The Architecture and Implementation of a Distributed
Hypermedia Storage System

Douglas E. Shackelford - . John B. Smith F. Donelson Smith
Department of Computer Science  jbs@cs.unc.edu smithfd@cs.unc.edu
University of North Carolina

Chapel Hill, North Carolina

27599-3175

shackelf @cs.unc.edu

ABSTRACT

Our project is studying the process by which groups of individuals work together to build large, complex structures
of ideas and is developing a distributed hypermedia collaboration environment (called ABC) to support that process.
This paper focuses on the architecture and implementation of the Distributed Graph Storage (DGS) component of
ABC. The DGS supports a graph-based data model, conservatively extended to meet hypermedia requirements.
Some important issues addressed in the system include scale, performance, concurrency semantics, access protection,
location independence, and replication (for fault tolerance).

KEYWORDS

distributed data, computer-supported cooperative work (CSCW), distributed file systems, performance, scalability,
hypertext '

INTRODUCTION AND MOTIVATION

Future hypermedia systems will integrate diverse information resources, systems, and technologies. They will be
based on modular architectures (e.g., (Thompson, 1990)) that separate orthogonal concerns into plug-compatible
components such as change management, query and content search, notification, application-specific concurrency
control, computational semantics, and window conferencing. Some of these components, such as change

management, may be highly dependent on the semantics of a particular domain, whereas others will provide general
support for all applications. ‘

The key point ... is that it is modular and open. This modularity is based on the observations that
the functions the modules perform are independent of each other, that is orthogonality implies
modularity. (Thompson, 1990)

Orthogonality implies modularity; modularity implies choice. The importance of this observation is that every
service has a cost associated with it. For example, transactions may be the appropriate concurrency mechanism for

one application, while imposing prohibitively high overhead on another. Ideally, one should be able to use a service
when it is needed without having to pay for it when it is not.

In this paper, we describe the architecture and implementation of our Distributed Graph Storage (DGS) system. We
have designed it in a way that supports modular expansion to add services such as those enumerated above. A
fundamental requirement has been that the basic hypermedia services for data storage and access should be
inexpensive, efficient, and scalable. This is particularly important since the performance of these basic services is an

Permission to copy without fee all or part of this material is  that copying ls by p'ermiuion of the Asso
granted provided that the copies are not made or distributed for Machinery. To copy otherwise, or to r
direct commercial advantage, the ACM copyright notice andthe  and/or specific permission,

title of the publication and its date appear, and notica la given © 1993 ACM 0-89791-624-7/93/0011...51.50

ciation for Computing
epublish, requires a fos,

Hypertext '93 Proceedings 1 November 1993




upper bound on the performance of the system as a whole.

The DGS has been developed as a part of a larger program of research that focuses on the process of collaboration and
on technology to support that process. We are concerned with the intellectual collaboration that is required for
designing software systems or other similar tasks in which groups of people work together to build large, complex
structures of ideas. The work of such groups -- either directly or indirectly -- is concerned with producing some
tangible artifact. For software systems, the artifact may include concept papers, architecture, or specification
documents, programs, diagrams, reference and user manuals, as well as administrative documents. A subtle but
important point is that we view a group's tangible creations as parts of a single artifact.

Our research in the UNC Collaboratory project studies how groups merge their ideas and their efforts to build an
artifact, and we are developing a computer system (called ABC for Artifact-Based Collaboration) (Smith and Smith,
1991) to support that process. ABC has six key components(Jeffay et al., 1992): the Distributed Graph Storage
system, a set of graph browsers, a set of data application programs, a shared window conferencing facility, real-time
video and audio, and a set of protocol tools for studying group behaviors and strategies.

In the following sections we discuss the architecture and implementation of the DGS. We first describe briefly in
Section 2 the key requirements for the distributed implementation. Section 3 presents the underlying data model.
Section 4 sketches the distributed implementation, our efforts to evaluate the system's performance, and the current
status. Section 5 relates our design to other work, and we conclude in Section 6.

