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ABSTRACT  

To compare and evaluate locomotion interfaces for users who are 
(virtually) moving on foot in VEs, we performed a study to 
characterize task behavior and task performance with different 
visual and locomotion interfaces. In both a computer-generated 
environment and a corresponding real environment, study 
participants walked to targets on walls and stopped as close to 
them as they could without making contact. 
 In each of five experimental conditions participants used a 
combination of one of three locomotion interfaces (really walking, 
walking-in-place, and joystick flying), and one of three visual 
conditions (head-mounted display, unrestricted natural vision, or 
field-of-view-restricted natural vision). We identified metrics and 
collected data that captured task performance and the underlying 
kinematics of the task.   
 Our results show: 1) Over 95% of the variance in simple 
motion paths is captured in three critical values: peak velocity; 
when, in the course of a motion, the peak velocity occurs; and 
peak deceleration.  2) Correlations of those critical value data for 
the conditions taken pairwise suggest a coarse ordering of 
locomotion interfaces by “naturalness.”  3) Task performance 
varies with interface condition, but correlations of that value for 
conditions taken pairwise do not cluster by naturalness.  4) The 
perceptual variable, τ (also known as the time-to-contact) 
calculated at the point of peak deceleration has higher correlation 
with task performance than τ calculated at peak velocity.   
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1 INTRODUCTION  

One of the unsolved problems in virtual environment systems 
research is building a locomotion interface that enables users on 
foot to move through virtual spaces much larger than the real 
space enclosing the VE system. We have embarked on a series of 
studies to compare and evaluate locomotion interfaces for users 
who are on foot. Although there are a number of ingenious 
mechanical locomotion interfaces (several are described in [1] and 
[2]), we focused on three: really walking (as a standard), simple  
walking-in-place, and flying with a joystick (or gamepad).   
 The goals of the work reported here are to develop metrics for 
characterizing and comparing users’ movements under the 
different interface conditions, to correlate these metrics with task 
performance metrics, and to begin to investigate metrics that 
relate interface condition to performance.  From this study, and 
those that follow, we hope to develop a model and guidelines to 
advise system builders on the choice of locomotion interface.  
Specifically, our results will be used to advise the development of 
to-be-fielded systems for training dismounted warfighters (i.e., 
infantry soldiers and marines).  The final evaluation metric for the 
interfaces and systems will be the amount that real-world skills 
improve as a result of training in an immersive virtual 
environment. 
 Most studies on locomotion are restricted to either a virtual or a 
real environment. Our facility supports both. Exploiting this, we 
developed methods to characterize the output of a locomotion 
interface, i.e. the user’s path of motion through the virtual 
environment, and we then used those characterizations to compare 
different interface conditions to each other and to natural motion 

Figure 1: The approach wall and stop task 



in the real environment.  We derived metrics from the motion 
paths, measured performance on a simple task (walking up to a 
wall and stopping, Figure 1), and explored how motor control of 
this simple action, captured in the perceptual variable τ, differs 
among interfaces.  
 New Knowledge.  Principal-component analysis of motion path 
data revealed that the first three principal components, 
respectively, are primarily related to 1) maximum velocity; 2) 
when, during the motion, maximum velocity occurs (percent time 
elapsed from the start of motion to the time of onset of 
deceleration, referred to here as percent time), and 3) maximum 
deceleration. Repeated-measures analysis of variance showed that 
interface condition had a significant effect (p < 0.05) on variables 
peak velocity and peak deceleration, as well as on task 
performance and on τ measured at peak velocity and at peak 
deceleration.   
 To further understand the effects of condition, we performed 
both comparisons and correlations of data for the 10 possible pairs 
of conditions taken two at a time.  We’ll refer to these as pairwise 
comparisons and pairwise correlations. Pairwise comparisons of 
means planned a priori revealed 53 of 60 to be significant; this 
data was unilluminating. Rank ordering of the results of the 
pairwise correlations of the motion-path-related data (peak 
velocity, peak deceleration, and τ computed at those points) 
suggests a clustering and ordering of interfaces by how much they 
are like locomotion in the real world.  User questionnaire data and 
task performance data only partially supported this, with the 
differences likely attributable to the quality of our walking-in-
place interface.  Pairwise correlations of the task performance 
metric and τ measured at 1) peak deceleration and 2) peak 
velocity do not follow the clustering and ordering of the motion-
path related variables.  
 The data show that τ measured at peak deceleration correlates 
more strongly with task performance than with τ measured at peak 
velocity.  This suggests the use of τ calculated at peak 
deceleration in further work investigating motor control, motion 
paths, and performance. 
 The results, as yet, are insufficient to establish strong design 
guidelines; they do, however, provide a framework for further 
studies to develop and test models of locomotion interface 
efficacy.   

