Author’s Argumentation Assistant (AAA): A Hypertext-
Based Authoring Tool for Argumentative Texts

Wolfgang ScruLer! and John B. SmiT?

t Integrated Publication and Information Systems Institute
GMD-IPSI i

P.O. Boz 104326

D-6100 Darmstadit

Federal Republic of Germany

e-mail: schuler@darmstadt.gmd.dbp.de

{ Depariment of Computer Science
University of North Carolina

CB # 3175 Stlterson Hall

Chapel Hill, NC 27599-3175

USA

e-mail: jbs@cs.unc.edu

ABSTRACT : We present the conceptualization and implementation of AAA, a prototype
authoring tool for creating argumentation-based hyperdocuments. AAA is part of a more
comprehensive effort of GMD-IPSI, where the hypertext authoring system SEPIA (Struc-
tured Elicitation and Processing of Ideas for Authoring) is developed. AAA will be used
for writing and design experiments the results of which will be used in the design of SEPIA.
It is designed to support the creation of argumentation patterns in accordance with the
IBIS/PHI (Procedural Hierarchical IBIS) model combined with a micro argumentation
structure according to Toulmin. For rapid prototyping purposes it has been implemented
as a hypertext system using the Writing Environment WE developed at UNC.

AAA uses a combination of different independent but cooperating modes of operation
dedicated to different cognitive tasks of the argumentative writing process. The entire
argumentation structure is represented as a layered network of typed nodes and links in
which different layers correspond to different levels of abstraction.

KEY WORDS : authoring system, hypertext application, argumentation model

1 Introduction

Writing complex documents consists in many cases of providing arguments
for positions or statements made in the document. The authoring activity of
writing argumentative texts as well as the related document type often has

138 W. Schuler & J. Smith

been studied. Furthermore, argumentative texts exhibit structures which of-
fer excellent starting points for the design of an active, knowledge-based au-
thoring and idea processing tool for creating and revising hyperdocuments.
It is the design objective of the system SEPIA (Structured Elicitation and
Processing of Ideas for Authoring) to represent the major portion of the func-
tionality of an author’s workbench in future hypertext environments. The
main ideas underlying SEPIA are fully described in [Streitz et al. 89]: writ-
ing a document is conceived as travelling through different ‘activity spaces’
which usually can be associated with different system modes. In order to test
the assumptions related to the argumentative writing of hyperdocuments, it
was decided to develop an early prototype based on an available authoring
support tool. Making use of a cooperation between GMD-IPSI and the De-
partment of Computer Science at the University of North Carolina (UNC)
we chose to use the Writing Environment (WE) for this purpose.

The implementation of AAA extends the concepts of modes and system
functions expressed in WE. AAA offers different special writing modes which
the author can use in order to create a final hyperdocument or a traditional
linear document. In this paper the concepts of AAA and some aspects of
WE are described.

2 Writing Environment WE

At UNC the TextLab research group developed a hypertext-based Writing
Environment (WE) in order to support the writing process in accordance to
theoretical considerations as well as to study writers’ individual strategies
as they use the system [Smith et al. 87]. The system provides the author
with four system modes. These modes correspond to the combination of
six from seven cognitive writing modes which are the result of theoretical
investigations. '

2.1 Cognitive Modes and Strategies

The theory underlying WE is based on the ideas of cognitive modes and the
strategies individuals use to engage their various forms of thinking [Smith
& Lansmann 88]. A cognitive mode is defined to be an interdependent
construct of goals, intellectual products, cognitive processes, and constraints.
Specific modes consist of specific combinations of these four constituents: if
one changes a component, one changes modes.

This general theory is based on seven basic cognitive modes which are
used by many writers of expository linear documents: exploration, situa-

Author’s Argumentation Assistant 139

tional analysis, organization, writing, editing global organization, editing
coherence, editing expression.

2.2 Modes of the Writing Environment

Six of the seven cognitive modes for writing are supported by four system
modes in WE. To every mode a fixed sub-window is associated. WE (Version
1.04) is implemented in Smalltalk 2.3.