REQUIREMENTS FOR THE DISTRIBUTED STORAGE SERVICE

In this section we give a brief summary (in no particular order) of key requirements that have shaped our storage
service design.

Permanent (persistent) storage -- obvious but fundamental.

Sharing with protection -- because the artifact effectively constitutes the group's collective memory, it must
be sharable by all. There are, however, requirements for mechanisms to authorize or deny access to selected elements
of the artifact by individuals or sub-groups.

Concurrent access - since collaborators must work together, it is often necessary for more than one user to read
or modify some part of the artifact at the same time. Data consistency semantics in these cases should be easily
understood and provide minimal barriers to users' access to the artifact.

Responsive performance -- sufficient to support interactive browsing of the artifact, is required.

Scalable -- we are concerned about scale in two respects: the number of users in a group (and consequent size and
complexity of the artifact), and the geographic dispersion of group members. To be scalable, it must be possible to
distribute the system over available processing and network resources and to add resources incrementally as

necessary. Performance (responsiveness) as perceived by users must not degrade significantly as the system grows
in scale.

Available -- if data becomes unavailable because of system faults, users may be severely impacted. The system
must, therefore, be designed to tolerate most common faults and continue to provide access to most or all elements
of the artifact. Replication of data and processing capacity is required to achieve high availability.

User and artifact mobility -- users will need to change locations and system administrators will need to move
data or processing resources to balance loads and capacity. The system must support this mobility in a way that is

transparent to users and application programs. There should be no location dependencies inherent in the storage
systermn.

Private data -- these are created by individuals for their own use. Examples include personal notes, annotations

on documents, and correspondence. Users must be able to create and protect such data and still establish
relationships among them and the public artifact.

Support for applications -- many applications used by a group are likely to be existing tools such as editors,
drawing packages, compilers, and utilities, which use a conventional file model for persistent storage. The system
should make it possible to use such tools on node data-content with no changes.

Hypertext '93 Proceedings 2 November 1993




DATA MODEL CONCEPTS

ATTRIBUTES AND CONTENT

The most basic element of the data model is the node, which usually contains the expression of a single thought or
idea. Structural and semantic relationships between nodes are represented explicitly as links between nodes. !

The data model provides two mechanisms for storing information within a node: node attributes and node content.
Attributes are typed, named variables for storing fine-grained information (approximately 1-100 bytes). Some
attributes (such as creation time and size) are maintained automatically by the system. There may also be an
unlimited number of application-defined attributes.

In comparison to attributes, node content is designed to reference larger amounts of information. This content can
take one of two forms:

1. astream of bytes (accessed using a file metaphor)
2. a composite object (accessed using a graph metaphor)

Applications control whether the content of a particular node is of Typel or of Type 2. Since Type 1 content obeys
the standard file metaphor, it can be used to store the same types of information as files, e.g., text, bitmaps, line
drawings, digitized audio and video, spreadsheets, and other binary data. Applications that can read and write

conventional files can read and write Type 1 content with no changes. Type 1 content is stored with the node that
contains it.

When a node has Type 2 content, then the content is stored separately as a composite object called a subgraph.2 A
subgraph is defined as a subset of the nodes and links in the artifact that is consistent with graph-theoretic
constraints. For example, all subgraphs satisfy the condition that if a link belongs to a subgraph, then so do the
link's source node and target node. Nodes and links may belong to multiple subgraphs at the same time, but every
node and link must belong to at least one subgraph. Our data model also provides strongly typed subgraphs (e.g.,
trees and lists) that are guaranteed to be consistent with their type.

S-subgraph

S-subgraph

S-subgraph &~

HS-subgraph

\ ”"'"m
A -
@ ~]

Figure 1: Examples of Hyper-structural Linking

Links can have both attributes and content associated with them. Moreover, the data model defines two classes of
links: structural and hyper-structural. Structural links (S-links) are used to store the essential structure of an artifact.
By contrast, hyper-structural links (HS-links) are lighter-weight objects that represent relationships that cut across

ILinks to links are prohibited.