2 PREVIOUS RESEARCH 

2.1 Comparing Locomotion Interfaces 
Metric: Positional Accuracy.  Iwata and Yoshida [3] compared 
the ability of users to reproduce paths through a VE comparing 
the performance of users of  their Torus Treadmill and to those 
who used a joystick locomotion interface.  In the first study, users 
walked a straight path to a target cone.  In the second study the 
users went to a first target cone, made a turn, and then walked to a 
second cone.  In both studies the users walked along the path with 
the cones visible, and were then asked to walk to the same path 
again without cones.  Accuracy was measured as how close the 
users came to the cone positions as they walked the paths without 
seeing the cones. When walking in a straight line the users 
overshot the target by nearly equal amounts in both locomotion 
conditions. In the two-cone condition, the results showed 
significantly larger total error for users of the joystick than of the 
Torus Treadmill.  
Metric: Cognition.  Zanbaka, et al. [4] studied the effect of four 
locomotion interfaces on cognition in an immersive virtual 
environment.  Their four conditions varied in locomotion control, 
viewpoint control, and display device. Data collected were the 

results of a cognition questionnaire (CQ), sketch maps, and 
responses to the Steed-Usoh-Slater (SUS) Presence Questionnaire.  
The CQ probed three categories: Knowledge, the recall or 
recognition of specific information; Understanding and 
Application, comprehension and application of information; and 
Higher Mental Processes, information analysis, synthesis, and 
evaluation. 
Post hoc analysis investigating trends in the Understanding and 
Application scores and Higher Mental Processes scores showed 
significantly higher performance for the really walking condition 
over joystick locomotion.  Similar significant differences in 
performance on Understanding and Application scores were found 
between the between real walking condition and a condition 
where the user viewed the environment on a monitor and 
controlled motion and viewpoint with a joystick.  Overall, the 
research results provided evidence that there are cognitive 
benefits attributable to physically and naturally walking in a 
virtual environment when the application involves problem 
solving and interpretation of material.   
Metric: Multisensory Realism. There is significant evidence that 
the level of realism of sensory immersion, interpreted as the 
degree to which one or more sensory modalities are stimulated in 
ways corresponding to the real world, plays a role in supporting 
the ability to perform complex actions within a Virtual 
Environment [5]. Grant & Magee [6] demonstrated a critical 
difference in internalizing spatial information when users are 
allowed to explore a large-scale VE using either a joystick or a 
simple walking interface.  Results favor the interface that enabled 
the more natural locomotion.  Other studies, which have assessed 
the utility of VEs to train spatial navigation and wayfinding skills 
([7]), have shown that in addition to providing adequate 
proprioceptive stimulation, e.g. natural walking, VEs must also 
provide adequate visual information.   
Metric: Sense of Presence.   In  [8] , Slater, Usoh, and Steed 
proposed that sense of presence is a function of both 1) the match 
between the sensory input provided by the VE and the “internal 
representation systems…employed by the participant” and 2) the 
match between proprioceptive cues and visual feedback, i.e. 
realistic visuals and realistic motion cues.  Two studies have 
compared the efficacy of locomotion techniques by measuring the 
level of presence evoked in users of different locomotion 
techniques while holding visual condition constant.  
Slater, Steed, and Usoh [8] compared walking-in-place and on-off 
flying in an environment that evoked a strong reaction in the 
users, a visual cliff.  Usoh, et al. [9] report on a follow-up study 
which included both of the original conditions, walking-in-place 
and pushbutton flying, and added the condition of really walking.  
Both studies investigated whether users would experience higher 
presence in a VE if they moved though the environment using a 
locomotion technique that provided proprioceptive stimuli similar 
to natural walking.   
Post-experience presence questionnaires for the first study showed 
that walking-in-place produces higher levels of presence than 
moving by pushing a button, provided that users identify with 
their avatar. The second study showed that both really walking 
and walking-in-place conditions yielded significantly higher 
levels of presence than did push-button flying; a strong trend 
suggested that really walking produced higher sense of presence 
than walking-in-place. 
2.2 Analysis of Motions from Tracker Logs 
A motion path is a sequence of position-time samples of a tracked 
point on the user’s body.  From such a path it is easy to derive a 