The network mode is to be used for exploration. The underlying data
model in this mode is a directed graph embedded in a two-dimensional
space. Thus, the user has maximum flexibility to represent concepts as nodes
(boxes with a word or phrase to express the idea), move them manually to
form clusters of loosely related ideas, and link them to denote more specific
relationships. ‘

To build the actual structure of the document, the system provides a
tree mode in which the user is constrained to create a hierarchical structure.
While users could have continued working in the network mode, they are
encouraged to shift to a mode specifically intended for organization, thereby
encouraging them to transform their (loose) network of ideas into a well-
formed hierarchical structure. At anytime in the process they can open a
node and write or edit a block of text that will be associated with that node.
This is done in the editor mode, a conventional text editor.

Finally the text mode is intended for coherence editing. The tree repre-
sents the structure of the linear document and the logical sequence of nodes
or blocks of text that comprise it. Text mode constructs a linear form of
the implied text by stepping through the tree and displays it for editing.

Thus, the four modes correspond to exploration, organization, writing,
and coherence editing. For structure editing, writers use the tree mode.
To support expression editing, writers may use either editor or text modes.
Thus, six of the seven cognitive modes for writing are supported by the
four system modes in WE. At present, WE does not support the situational
analysis mode.

3 Author’s Argumentation Assistant AAA

Since the SEPIA system is intended to support argumentation in hyperdoc-
uments the experimental system A‘AA requires more special system modes
for argumentation and rhetorical reorganization which WE does not offer.
AAA can be regarded as a dedicated application and further development
of WE. The main objective of AAA is to apply a specific argumentation

140 W. Schuler & J. Smith

method to a writing model using different modes of operation. Another
objective is to perform argumentative writing experiments with AAA using
WE’s powerful protocol and replay components.

8.1 Conceptual framework for argumentation

AAA is an experimental hypertext authoring system designed to support the
generation of specific ‘argumentative rhetorics’. Our approach is to combine
the IBIS/PHI argumentation model [McCall 89] as macro structure with
a micro argumentation structure according to [Toulmin 58]. The general
combination of a macro structure with a micro structure has been proposed
by [Kopperschmidt 85], but it has never been implemented and tested. Other
attempts to support argumentation are EUCLID [Smolensky et al. 88], gIBIS
(Graphical IBIS) [Conklin & Begeman 87] and JANUS [Fischer et al. 89].
The system SEPIA will use the Toulmin micro structure [Streitz et al. 89).

3.2 PHI (Procedural Hierarchical IBIS)

In AAA, the author can build a fixed argumentation structure applying a
macro structure as the main organization principle and combining it with
a micro structure. The macro structure is based on PHI (Procedural Hier-
archical IBIS) [McCall 89], which is an elaboration of Rittel’s IBIS (Issue
Based Information System) [Kunz & Rittel 70]. PHI uses as basic elements
(node types) issues, positions, arguments, and facts connected by specific
link types. Similar node and link types are described and realized in gIBIS
and JANUS. The nodes usually contain texts; however, this is no limitation
of generality. For example, the PHI-based design environment PHIDIAS
[McCall et al. 90] integrates CAD graphics into dynamic hypertext. The
final result of argumentation will be a network of issues with positions and
corresponding arguments as well as additional facts. The network gener-
ated in gIBIS can have isolated subgraphs while that of PHI is a connected
directed graph. Having the latter graph type guarantees that the author
cannot get lost in PHI and that efficient browsing mechanisms can be de-
fined.

The basic node types of PHI are ‘issues’, ‘positions’, ‘arguments’. They
are fundamental, defining a specific argumentation method. The main ele-
ments are issues which are problematic topics to be handled, in PHI rigor-
ously described as questions. To solve these questions positions are gener-
ated as claims for or against which arguments are raised by means of the
relations ‘support’ and ‘objection’. The positions are connected with issues
by the link ‘answer’. Additionally, there are ‘facts’ which can be used with

2

e

T Ao,

Author’s Argumentation Assistant

the link ‘reference’ to support every other node type.
The argumentation process in PHI begins with a starting top issue, which
is usually the name of the application or the main title. This issue is broken
down in a top-down manner into subissues serving to handle the main issue.
In order to limit the number of issues the author should formulate only subis-
sues which contribute to the solution of its higher issue and consequently
also to the top issue. This is the operational concept of the ‘serve’ relation.
The issues are again subdivided into subissues with the ’serve’ relation and
so forth. They can also be interrelated or substituted. The positions as well
as the arguments can also be refined, using the relation ‘contributes’, which
creates subpositions or subarguments. When doing this, a subposition func-
tions as argument to the super-position, and vice versa; a super-argument
functions as position. Positions and arguments change their semantic role,
and therefore also their type, when the relation ‘contributes’ is applied.
These link types are necessary for using the PHI-method. For the pro-
cess of argumentation, however, some additional link types have often been
suggested [Conklin & Begeman 87]: issues may be replaced by other more
suitable ones, and from any other node type a new issue can be suggested.
The contents of two nodes with the same node type, i.e. a position, can
contradict each other; logically they are the negation of each other. All
suggested link types are designed for a single author environment.

