lead to long range dependence. A key idea here comes from the observation that the “effective
tail index” is “quite often” in a range which is classically associated with “yielding long range
dependence”. While Downey correctly found oscillation, it happens mostly in a range where
any of the observed tail indices would imply long range dependenceif they only stabilized.
This motivates an alternate mathematical approach, where the tail index does not stabilize, but
instead only stays within certain bounds (and perhaps does that only “most of the time”). The
final important contribution of this paper is an enhanced theory which shows such assumptions
can also yield long range dependence. In particular, in Section 3.2, very mild conditions (very
broadly consistent with the data analyzed above) on the duration distribution are presented,
which yield asymptotic behavior (polynomial decay of the autocovariance function) that is
symptomatic of long range dependence.

The main contributions of our larger combined paper, Hernández-Campos, et. al. (2002a),
from the perspective of the networking community are recapped in Section 4.

2 Duration distribution analysis

In this section HTTP responses, gathered from the UNC main link during April of 2001 are
considered. “Flow” is now defined to be the set of packets associated with a single HTTP data
transfer, and “flow duration” is the time between the first and last packets. To allow study of
diurnal effects, packets were gathered over 21 four hour blocks, over each of the 7 days of the
week, and for “morning” (8:00AM-12:00AM), “afternoon” (1:00PM-5:00PM) and “evening”
(7:30PM-11:30PM) periods on each day. The total number of HTTP flows over the four hour
blocks ranged from∼ 1 million (weekend mornings) to∼ 7 million (weekday afternoons).
The HTTP duration distributions are analyzed separately for each of these 21 time blocks.
The 21 analyses were surprisingly similar, so to save space, only the results for Thursday
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Figure 2:Effective Tail Index plots for the Thursday morning HHTP response duration data.
Shows that while the effective tail index does not stabilize, it still“mostly” stays in critical
rangeα ∈ (1, 2).

morning are shown for most purposes. However the other analyses can be conveniently viewed
in files indicated below, in the web directoryhttp://www.cs.unc.edu/Research/
dirt/proj/marron/VarHeavyTails/ .

The striking similarity of the wobbles shown in Figure 4 of Hernández-Campos,et al.
(2002b) suggests that it is worth trying to understand and perhaps to model them. This is done
in Section 3 of that paper, where it is seen that mixtures, either of three log-normal or of three
double Pareto log-normal distributions provide a good fit. The mixture components are then
used to cast light on likely phenomena for generation of the wobbles.

As noted in Downey (2001) the log log CCDF is also very useful for understanding “effec-
tive tail index”. In particular, the slope of the curve in Figure 3 of Hernández-Campos,et al.
(2002b) can be taken as a notion of “effective tail index” (multiplied by -1). However, while
“slope” seems visually clear in graphics like those shown in Figure 3 of that paper, it can be
slippery to properly define and work with. Downey (2001) uses a type of numerical differen-
tiation that gives some useful results, but care and numerical expertise are important here, as
illustrated in Figure 2

The top left panel of Figure 2 shows the same blue curve as in Figure 3 of Hernández-
Campos,et al. (2002b) (but with a different aspect ratio) for easy comparison. A simple way
to find slopes is to take simple difference quotients, shown in red in the lower left panel of
Figure 2. Difference quotients of noisy data can be very unstable, and a rather large number
of them here are actually undefined because of zero denominators. Difference quotients with
a zero denominator (and those smaller than -4) are mapped to -4 in this view. If one is willing
to view the small difference quotients as “noise artifacts”, then most attention should be paid
to the large values. Interpreting the upper edge of the red region as minus the effective local
tail index,α, note that there is an impression of “frequentlyα ∈ (0, 2)”. This range is quite
noteworthy, because it is the classical tail index range of the duration distribution which results



in long range dependence (or even non-stationarity) of the aggregated traffic.
While the red difference quotient analysis shown in the lower left panel of Figure 2 is

suggestive, it is far from conclusive, because it is not clear how many of the difference quotients
are near the upper edge. A more convincing view can be obtained by more careful numerical
differentiation of the blue curve in the top panel, which is roughly similar to smoothing the
red curve. A simple approach is to use more widely spaced points for forming the difference
quotients. This is done in the right panels in Figure 2, where difference quotients are computed
based on an equally spaced grid with widthδ. The values ofδ were carefully chosen to illustrate
the main ideas, which turned out to beδ = 0.3 for the bottom panel andδ = 0.03 for the bottom
panel. In the bottom right panel, the purple version of the effective tail index, computed using
the fairly smallδ = 0.03 smoothed away much of the variability present in the red version in
the bottom left panel, however there is still substantial variability present, suggesting thisδ is
still small. The effective tail index for the smoother purple curve in the top right panel, using
δ = 0.3, now has the noise completely eliminated. The danger of too large aδ is that it will
also smooth away clearly important and systematic changes in the slope,i.e., the effective tail
index. However, observe that the general shape of the effective tail index in the top panel is the
same as that in the bottom panel (modulo the similar downward noise for the bottom panel),
which shows that no strong distortion is present. Thus the purple curve in the top right panel
does a good job of reflecting “effective tail index”.