velocity profile (velocity vs. time) and measures such as 
maximum velocity, peak deceleration, and τ. 
 We analyzed motions in our study in essentially the same way 
as reported in Mason, et al. [10].  Although their research is 
focused on reaching movements, their reported data preparation 
techniques are particularly relevant.  Mason used a 3 DoF tracker 
to collect motion paths of reaching hands.  The raw tracker data 
were interpolated and smoothed with a low pass Butterworth filter 
before the velocity profile and other measures were computed.  
Their paths were algorithmically truncated to a consistent starting 
condition (when velocity reached 5 mm/sec, in their case). We 
employed nearly identical techniques. 
2.3 Τau and Motion Control 
Basing their work on the Gibsonian notion of treating visual input 
as an optic flow field [11], Lee and Reddish [12] suggest that the 
onset of certain motions is controlled by the visual information 
individuals receive.  They propose that the control mechanism is 
based on an optically defined parameter, time-to-collision, τ. In 
perceptual terms, τ is the expansion of visual information on the 
retina; operationally, it is computed as user’s distance-from-
collision divided by user’s velocity (i.e., x/x') (c.f. [13] for 
detailed derivations).  Lee and Reddish’s work demonstrates this 
relationship between τ (computed as x/x') and motor behavior for 
a single system, and Schoner [14] demonstrates  that it holds in a 
number of other previously described experimental systems.  
 In practice, τ is typically reported at a critical value within a 
motion path, e.g., at peak velocity [15] or at the point in the path 
where τ varies least [16].  The value of τ at peak velocity, i.e., the 
onset of deceleration for simple motions, has been widely 
explored as an element in motor control strategies [15].  Research 
has also identified and examined control situations in which τ 
remains nearly constant across experimental conditions [15, 16],.  
Such cases are important because of the notion that features of 
movement that are invariant across conditions reflect the nature of 
the neural control of motor actions [17].  
 In this work, movement control is assumed to depend primarily 
on information provided visually.  Previous work [12, 16, 18, 19] 
suggests that τ, the perceived time-to-contact, may serve as an 
environmentally specified (i.e., situation specific) variable for 
controlling movements in a dynamic setting. Here, we investigate 
the notion that τ captures the relationship between motion path 
metrics, task performance, and interface type, providing another 
means to quantify the impact of interface design on performance. 
2.4 Interface Efficacy and Naturalness 
Osgood’s notion of identical elements proposes that the closer the 
training environment is to the actual one, the more likely it is that 
the training environment will prove effective [20].  Prior work 
cited in section 2.1 supports the notion that the more natural or 
realistic the locomotion interface, the more effective it is as 
evaluated on some metric.  These ideas suggest that we examine 
our data to see if it supports the idea of a “naturalness” ordering of 
locomotion interfaces.  Using motion-path-derived variables for 
real and VR conditions we can examine how much the users’ 
motions under different conditions are like their motions in the 
real environment. We can perform similar comparison for task 
performance and we can extend the scope of our comparisons to 
motor control mechanisms by comparing values of τ under 
different interface conditions.  

3 USER STUDY  

The Academic Affairs Institutional Review Board at the 
University of North Carolina at Chapel Hill approved the user 
study reported here. 

 User motion in the real world is the standard against which we 
compare various locomotion interfaces. Based on our assumption 
that the user’s head will be tracked in any future fielded VE-based 
training systems, and to maximize the chance that our metrics can 
be used in future field studies, we based our metrics on motion 
parameters derived from only head-tracking data.   
3.1 Conditions and Task 
Each of the five conditions we studied included one of three 
locomotion interfaces and one of three visual interfaces.  Of the  
three locomotion interfaces, one was natural (really walking), and 
two were artificial (joystick flying and walking-in-place).  
Similarly, of the three visual interfaces, one was natural 
(unobstructed natural vision) and two were artificial (field-of-
view-restricted natural vision and a head-mounted display 
(HMD)).   
 We collected data for three VE conditions: really walking in 
virtual reality (VRW), joystick flying (JS), and walking-in-place 
(WIP).  We collected data for two conditions where users could 
see naturally:  really walking with unhindered vision (Real) and 
really walking with field-of-view-restricted vision (Cowl).  The 
field-of-view of the Cowl and the HMD are the same.  