3.3 System Modes and their operations
The basic concept of AAA is that of modes as defined in WE, which are
independent entities (subsystems). A mode uses a dedicated window being
a fixed area of the screen. AAA supports five activities of the argumenta-
tive writing process in different operational modes. The modes are called:
argumentation, rhetorical, tree, text, and edit mode. In comparison to WE,
the argumentation mode and the rhetorical mode substitute WE’s network
mode. Both new modes are specialized network modes, enriched by node
and link types. Every mode maintains its own set of link and node types, its
schemas in the form of subgraph types, as well as its own graph structure of
node and link instances. In the same manner other necessary modes could
be added, i.e. SEPIA’s content mode described in [Streitz et al. 89]. A com-
mon mode for all other modes is the edit mode of WE, which serves to edit
the text of the nodes in these modes. A screendump of AAA’s interface with
four modes is shown in Figure 1, where the edit mode is hidden. The “Chi-
nese Room” argumentation of John Searle [Searle 80] has been used here as
an illustration example which resembles the example used by EUCLID.

142 ' W. Schuler & J. Smith

[Arqueatstion Writing Environnont [AAA) Beart |vm Space lemhg Arans lsm-n (104}

10 July 1950
ARQUMENTATION MODE: Arga i Plsﬂoyl&im TERT MODE |Vinw Controt lbispuylPrint
Searie

HL)
Al thine?

AN Al progran tat can pass o Turing tast facks an Important
senent of understanding that would b present if the progran were
\gmﬁ;"—l inplerantad on 2 waching with the causat pawars of the beain.
Position
LU
Bearle

Fomaity

[Arqunant Argunent from formality,

i, Indeg. contraoctafermality it Is & rafutation of “the argument fron infarnation processing’ which
1 Arounont sugporty the strung Al positon{clain) and which usas a formal analogy
CeRUTOuTaT [ctation 1 | Bevween Information procassing of humans and Computars.

HIeGraaeT |

240t
Chin. oo

ContAbuTAS

ralarenca Chin. foam

Fact prqunent | John Searie’s ‘Thinese room’ argumentation by analegy.

L N

Orge Taxt 1. Chn, B A Chines story s sfipped under tha door of & closed room, and then
Chingse quastions about the stary are sKpoad in. Back under the daor
corw Chinase sngwars 10 the quasthens, Indlstinguishabia from those of
TREE MODE: Tred & RHETORICAL MODE: Phatorical Rat & native speskar, As it happons, insida the roon i3 Saart himssty
working away at copying Chinase syrbals be doasa't understand fron
big books undee the guidance of & complax sat of Engish instructions.

o | [ssmyipine
Nerenats

[Argument
Fornality

ment
|tactation

Concepts

Figure 1: The Screen of AAA with its Modes

3.3.1 The argumentation mode

The argumentation mode is the nucleus of AAA, in which ideas and argu-
ments are generated and the argumentation process takes place. The basis
of this mode is the enhanced PHI structure, defining a specific method to
be used by the author. The final result is an interconnected network of
issues linked with sub-relationships to positions, arguments, and facts as
their semantically dependent node types. It is very important for its later
use that the network has no isolated graphs. Beginning from the top issue,
the structure can be handled like a hierarchical one. Thus, graph levels can
be defined, primarily with respect to issues, however also with respect to
positions and arguments. The levels are defined by the number of nodes
following the particular path beginning at the top issue and defined by the

- Author’s Argumentation Assistant 143

directed links. This fact allows step by step travelling through the structure,
which can be used for browsing and for traversing up and down the levels
(like generalizing or specializing).