The first interesting feature of this effective tail indexα is that it wobbles substantially,
with the wobbles following those of the blue curve in the top left panel. In particular the pur-
ple curve is lower where the blue curve is steeper. The second interesting feature is that it
is nearly always in the rangeα ∈ (0, 2), which as noted above is classically associated with
long range dependence. Similar analyses for the other time blocks can be viewed in the file
UNC2001RS1allCCDFSfullcombine.pdf, in the above web directory. The lessons are gener-
ally quite similar. An exception is that in many cases the purple−α curve did not dip below
the threshold at 2, and Thursday morning was chosen for display, because this did happen then,
thus motivating the generality of the theoretical work in Section 3.2.

This view shows clearly that while the effective tail index does not “stabilize” in any mean-
ingful sense, at least over regions where we have useful distributional information, it seems
very likely to generate long range dependence in the aggregated traffic. This idea is backed up
in one way by the results in Section 7 of Gonget al. (2001). Another view, based on a deeper
and more general theory is given in Section 3.2.

3 Improved long range dependence theory

This section explores several types of mathematical theory which are motivated by the above
analysis. The wobbliness of the tails, visible for example in Figure 2, is seen to be consistent
with the notion of “regular variation” in Section 3.1. Under this assumption, the wobbles must
diminish as one moves far enough out in the tails, and thus the classical notion of tail index
still holds. However, if this stabilization occurs, Figure 2 shows that it happens in a tail region
where the distributional information in the data is sparse. This corresponds to the case where
either the number of mixture components in the models of Section 3 of Hernández-Campos,et
al. (2002b) does not grow, or else components farther out in the tail have a diminishing impact.

In the spirit of simultaneous consideration of several models that fit the data (and can’t
be reliably distinguished from the data alone), it makes sense to also consider mathematics
where the tail need not be regularly varying. Figure 2 also shows that while the effective tail
index does not stabilize, it is “usually” within a range that is associated with the generation of



long range dependence. The mathematics of Section 3.2 feature very mild assumptions on the
effective tail index, as plotted in Figure 2, which will still result in long range dependence, in
the sense of a polynomial decay of the autocovariance function. This corresponds to the case
where the number of significant mixture components in the models of Section 3 of Hernández-
Campos,et al. (2002b) continues to grow as one moves farther out in the tail.

For convenience of analysis, this section considers a deliberately simple mathematical
model for data of the type illustrated in Figure 1. Many variations are possible, and we view
the establishment of similar results in more realistic and general contexts as interesting open
problems. For simplicity, only continuous time processes are considered here. Our model
has been called a “fluid queue with Poisson input” and a “model withM/G/∞ input”. The
flow arrival process (the point process of starting times of the horizontal line segments in Fig-
ure 1) is a standard Poisson process with intensity parameterλ. Marron, Herńandez-Campos
and Smith (2001) have studied the effectiveness of this approximation, and suggested a richer
model. The duration times (the random lengths of the line segments), are independent, identi-
cally distributed, with cumulative distribution function (CDF)F (x) and complementary CDF
(CCDF)F (x) = 1 − F (x). Aggregation of the traffic is represented byXt, the number of
active flows (line segments in Figure 1) at timet.

A common notion of long range dependence can be expressed in terms of the rate of decay
of the autocovariance

R(t) = cov(Xs, Xt+s).

In particular, polynomial decay int, R(t) ∼ t−(α−1) with exponentα− 1 ∈ (0, 1), is typically
viewed as a symptom of long range dependence. This decay is easily obtained ifF is Pareto, or
asymptotically Pareto, because for the above model, the autocovariance is simply and directly
related to the tail of the duration distribution, as

R(x) = λ

∫ ∞
x

F (y) dy (1)

as seen for example in Cox (1984) and Resnick and Samorodnitsky (1999).

3.1 Varying slopes in classical heavy tail theory

This section studies the classical notion of “regularly varying tails”, which allows wobbly tail
behavior as seen in Figure 2.