 Each participant navigated a maze in each condition.  The order 
of the conditions was determined by a modified Latin Square. As 
they moved through the maze, the participants saw targets on the 
walls.  We instructed participants to walk up to the target and stop 
as close to it as they could without touching the wall.  When 
participants felt they were as close to the target plane as possible, 
they signaled by pressing a button and then proceeded to the next 
target.  Experimenters noted if the participants bumped the wall, 
but this information was not used in the analysis presented here. 
3.2 Equipment and Software 
Our environments were modeled using 3D Studio Max™; our 
custom virtual environment application was developed using 
Visual C++ 6.0 on Windows™ XP, the WildMagic™ game 
engine by Magic Software, Inc., and the VRPN library for 
communication with peripherals.  The study application was run 
on a dual-Xeon 1.7GHz PC with 1 GB of RAM and an nVidia 
GeForce™4 Ti 4600 graphics card.  For the VR conditions, the 
participants wore a Virtual Research Systems V8 HMD with 
640x480 tri-color pixel resolution in each eye and a horizontal 
field-of-view of 47 degrees.  The head was tracked with a 

Figure 2: The virtual maze viewed from overhead. 
The arrows show the approaches to the five 

targets used in the study. 



3rdTech™ HiBall 6DoF optical tracker with a 22’ x 30’ tracked 
area.  The tracker sensor was mounted on the HMD for the VRW, 
JS, and WIP conditions.  For the Cowl condition the tracker was 
mounted on a modified V8 HMD shell that restricted FOV.  In the 
Real condition, the tracker was mounted to a simple headband.   
 Participants carried a Logitech® Cordless Rumblepad as a 
button input device and for locomotion in the joystick flying 
condition. Midpoint in the joystick’s 256-level output range was 
set to a speed comparable to normal walking.  In the JS and WIP 
conditions, the Rumblepad vibrated when the user collided with a 
wall.  A Crossbow™ Solid State 2G accelerometer mounted on 
the HMD provided input data for in the walking-in-place 
interface. The acceleration was compared to a threshold to 
identify footfalls, and the footfalls in turn produced the forward 
motion of an average stride. The direction of motion for both the 
JS and WIP conditions was the view direction.   

3.2.1 Matching Real and Virtual Environments  
We refer to the environment as a maze, though it was simply a 
corridor with four turns (Figure 2). There were targets on the 
walls at several locations.  The real maze was constructed from 
ReddiForm™ Styrofoam blocks.  The walls were 1.8 m (6 ft) tall.  
The 45 cm square targets have a vertical stripe to indicate the 
center of the target, and an arrow pointing in the direction of the 
next target. During a pilot of the study it became apparent that our 
stark VE included no familiar objects users could use to judge size 
and scale.  In response, we added a light switch cover plate to 
each target.  The virtual maze and targets matched the real maze 
and targets (Figure 3). 

 
Figure 3: First-person (left) and third-person views of user 

approaching a target 

3.2.2 Data Collection and Preprocessing 
Motion Paths.  We updated frames and logged the 6DoF head-
pose data at 160 Hz.1  We extracted 3DoF motion paths from the 
pose data. 
Path Preprocessing. To provide a consistent starting point for 
each target approach, we algorithmically truncated each path so 
that it began at the same distance from the target plane. 
 Because the motion paths in each target approach are 
essentially perpendicular to the target plane, we projected the 
3DoF points onto such a line.  This not only reduced the 
dimensionality of the data but eliminated positional variations 
caused by side-to-side and up-and-down head movements 
characteristic of walking.   
 Filtering with a low-pass Butterworth filter eliminated head-
bobbing movements from the paths and eliminated any high-
frequency motions caused by tracker jitter. The cutoff frequency 
was empirically defined to eliminate ripples in the path data that 
would become exaggerated in later differentiation steps. 

                                                                 
1 Our system runs with sync-to-vertical-refresh turned off. No 
users reported seeing image “tearing”; we attribute this to the 
relatively slow switching time of the LCDs in the HMD. 