Using the basic node types ‘issues’, ‘positions’, ‘arguments’, and ‘facts’,
the link types as directed links are defined as predicates (Figure 3):

serve (A, B) - issue B serves issue A
replacement (A, B) - issue B is a replacement of issue A
suggestion (X, A) - issue A is a suggestion/question by X with
X = {issue, position, argument, fact}
answer (A, B) - position B is an answer to issue A
objection (A, B) - argument B is an objection to position A
support (A, B) - argument B is a support of position A
contributes (A, B) - B contributes to A where {A,B} are
positions or arguments (B is sub of A)
reference (X, Y) - fact Y is a reference of X
with X = {issue, position, argument, fact}
contradicts (A, B) - A contradicts B (symmetric relation)
with A, B = {issue, position, argument, fact}

The nodes and links are generated and their types selected by usual cre-
ation operations ’create node/link’. Fundamental operations on a selected
node or link are change type, delete. Together with the node also its links
are deleted, in a manner that disconnected graphs are avoided by appro-
priate operations. Also the deletion of links is checked to maintain graph
connectedness if possible.

With these basic operations the argumentation net can be constructed
step by step. However, there exists a set of more powerful operations to
assist the process of argumentation. They operate on a selected node and
create a combination of an appropriate link with a target node, or they even
create a whole subgraph. In general, they offer a link-node couple depending
on the type of the selected node.

Examples of operations are:

o generalize A create for A a super B
where {A,B} are issues with the ‘serve’ link
from B to A or positions, arguments with a
‘contributes’ link from B to A

e specialize A create for A a sub B
(it is the inverse of ‘generalize A’)

W. Schuler & J. Smith

create an argument and connect it to
position A with a ‘support’ link

e objects_to position A create an argument and connect it to
position A with an ‘objection’ link

create B of type A and link it to A with the
‘contradicts’ link

create a subgraph of predefined type and
link it to node A with a selected link type

o justify a position create a Toulmin justification (see below)

The operation ‘objects_to a position A’ can also be realized without us-
ing the ‘objection’ link. This can be accomplished by the operation ‘support
(negate A)’, which means that a new position B is created using the oper-
ation ‘negate A’, to which then the ‘support’ operation is applied. This is
important in order to integrate the Toulmin structure in the PHI structure.

e support position A

e negate A

e add-subgraph to A

3.8.2 The Toulmin Schema

Since we are dealing with common sense argumentation instead of formal

logical reasoning, an argument is more readily accepted if one can provide

reasons which legitimate the ‘support’ or ‘objection’ relationship. In order

to achieve this, a position with an argument can be further elaborated by

using an argumentation schema proposed by Toulmin [Toulmin 58] which is

used and described in [Streitz et al. 89]. Its node types are: datum, claim,

warrant, backing, and rebuttal. The main link type ‘so’ is defined as ‘so
(datum, claim)’ and links a ‘datum’ with a ‘claim’. The ‘so’ conclusion of an
argument is accepted with a higher probability if one can provide a warrant
(usually a rule) which in turn can be backed by a ‘backing’ using the link
‘on_account_of (backing, warrant)’. Thus, there exists a link ‘since’ which
points from the node ‘warrant’ to the link ‘so’, representing a predicate
of second order: ‘since (warrant, (so (datum, claim))’. This means that
a link owns a link pointing to it, which cannot be represented directly as
a WE data type. In AAA this is internally represented by a special link
type pointing from ‘warrant’ to both ‘claim’ and ‘datum’. The ‘claim’ can
be further questioned by a ‘rebuttal’ based on the link ‘unless (rebuttal,
claim)’. The Toulmin schema is shown in Figure 2.

The combination of the Toulmin schema with PHI can be achieved if the
‘claim’ is identified with ‘position’, and ‘datum’ with ‘argument’. Both are
considered as part of this more detailed micro structure. The ‘so’ link can
be both the ‘support’ or ‘objection’ link of PHIL However, if the ‘objection’

link is replaced by the combination of a ‘support’ link with the ‘contradicts’

Author's Argumentation Assistant

link as descibed above, the ‘so’ can uniquely be identified with ‘support’.
The ‘so’ link can then be further elaborated to be a part of the whole Toul-
min structure by using the operation ‘justify’ which activates the Toulmin
schema. The resulting total argumentation structure is defined as the in-
tersection set of the node and link types defined by PHI and the Toulmin

schema.

datum so B claim
sir'lce un'less
warrant rebuttal

on_ac'count_of

backing

Figure 2: The Toulmin Argumentation Schema

Operations for copy/paste from the argumentation to the rhetorical mode
rely on predefined subgraphs:

i copy the whole argumentation network
- e copy a tree substructure
| e copy an issue group: issue with all its positions with their arguments
and with facts
e copy the issue structure up to level n (the possibility above is level 1)
e copy a positionargument with a Toulmin schema
e copy a set of manually selected nodes
e copy a single node
e copy a user defined subgraph
e copy a user defined combination of subgraphs, a higher subgraph.