A common notion of “heavy tailed distribution” is thatF (x) ∼ x−α, in the sense that for
someC > 0 andα > 1,

lim
x→∞

F (x)

Cx−α
= 1.

In this case,a is called the “tail index”.
It is usual also to refer to such distributions as having power, or Pareto, tails. Such distri-

butions are really a particular case of distributions with “regularly varying tails”, which also
cause long range dependence. As defined in, for example Section 0.4.1 of Resnick (1987), a
distribution is said to be regularly varying at∞, with exponent−α when for everyx > 0

lim
t→∞

F (tx)

F (t)
= x−α.

As seen in Karamata’s Theorem, see Section 0.4.2 of Resnick (1987), a useful characterization
of a regularly varying tail is the existence of functionsε (t) andc(x), where forx ≥ 1,

F (x) = c(x)x−α exp

(∫ x

1

ε (t)

t
dt

)



and whereε (t)→ 0 ast→∞ andc(x)→ c ∈ (0,∞) asx→∞.
The functionε (t) has a very direct connection to the wobbles observed in the tails of the

log-log CCDF in Figure 2. We will assume for simplicity thatc (x) ≡ 1. This guarantees
existence of a probability density,f (x). Note that

f(x) = F ′ (x) =
(
1− F (x)

)′
(2)

= αx−(α+1) exp

(∫ x

1

ε (t)

t
dt

)
− x−α exp

(∫ x

1

ε (t)

t
dt

)
ε (x)

x

= x−(α+1) exp

(∫ x

1

ε (t)

t
dt

)
(α− ε (x))

=
F (x)

x
(α− ε (x)) .

This shows that for the functionε (x) to result in a probability distributionF (x), it must be
restricted toε (x) ≤ α, for all x ≥ 1. Figure 2 is an empirical version of a plot ofF (x) as
a function ofx, on the log - log scale. The slopes in this plot, whose empirical versions are
studied in Figure 2, are essentially the derivative

d

dy
logF (ey) = −f (ey) ey

F (ey)
= − (α− ε (ey)) ,

a very simple function of theε (x) from Karamata’s Theorem.
This framework shows that the “regularly varying” functions allow a large degree of tail

“wobbling”, such as seen in Figure 2. A simple example is

ε (x) =
sin x

xβ
, (3)

for x ≥ 1 andβ > 0, which will result in wobbles of the magnitude observed there.
While the log-log CCDF of the distribution can and does wobble considerably, it is perhaps

worth noting that under the above model, the resulting aggregated traffic autocovarianceR (t),
tends to be “smoother” because of the integration in (1). In particular, when the duration
distributionF (x) is regularly varying,

R (t) =

∫ ∞
t

F (x) dx ∼ 1

α− 1
tF (t) ,

ast → ∞, which may oscillate much less. The rest of this section is devoted to making this
idea precise.

Assume for example that

|ε (t)| = O

(
1

t

)
,

ast→∞, and that ∫ ∞
x

ε (t)

t
dt = O

(
1

x2

)
,

asx → ∞. An example of this is (3) withβ = 1. Then the distribution has a Pareto tail in
the sense thatF (x) ∼ cx−α, asx → ∞. This results in a classical symptom of heavy tail
dependence of the aggregated traffic:R (t) ∼ t−(α−1).

By (2)

α− xf (x)

F (x)
= ε (x) = O

(
1

x

)
,



asx→∞, and so ∣∣∣∣ F (x)

xf (x)
− 1

α

∣∣∣∣ ∼ ε (x) = O

(
1

x

)
.

Now the above calculations, together with

tF (t) = t−(α−1) exp

(∫ t

1

ε (u)

u
du

)
= (α− 1)

∫ ∞
t

x−αdx exp

(∫ t

1

ε (u)

u
du

)
give

∣∣∣∣ R (t)

tF (t)
− 1

(α− 1)

∣∣∣∣ =

∣∣∣(α− 1)
∫∞
t
x−α exp

(∫ x
1
ε(u)
u
du
)
dx− (α− 1)

∫∞
t
x−α exp

(∫ t
1
ε(u)
u
du
)
dx
∣∣∣

(α− 1) tF (t)

≤

∫∞
t
x−α exp

(∫ x
1
ε(u)
u
du
) ∣∣∣1− exp

(
−
∫ x
t
ε(u)
u
du
)∣∣∣ dx

tF (t)

≤ (1 + o(1))

∫∞
t
x−α exp

(∫ x
1
ε(u)
u
du
) ∣∣∣∫ xt ε(u)

u
du
∣∣∣ dx

tF (t)

≤ (1 + o(1)) t−2

∫∞
t
x−α exp

(∫ x
1
ε(u)
u
du
)
dx

tF (t)

∼ 1

1− α
t−2,

ast→∞. Thus while the slope of the log-log duration CCDF converges toα at the slow rate
x−1, the slope of the resulting aggregated autocovariance (in the same log-log scale) converges
to α− 1 at the much faster ratet−2.