Principal-component analysis.  Observations of velocity profiles 
for our five conditions in an earlier, exploratory study (Figure 4) 
suggested that curve height, skew, and steepness-of-deceleration 
differentiate the curves for the different conditions. In the current 
study we sought quantitative confirmation of our observations 
using principal-component analysis (PCA). 
 

 
 

Figure 4: These curves from an exploratory study show the mean 
values of the paths for all subjects for each condition for one target.  
We observed that peak velocity differs between conditions and that 

the peak velocity for joystick and WIP are skewed left. Less 
apparent is the change in steepness in deceleration. 

 
Quoting from the Wikipedia web site, “In statistics, principal 
components analysis (PCA) is a technique that can be used to 
simplify a dataset; more formally it is a linear transformation that 
chooses a new coordinate system for the data set such that the 
greatest variance by any projection of the data set comes to lie on 
the first axis (then called the first principal component), the 
second greatest variance on the second axis, and so on. PCA can 
be used for reducing dimensionality in a dataset while retaining 
those characteristics of the dataset that contribute most to its 
variance by eliminating the later principal components (by a more 
or less heuristic decision).” We use PCA in exactly this way to 
reduce the dimensionality of the path vector data. 
 The input to the PCA is a set of feature vectors derived from 
the path vectors, one feature vector for each path vector.  To 
generate the feature vectors for the velocity profiles, we first used 
finite difference techniques to generate position-velocity data 
from the position-time path vectors.  The velocity data were then 
resampled in distance to produce a 50-element feature vector. 
Fifty was chosen empirically as a tradeoff between PCA 
computational cost and resolution.  We repeated this process for 
each path vector, creating a set of 50-element feature vectors that 
were the input to the PCA. 

4 RESULTS 

We collected data on approaches and stopping at five wall-
mounted targets, under each of five interface conditions.  We 
derived six dependent variables to quantify the impact of interface 
on performance: three motion path metrics—peak velocity, 
percent of time to peak velocity (percent time),2 and peak 

                                                                 
2 We normalized time as the distances between targets differ. 



deceleration; task performance—final distance to target; and time-
to-collision, τ, at peak velocity and at peak deceleration.  
4.1 Study participants  
Participants were recruited from among students at UNC-Chapel 
Hill and were paid for participating in two-hour sessions. All 
subjects were able to walk unassisted and passed a screening for 
health and susceptibility to motion sickness.  
 Thirty-two participants (21 male, 11 female) ranged in age from 
18 to 42, with a mean age of 24.  Video-game-playing experience 
was bi-modal, with 11 participants reporting less than one 
hour/week and 15 reporting over 10 hours/week.  The participants 
were generally naïve VE users: only six had been in an immersive 
environment more than twice before, and none had experienced a 
VE more recently than a month before.  
 Users signed informed consent forms and filled out 
demographic questionnaires before entering the virtual 
environment.  Post-VE experience questionnaires asked them to 
both rate and rank their experiences with the five interfaces.  
Open-ended questions elicited additional qualitative data. 
4.2 Description of Quantitative Metrics  

4.2.1 Motion-Path Derived Metrics 
Principal components.  The first three PCs account for over 95% 
of the variance in the data. Our velocity profile feature vectors 
have meaning when graphed. Varying each of the first three PCs 
of a velocity profile showed them, respectively, to most 
noticeably affect the curve shapes as follows: the height of the 
curve (peak velocity), the skew of the peak of the curve (the 
percent time of peak velocity), and how steeply the curve falls 
(peak deceleration). The analysis confirmed what our observation 
of earlier data suggested: these three characteristics are the major 
factors defining the shape of velocity profiles for different 
locomotion conditions.  The result of the PCA helped us identify 
which discrete values derived from the motion paths we would 
use to compare paths, and allowed us to reduce the dimensionality 
of the motion path description from (in our work) 500 element 
path vectors to 3 values. 
Motion Path Variables.  Based on the outcome of the PCA, we 
examined the data for peak velocity, percent time to peak 
velocity, and peak deceleration for each of the five conditions.  

Figures 5 (a), (b), and (c) show the means and standard deviations 
for these data.  

4.2.2 Task performance: final distance from target 
In the present work, task performance is defined as the absolute 
value of the distance between the user’s final position and the 
plane of the target at which they are stopping. Figure 5 (d) shows 
the mean and standard deviation for this metric.     