3.3.3 The rhetorical mode

Structure and content of a non-linear (or linear) argumentative document are
organized in the rhetorical mode. This mode enables the author to select
appropriate elements or substructures of the argumentation mode and to
reorganize them according to his or her rhetorical objectives and principles.
The elements can be modified and new text elements can be added. For these

e

146 W. Schuler & J. Smith

rhetorical purposes the mode offers specific operations as well as additional
node and link types. Such new node and link types may serve for example
to attach explanations or simple text additions to the arguments.

Figure 1 displays in the lower right side the result of a first step of such
a reorganization process: a manually selected subgraph of the argumenta-
tion graph has been copied into the rhetorical mode and a rhetorical item
has been added using the special rhetorical node type ‘Text’ and link type
‘explanation’. The graphical display has been rearranged, too.

In a further step an author will transform at least some (or may be all)
of the argumentative types into appropriate rhetorical ones. The used argu-
mentative schemas will be transformed into appropriate rhetorical argumen-
tation schemas which thereafter will be completed by the author adding new
contents (i.e text or graphics) and revising existing contents. The rhetor-
ical nodes themselves will usually aggregate argumentative subgraphs or
schemas into one coherent text chunk which then may have pointers to the
original argumentative basis according to the author’s intention. Then, the
author will have to design the final hypertext document by defining i.e.
reading paths and display attributes. All these operations as well as the
organization of the rhetorical mode mainly depend on the model of the in-
tended hyperdocument as a product of the system. A proposal of a general
hyperdocument structure is currently being developed.

Which link types are appropriate for rhetorical purposes mainly depend
on the model of rhetorics used. We have elaborated a hierarchical system of
label types with three levels of specialization. An unspecified first level type
‘reference’ can be detailed by using one of the second level types: expla-
nation/generalization, consequence, comparison, illustration, épeciﬁcation,
comprehension. The third level contains even more refined link types. This
type system is being experimentally tested.

3.3.4 Submodes for the definition of node types, link types, and schemas
In order to define and display the types of nodes and links as well as subgraph
schemas the argumentation mode (and also the rhetorical mode) provide two
special dedicated technical submodes. In the type definition mode the basic
node and link types can be defined as graphical items. The types can be
created, handled and arranged there in a similar manner as in its super
mode. In addition to the predefined types which constitute the application
model used, the user can also define his own types. The text content of a
node will contain comments about its type defintion or usage. The result
is a graph representing the defined node and link types together with their

Author’s Argumentation Assistant 147

constraints and further information. Thus, the type definition mode serves
three tasks: definition of the application types, addition of user types, and
graphical presentation of the type structure as user help.

The argumentation type definition mode with its type graph is shown in
Figure 3. The upper part of the graph contains the basic PHI node types

‘Issue’, ‘Position’, ‘Argument’, and ‘Fact’ together with their link types listed
above. The types defining the Toulmin schema are shown in the left bottom
section. In the right section some additional ‘general’ node types ‘Author’,
‘Date’, and ‘Text’ are defined. Their link types can be connected to every
other node type. While the node types ‘Author’, ‘Date’ can be useful for
every mode the node type ‘Text’ with its link types ‘explanation’ etc. are
only used in the rhetorical mode. Such types will have to be defined in the

rhetorical type definition mode. For test purposes, the graph of Figure 3
defines the types for both modes.

ARG, TYPE DEFENITION MODE: Typa Mat 8 lVlIw Control

|Dbplay/mnz

13500

R - EECN— e Py

Argument
daf 3

pireplacement

3308

b

E L |
dat
Poskion
det 2
Conininuiay
Argumont Foct |
def 4

Position gard

det 2
I5sua
aaf 1 Suggeston B TeTorence
13u8 I ‘
daf § eontratis]
Argument Fact
det 3 det d
z Position
]
def 2 o
8 3 ganarsl 1
LTI
def & 3500
Argumant daf 1
Iy \E—;
TR Author |
snce [sinee N COmparHon ganeral 2
\ / Toet eXplanETIon
unless [Warrant grneral CoNsequnce
Toulmin 41 Taxt
goneral 9
Taxt
: _ ey
[Rebuttal
[Backing Text
Touinln #2]
Toulmin #3 gueairat 3

Figure 3: Type Definition Submode of the Argumentation Mode

148 W. Schuler & J. Smith

Along with the type definition mode a schema definition mode is planned
which will offer the possibility to define arbitrary subgraph types constitut-
ing network substructures being constructed of the allowed node and link
type set. A subgraph type is defined by constructing a normal connected
graph like in another mode. It is labelled like a node or link type and can
be considered as a complex node. Such a complex node can itself be used in
order to construct other higher subgraphs. So a subgraph type will be used
together with normal node and link types or with other subgraph types in
order to construct higher subgraph types. Also a recursive subgraph type
definition should be possible.