2Hereafter, Type 1 content will be referred to as file content and Type 2 content will be called subgraph content} o

Hypertext '93 Proceedings 3 : November 1993




the basic structure (see Figure 1). Subgraphs containing only structural links are called S-subgraphs; those
containing hyper-structural links are called HS-subgraphs.

USING THE DATA MODEL TO ORGANIZE INFORMATION

The data model encourages users to compose a large artifact from small subgraphs using subgraph content. This
organization can improve human comprehension of the artifact and increase the potential for concurrent access to
individual components. The best way to understand these mechanisms is by example.

Root subgraph (SG 0)

users

public projects

shackelf colab
o ] — N - ~ S~
— - - / —— - ~~ ~
shackelf’s home subgraph (SG [1) Colab Project Subgraph (SG 6)
personal coursework

demos groups

research \ ~d

\ Tregh reports internal DGS \m other
o N \ ~ ~ docs —
Research subgraph (SG 2) ) - =

nas - ) Coursework subgraph (SG 3) DGS project subgraph (SG 7)

dissertation .

Comp 243 Version 0  prototypes test data
B -~ D Comp 145
-~ T~ . Version 0.3 docs shackelf
shackelf’s DGS subgraph (SG 4) el
code  docs (5GS5) . —
meeting notes | |[] O O DGS papers graph (SG 8)
D e -—D D D conference
e P Raper
= — e s 9 S —
Source A Distributed Storage System for Artifacts in Group Collaborations (SG 9)
-—
- introduction
’ data model distributed related wor conclusiocn
implementation
- o~ e ™ 7

e e o S
Text Text
Content | 4 — o . | Content

Figure 2: Organizing the Public and Private Pieces of an Artifact

Figure 2 illustrates one way to organize the public and ptivate materials associated with a large research project (node
content is indicated by dashed lines). One can observe that Figure 2 subsumes the organization of data in a
conventional file system while providing additional mechanisms for storing meta-information about files (in
attributes) and for representing semantic and structural relationships between files (in links).

Subgraph SG 9 in Figure 2 is the top-level subgraph of a document. A useful exercise is to compare this graph
structure with the way that the conference paper would be stored in a conventional file system. The most striking
difference is the number and size of the nodes that compose the document. Whereas a conventional document would
normally be stored in a single file or a small number of files, the DGS data model encourages a user to divide
documents into many smaller nodes and subgraphs. This maximizes the benefits of hyper-structural linking because

each node expresses a single concept or idea, By dividing a document into different subgraphs, collaborators may be
able to structure their materials for easier concurrent access.

FINE-GRAINED LINKING USING ANCHORS

Although nodes are finer-grained than traditional files, there are still times when one would like to reference
information at an even finer level. For example, an application might want to create a link that points to a specific
word within a node, rather than to the node itself. To achieve fine-grained linking like this, the data model provides

Hypertext '93 Proceedings 4 November 1993




the concept of an anchor within a node. An anchor identifies part of a node's content, such as a function declaration
in a program module, a definition in a glossary, or an element of a line drawing. An anchor can be used to focus an
HS-link onto a specific place within the content of a node. When an HS-link is paired with one or more anchors in

its source or target nodes, it is called an anchored HS-link. The relationship between anchors and HS-links is many-
to-many. ‘

COMMON ATTRIBUTES AND GRAPH ATTRIBUTES

Some attributes are called common attributes because their values are independent of the context from which they are
accessed. All objects---nodes, links, and subgraphs---can have common attributes. In addition, nodes and links can
have context-sensitive attributes whose value may be different depending on the context from which they are
accessed. This second type of attribute is called a graph attribute because a subgraph provides the context.