4.2.3 Time-to-collision: τ  
Two values of τ, taken at the times of peak velocity and peak 
deceleration, were computed from the data. The process used was 
nearly identical to that presented in [12].  Figure 6 shows the 
means and standard deviations for τ calculated at peak velocity 
and peak deceleration. 
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Figure 6:  Mean and +/- 1 σ for τ at critical motion path variables. 
 

4.3 Statistical Analysis  
The overall statistics are based on a 5 x 5  (Targets x Interface-
Type) repeated measures analysis-of-variance (ANOVA) run on 
each of the six dependent variables: peak velocity, percent time to 
peak velocity, peak deceleration, final distance, τ at peak velocity, 
and τ at peak deceleration.  Since there were missing data, 
statistical analyses were performed as six separate within-subjects 
ANOVAs3, with corresponding a priori contrasts, rather than 
using a single MANOVA procedure. The results of the ANOVAs 
were adjusted using the Benjamini-Hochberg method, which 
controls for false detection rates resulting from multiple 
hypotheses testing [21]. Main effects of Target and Interface Type 
were considered, as were planned pairwise comparisons. 
Although we report main effects for Targets, we do not discuss 
Targets further in this paper. 

4.3.1 ANOVA results 
Each of our ANOVA procedures compared the means of one of 
the dependent variables for three cases:  differences in means 
across all targets and all conditions (Overall), across five Targets, 
and across five Conditions.   
Motion Path Metrics. The ANOVA for peak velocity showed 
Overall significance (p<0.0001), with a significant main effect for 

                                                                 
3 Our analysis used an ANOVA process that accounted for fact 
that each subject did the task in each condition (subjects 
repeated).  The mathematics for this model are approximate, not 
exact, so the probabilities are found using the Chi-Square rather 
than the F statistic.  This model does not return a measure of the 
variance attributable to Target and Condition. 

(a) Peak Velocity

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Real Cowl VRW JS WIP

m
et

er
s/

se
c

(b) Percent Time Elapsed to Time of 
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(c) Peak Deceleration 
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(d) Final Distance from Target
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Figure 5: Mean and +/- 1 σ of four dependent variables 



both Targets (p<0.0001) and Interface (p<0.0001).  The ANOVA 
for percent time showed Overall significance (p<0.002) and a 
significant main effect for Targets (p<0. 0057).  Percent time did 
not show a main effect for Interface (p=0.1583). The ANOVA for 
peak deceleration also showed Overall significance (p<0.0003) 
and significant main effects for Targets (p<0.005) and Interface 
(p<0.0001).   
Task Performance. The ANOVA for task performance, 
measured as the final stopping distance relative to each target, 
showed Overall significance (p<0.002), with a significant main 
effect for both Targets (p<0.003) and Interface (p<0.001).   
Time-to-collision, τ. The ANOVA for time-to-collision measured 
at peak velocity showed Overall significance (p<0.0002), with a 
significant main effect for both Targets (p<0.0001) and Interface 
(p<0.0001).  The ANOVA for time-to-collision measured at peak 
deceleration showed overall significance (p<0.002, with a 
significant main effect for both Targets (p<0.03) and Interface 
(p<0.0001). 

4.3.2 Planned pairwise comparisons  
A series of ten a priori pairwise comparisons were calculated for 
each of the six variables, using the Real condition (really walking 
and unobstructed natural vision) as the baseline. We used 
Benjamini-Hochberg’s method to control for inflated error rates in 
these comparisons. Of the 60 comparisons, only 7 were not 
significant.  We had to explore further. 

4.3.3 Correlation of τ and task performance     
To determine which of our two measures of τ might better 
describe motion control strategies used for locomotion in the 
different interface conditions, we computed correlations between 
τ and the task performance measure for both τ calculated at peak 
velocity and peak deceleration. Figure 7 shows the correlation 
coefficients for τ at these two critical points and final distance.  
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Figure 7:  Correlation coefficients of τ on final distance at two 
critical points.   

4.3.4 Pairwise correlations  
To better understand the relationships of the conditions, we 
performed pairwise correlations on the five dependent variables 
that show a main effect for Interface Type. The ordered results for 
the Peak Velocity, Peak Deceleration, and Tau at those points are 
shown in Figure 8. The order of the pairs on the Y-axis is nearly 
identical on the four charts; the ordering of the pairs that include 
the Real condition is consistent: Real-Cowl>Real-VRW>Real-
WIP>Real-JS.  The ordering for the final distance correlations 
(not shown) is somewhat different overall, including, for the pairs 
including Real, the order is:  Real-VRW>Real-Cowl>Real-
JS>Real-WIP. 