Subgraph types are used as schemas to assist easy input using prompts,
browsing and display, and for the definition of larger output structures, as
well as for copying from one mode and pasting to another. Like the atomic
types, the schemas as subgraph types can also be predefined or they are
defined by the user. The latter case is very important for the formulation
of a query in form of a subgraph type. In most other operations a subgraph
type is applied to a selected target node. ‘

2.8.5 Other modes

The other modes are the tree and text mode. They are the same as in WE
and serve to define a linear document if this is the author’s intention. The
tree mode is based on the single-link type super/sub, which means that
all information about link types in the original structure of the rhetorical
mode is lost. For this purpose the rhetorical mode can additionally serve
to identify and organize substructures which ultimately shall be elements
of an intended hierarchical outline. The resulting rhetorical document can
be reorganized into a tree structure in the tree mode with the single link
type sub/super. Restructuring is supported by two basic WE operations to
move substructures from the network mode into the tree mode. The result
in the tree mode can then be transformed into a linear document in the text
mode where the whole text is displayed and individual text elements can
be edited. However, instead of using the rhetorical mode to create a linear
document it can also be the basis of a hyperdocument.

Figure 1 shows a rhetorical graph in the rhetorical mode which has been
transformed into a tree structure in tree mode. In the tree mode a subtree
with the node ‘Searle’ has been selected. It contains a part of the ‘Chinese
Room Argument’ and is linearized into scrollable text in the text mode.

i

.

DI o S A K 1 e r e

=

Author’s Argumentation Assistant

3.8.6 Operations between the modes

Between the different modes, appropriate transformation operations have
to be available including cut/copy/paste. The main flow of node/link data
substructures will be along the modes: argumentation — rhetorical — tree
— text. Very importantin AAA is the transfer of subgraphs between these
modes, especially from the argumentation mode to the rhetorical mode.
These subgraphs can be, for example, single nodes, individually selected
nodes, subtrees and schemas like the Toulmin schema.

The main mechanism to transport subgraphs manually from one network
mode into another uses the copy/paste operation. First, the user selects
in the source mode the subgraph type. The subgraph types as structural
schemas have either been already predefined in the system, i.e. the Toulmin-
schema, or they can be defined individually by the user. Every subgraph
type is identified by a unique name. Then, having selected a specific node
type as the root, a special subgraph type can be selected from the set of
subgraph types which are applicable to this node type. If the node is part of
an existing subgraph of the selected type (usually the root), this subgraph
is copied to a cyclic buffer containing all copied subgraphs. The subgraphs
copied from the source mode into this buffer can then be pasted to other
selected nodes in the destination mode.

4 Tools for experiments in writing

In order to test the theory of cognitive modes, to study writers’ cognitive
strategies, and to refine the WE system on the basis of empirical results,
WE has been designed to be used as an instrument with which to conduct
empirical studies. To support those studies, TextLab at UNC developed four
kinds of new protocol analysis tools which are used in a series of studies.

These tools comprise a protocol tracking function which records each user
action as an event using a simple protocol transcription language. A replay
Junction can take the protocol and recreate and replay the user’s session.
Third, a cognitive grammar in form of an expert system parses the protocols
for a session and produces a parse tree that represents a user’s strategy for
this session [Smith et al. 89]. Finally, display tools help to interpret the
protocols. These tools operate on the parse tree produced by the grammar,
data derived from the parse, or statistical analyses.

AAA will offer similar protocol analysis tools as WE to create a protocol
of an author’s session, which then can be used for replay and analysis in order
to study empiricallly the process of argumentative and rhetorical writing.