3.2 Varying slopes give long range dependence

This section considers the case where the tail wobbles visible in Figure 5 may not be of reg-
ularly varying type, in the sense that the effective tail index does not stabilize as one moves
farther out in the tail of the distribution.

The main result is that under suitable mild assumptions, allowing behavior of the type
observed in Figure 2, one has behavior that is symptomatic of long range dependence, in the
sense that

R(x) ≥ kx−(α−1), (4)

for some constantk > 0.
Assume that for somec > 0, andα > 1,

F (x) ≥ cx−α,

for x ∈ In = (an, bn), n = 1, 2, · · · , with a1 < b1 < a2 < b2 < · · · , satisfying for some
M > 1,

an+1

bn
≤M,

bn
an
≥ 1 +

1

M
, n = 1, 2, ...

This structure is intended to quantify the notion that the effective tail index is “usually but not
always” smaller thanα, in particular allowing the purple curves in Figure 2 to occasionally fall



below the level -2. Forx > 0, find the “indices that bracketx by an”:

η+(x) = min {j : aj ≥ x} ,
η−(x) = max {j : aj < x} = η+(x)− 1.

Note thataη−(x) < x ≤ aη+(x).
Now we check that these assumptions give (4). Assume first thatx ∈

[
bη−(x), aη+(x)

]
. Then

aη+(x)

x
≤
aη+(x)

bη−(x)

=
aη+(x)

bη+(x)−1

≤M. (5)

Hence

R(x) =

∫ ∞
x

F (y) dy ≥
∫ bη+(x)

aη+(x)

cy−αdy (6)

=
c

α− 1

(
a
−(α−1)
η+(x) − b

−(α−1)
η+(x)

)
=

c

α− 1
a
−(α−1)
η+(x)

(
1−

(
bη+(x)

aη+(x)

)−(α−1)
)

≥ c

α− 1

(
1−

(
M

M + 1

)α−1
)
a
−(α−1)
η+(x)

≥ c

α− 1
M−(α−1)

(
1−

(
M

M + 1

)α−1
)
x−(α−1)

≥ c

α− 1

(
M−(α−1) − (M + 1)−(α−1)

)
x−(α−1).

Next assume thatx ∈
[
aη−(x), bη−(x)

]
. If bη−(x) − x ≥ x, then

R(x) =

∫ ∞
x

F (y) dy ≥
∫ bη−(x)

x

cy−αdy (7)

≥ c

∫ 2x

x

y−αdy =
c
(
1− 2−(α−1)

)
α− 1

x−(α−1).

Finally, if bη−(x) − x < x, then as in (5)

aη+(x)

x
≤

aη+(x)

bη−(x)/2
≤ 2M,

from which it follows that, as for (6),

R(x) ≥ c

α− 1
2−(α−1)

(
M−(α−1) − (M + 1)−(α−1)

)
x−(α−1). (8)

The bound (4) follows from (6), (7) and (8).

4 Conclusions

The larger paper, Hernández-Campos,et al. (2002a), from which this was drawn made two
major contributions of interest to the networking community.



The first contribution (appearing elsewhere as Hernández-Campos,et al. (2002a) to meet
the page requirements of this proceedings) was the presentation of a number of useful tech-
niques for the study of heavy tailed distributions in network modelling. The concepts of “ex-
treme”, “far” and “moderate” tail regions facilitate understanding of how sampling variation
affects this modelling. Simulation, combined with appropriate graphical display, is useful for
identification of these regions. Mixture models provide a natural method for finding inter-
pretable subpopulations. Mixtures of 3 double Pareto log-normals accurately model HTTP
response sizes.

The second contribution (appearing here) was the generalization of the “classical” theory
of heavy tail durations leading to long range dependence, in a well motivated and relevant
direction. The data analysis suggested that a serious gap in the relevance of the classical theory
is the assumption of a fixed tail index (central to the usual definition of “heavy tailed”). This
problem was overcome using the more realistic concept of “variable tail index”, and a more
general theory was established in which this improved notion of “heavy tailed” was shown
to still lead to long range dependence (in terms of polynomial decay of the autocovariance
function).
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