Figure 8:  Correlations on dependent variables by conditions taken 
pairwise.  Red horizontal lines denote bins that suggest a coarse 

ordering of interfaces. 
4.4 User Experience 
Users rated which interface condition (the combination of 
locomotion technique and vision condition) they thought they 
performed the task best with, and the one they thought they did 
the worst with. Twenty of the 32 participants indicated that their 
best performance was in the Real condition; the other participants 
were widely spread over the other four conditions, with each 
being selected between 2 and 4 times.  Users commented: 

The headband [Real] seemed easiest because I had full 
peripheral vision... 

The blinders/cowl [Cowl] and headband [Real] didn't 
change my sense of location and sense of body so I 
performed best with them. 

I don't think the lack of peripheral vision influenced my 
performance much.  It did, however, influence the way I 
moved, I think. 

 Comparing the three VR conditions, one participant 
commented: 

Really walking in VR allowed me to choose exactly how 
far I want to move; so I could move slowly until I was 
just a couple of centimeters away from the target.  This 
"analog control" made it easier for me.  I also thought 
that really walking in VR was easier than the gamepad 
[JS] because the movements were more natural.  

 The joystick was rated as worst or next to worst by 20 of the 32 
participants.  One participant, who also reported game use of 5-10 
hours/week during at least part of the previous year, noted its 
limitations: 

[The joystick (JS)] was not good, but better than 
walking-in-place [WIP].  The joystick allowed far more 
sensitive adjustments once I got close, but no 
sidestepping ability. 

 Of the 18 people who reported more than 5 hours/week of 
video game usage at some time during the last year, only 3 rated 
joystick as the interface with which they performed best. 
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 Twenty-five of 32 participants reported they performed worst in 
the walking-in-place condition. The open-ended comments and 
experimenter observations support this result.  We attribute this to 
the quality of our WIP interface.  One user commented: 

I felt I had the least control here with my speed and 
turning. Maybe I wasn't stomping enough, but I felt I 
couldn't move myself around the way I wanted.  

 Participants were also asked to rank the interfaces according to 
how well they performed while using them, from best (1) to worst 
(5).  The modal values for those responses are reported in the 
middle row of Table 1.  The bottom row is the number of 
responses in that mode. 
 

Table 1:  Modal values for ranking of conditions by best to worst 
performance and instances of that ranking (of the 32 total). 

 
Real Cowl VRW JS WIP 

1 2 3 4 5 
22 of 32 15 of 32 17 of 32 16 of 32 24 of 32 

5 DISCUSSION AND CONCLUSIONS 

5.1 Walking-in-Place Interface 
The interpretation of our results is complicated by the quality of 
our walking-in-place interface.  The WIP technique as 
implemented at the time of this study was difficult to use.  Heavy 
stomping was required for some participants to trigger a footstep;  
turning was difficult. We see the effect of these difficulties in the 
relatively large variances for percent time of peak velocity and 
final distance.  Footsteps, when they were recognized, resulted in 
a constant size movement in the direction of gaze. This put an 
unnatural constraint on Final Distance in this condition:  the users 
reached a point from which they could get no closer to the target 
without colliding with it.  
 While our current version of walking-in-place lacks sensitivity, 
the version we used previously in Usoh et al. [9] had unnatural 
stopping and starting delays. The poor showing of these two 
simple WIP locomotion interfaces means that system designers 
proposing to use WIP need to (1) engineer them very carefully, 
and (2) validate them against real walking. The Gaiter system, 
[22], represents a significant effort to develop a WIP system 
allowing both natural motion and natural exertion.  
5.2 Discussion of results 
A significant challenge to the development of any type of human -
computer interface lies in the quantification of performance 
increments or decrements when one interface design is chosen 
over another. We have chosen to work on an interface for which 
design requirements are only beginning to be developed, and have 
created a framework within which metrics can be validated using 
a task whose complexity can, over time, be amplified.  
 We developed metrics in three categories:  properties of the 
motion paths, task performance, and, an exploratory investigation 
of time-to-collision, τ, as a measure of interface efficacy. As 
suggested by previous work, as we examined our results we 
looked for patterns in the ordering of the interfaces. 
Motion Path Metrics.  The ANOVAs showed that two of the 
three motion path metrics, peak velocity and peak deceleration, 
show a main effect for Interface Type.  If you order results of 
pairwise correlations for these data (Figure 8) the order of the 
pairs along the Y-axis is nearly identical for each case.  
Conservatively, these orderings show similar clusters with 
interfaces with real locomotion (walking) interfaces and natural 