150 W. Schuler & J. Smith

5 Conclusions

AAA is an experimental system being still in progress and designed for inves-
tigating our ideas about argumentative writing in different modes. Like WE
it is built for small-scale applications with small amounts of nodes and links
in each mode. For large amounts of nodes and links AAA has to be based
on a reliable and efficient DBMS, i.e. IPSI’s hypermedia engine HyperBase
[Schiitt & Streitz 90]. Further, the graphical display and handling capabil-
ities have to be refined, i.e. for subgraphs. Other extensions are i.e. to add
new modes, retrieval possibilities or to offer active helps for argumentation.

Acknowledgements

Thanks are due especially to our collegues Jérg Haake, Jorg Hannemann,
Werner Rehfeld, Helge Schiitt, Norbert Streitz, and Manfred Thiiring work-
ing in the WIBAS project at GMD-IPSI, as well as to Gordon Ferguson,
Yen-Ping Shan, and others of the UNC TextLab group. The ideas presented
in this paper have greatly profited from discussions with them.

References

_ [Conklin & Begeman 87] J. CONKLIN and M. L. BEGEMAN, “gIBIS: A Hyper-

text Tool for Design Deliberation”. In Hypertest ‘87 Proceedings, Chapel Hill,
NC: Univ. of North Carolina, Nov. 1987, pp. 247-251.

[Fischer et al. 89] G. FisCHER, R. MCCALL, and A. MoRcH, “JANUS: Integrat-
ing Hypertext with a Knowledge Based Design Environnment”. In Hypertest ‘89
Proceedings, New York: ACM, Nov. 1989, pp. 105-117.

[Kopperschmidt 85] J. KOPPERSCHMIDT, “An Analysis of Argumentation”. In
T. A. van Dijk (Ed.): Handbook of Discourse Analaysis, vol. 2, Dimensions of
Discourse, London: Academic Press, 1985, pp. 159-168.

[Kunz & Rittel 70] W. Kunz and H. W. RITTEL, “Issues as Elements of Infor-
mation Systems”. Working paper 131, 1970. Berkeley, CA: Univ. of California,
Center for Planning and Development Research.

[McCall 89] R. McCaLr, “MIKROPLIS: A Hypertext System for Design”. De-
sign Studies, 1989, vol. 10, no. 3, pp. 228-238.

[McCall et al. 90] R. McCaLL, P. BENNETT, P. d’Oronzio, J. OSTWALD, F.
SHIPMAN, N. WaLLACE, “PHIDIAS: A PHI-based Design Environment Inte-
grating CAD Graphics into dynamic Hypertext”. In this volume.

[Schiitt & Streitz 90] H. ScHUTT and N. STREITZ, “HyperBase: A Hypermedia
Engine Based on a Relational Database Management System”. In this volume.

[Searle 80] J. SEARLE, “Minds, Brains, Programs”. The Behavioral and Brain

Sciences, 1980, vol. 3, pp. 417-457.

i
H
{

Argumentation Assistant

[Smith et al. 87] J. B. SmiTH, S. F. WEIsS, and G. J. FERGUSON, “A Hypertext
Writing Environment and its Cognitive Basis”. In Hypertest ‘87 Proceedings.
Chapel Hill, NC: Univ. of North Carolina, Nov. 1987, pp. 195 - 214.

[anith & Lansman 88] J. B. SmiTH and M. LANSMANN, “A Cognitive Basis for
a Computer Writing Fnvironment”. Technical Report TR87-032, June 1988.
Chapel Hill, NC: Univ. of North Carolina, Dep. of Comp. Science.

[Smith et al. 89] J. B. SMITH, M. C. Rooks, and G. J. FERGUSON, “A Cognitive
Grammar for Writing: Version 1.0”. Technical Report TR89-011, April 1989.
Chapel Hill, NC: Univ. of North Carolina, Dep. of Comp. Science.

[Smolensky et al. 88] P. SMOLENSKY, B. Fox, R. KiNg, and C. LEWIS,
«Computer-aided Reasoned Discourse or, how to Argue with a Computer”. In
R. Guindon (Ed.): Cognitive Science and its Application for Human-Compuler
Interaction, Norwood, NJ: Ablex, 1988, pp. 109-162.

[Streitz et al. 89] N. STREITZ, J. HANNEMANN, and M. THURING, “From Ideas
and Arguments to Hyperdocuments: Travelling through Activity Spaces”. In
Proceedings Hypertext ‘89, New York: ACM, Nov. 1989, pp. 343-364.

[Toulmin 58] S. TouLMIN, The Uses of Argument. Cambridge University Press,
1958.