vision grouped at one end, and conditions with less natural 
locomotion interfaces (walking-in-place and joystick) and 
computer-generated visual input (HMD) at the other end.  The 
mixed interface, real walking with HMD visuals, falls in-between. 
Task Performance Metric.  Our performance metric was Final 
Distance to Target and the ANOVA shows a main effect for 
Interface.  For this variable, smaller is better. Figure 5 shows an 
ordering of the interfaces that groups as that described above.  
User Experience.  User questionnaire responses, Table 1, also 
support the three bin ordering. 
Time-to-Collision, τ.  Whereas exploring performance and 
motion metrics provides insight into which interface may be most 
effective, it does not explain the mechanism through which 
differences in the metrics arise. Such understanding would 
provide general principles to help developers make better design 
decisions. Arguably, the manner in which visual information is 
provided, and the manner in which the interface enables the user 
to act upon such information, are critical.  Consequently, a model 
that captures a relationship between the two might prove useful, 
especially if it could be shown to relate to overall performance in 
some fashion.  
    Previous research [23] suggests that the human nervous system 
may plan simple braking maneuvers by defining the point at 
which braking starts or at the point of maximum deceleration. 
Moreover, there is evidence that the time-to-contact variable, τ, an 
indirect measure of control strategy, captures this relationship 
when calculated at such critical values and correlated to 
performance metrics [15, 24].   As Figure 7 suggests, τ calculated 
at peak deceleration correlates better—and captures more 
variability—than τ calculated at peak velocity and should be used 
in future research relating motor control and performance. 
   However, final distance and τ at peak deceleration did not 
correlate particularly well (Figure 7). We speculate that since 
humans brake to avoid collisions, exploring number of collisions 
as a task performance metric might prove illuminating.  We did 
not formally collect or analyze collision data in this work. 
 

Table 2: Bin into which each pairwise correlation falls when  
correlations are coarsely grouped  high (bin A) to low (bin C). Data 

are from Peak Deceleration in Figure 8. 
 

 
Visual 

Condition Real 

Re- 
strict- 

ed 
FOV HMD HMD HMD

Loco--
motion 

Condition   Real Cowl 
VR- 
Walk 

VR-
WIP 

VR-
JS 

Walk Real           
Walk Cowl A         

Walk VR-Walk A A       
Walk-in-

place VR-WIP 
B B B   

  
Joystick VR-JS C C C C   

5.3 Observations  
The data presented here are not so conclusive as to warrant basing 
design guidelines on them.  However, a number of interesting 
observations can be made from the data in Table 2, which recasts 
the data for Peak Velocity from Figure 8 in a way that shows 
which pairwise correlations fall into which bin. 
 We observed the following: 



Visual Interface—Field-of-View appears to have no effect in the 
task used in this study.  Holding locomotion condition constant 
(looking at rows), correlations for each visual condition fall into 
the same bin.  This is believable as this particular task required 
only looking straight ahead. 
Visual Interface—Real or HMD appears to have no effect.  
Again, holding the locomotion interface constant, we observe that 
the data for the Cowl (real vision) and HMD (computer generated 
visuals) fall into the same bin.  Again, this is understandable as 
the task was designed so as not to require high visual acuity. 
Locomotion Interface.   Holding visual condition constant 
(looking at columns), we observed that locomotion interface does 
have an effect on size of the correlation values.  In each column, 
the more “real” locomotion methods are in the A bin  (high 
correlations) than the less natural ones in bins B and C (lower 
correlations.  These data indicate that the motions with walking-
in-place and joystick locomotion do not correlate well with (i.e., 
are not like) motions when walking naturally. Since we do not yet 
understand the potential impact of a locomotion interface 
dissimilar too real walking, this observation should serve as a 
caution to developers: carefully consider whether there might be 
unintended consequences of adopting walking-in-place or joystick 
interfaces.   
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