DESIGN AND IMPLEMENTATION

SYSTEM ARCHITECTURE

As shown in Figure 3, the DGS has a layered architecture that can be configured in a number of different ways. The
Application Layer contains the user interface and other code that is application-specific. The top layer of the DGS is
the Application Programming Interface (API) which exports a graph-oriented data model to applications. An
overview of this data model was presented in a previous section. Most of the DGS is implemented in the bottom
two layers: the Graph-Cache Manager (GCM) and the Storage Layer. The GCM implements the data model and
performs local caching; the Storage Layer is responsible for permanently storing results.

Application Layer Application Code Application Code '
API
GCM
Application
7)) Programming
bd Interface
g __________ - Distributed Distributed
e Storage Server Storage Server
| Graph-Cache DGS-M1 . DGS-M2
Manager (GCM)
graph manipulation
cache management Application Code 1 Application Code
__________ - - -
Y
Storage Layer aoM *
permanent storage ¥
distribution Single~-User, GCM
Local Storage
Single~User,
Local Storage
DGS-S1 DGS-82

Figure 3. Four Implementations of the DGS Layered Architecture

Since the API isolates the application from the rest of the DGS, application code is portable across different
implementations of the bottom two layers. We currently support two different implementations of the storage layer
and two different methods for connecting the API with the GCM. This yields the four implementations that are
shown in Figure 3. In DGS-M2, the application and the GCM run in different processes on the same machine; the
Storage Layer is implemented as a multi-user, distributed storage server. DGS-M1 is the same except that the GCM
is linked with the application to become a single process. The advantage of this design is better local response time
due to reduced Inter-Process Communication (IPC). A disadvantage is that it increases the size of application
executables. DGS-S1 and DGS-S2 follow a similar pattern except that the distributed storage server is replaced by a
single-user, non-distributed storage layer. '

Hypertext '93 Proceedings 5 November 1993




.,

THE OBJECT-ORIENTED API

The API for the DGS is a C++ class library (for a complete description, see (Shackelford, 1993)). Figure 4 shows
the major classes in the inheritance hierarchy. The class Object defines operations that are common to all objects

such as the functions for manipulating the common attributes of an object. Subclasses inherit the API of their
parent class and extend the inherited API with more specialized functions.

Object
Component Subgraph
Link Node S-subgraph HS-subgraph
S-link ~ HS-link Network . Tree List

Figure 4: API Class Hierarchy

All node, link, and subgraph objects are identified by an object identifier (OID) that is universal and unique. Once an
object is created by the DGS, its OID is never changed and the value is never reused even if the object is deleted. To
applications, an OID is an "opaque" (uninterpreted) key that can be used to retrieve the corresponding object.

However, we discourage application programmers from making direct reference to OIDs. Most operations can be
performed without even knowing that OIDs exist.

CONCURRENT ACCESS TO OBJECTS

Since the DGS data model is object-oriented, the objects of the data model---nodes, links, and subgraphs--—-exist as
distinct entities within the storage system. Before a user's application can access the data within a particular object
(see Figure 5), the application must explicitly open the object using its Open() function.

Subgraph Node
System Layer stem Layer
. T Systent Afffibutes
System Attributes of the node
of the subgraph "List of the subgraphs

that contain the node

Common Layer

Common Attributes Common Attributes
of the subgraph _ ... Ofthenode
Content” 1 Anchors
Node Layers .
Graph ATiTbuiEs of 4 fods Link
in the context of this subgraph
List of the Tinks that enter S_y%t%g.yé_r.
H i stem ul
and leave the node in this context Y! of the link
" Tist of the subgraphs
2’ \2 that contain the fink
LinkLa vers \ Common Layer
Graph Attributes of a link Common Attributes
in the context of this subgraph of the link
OIDs of source and target nodes

Z/ o

Figure 5: Information Stored in Nodes, Links, and Subgraphs

Open() will fail if the user lacks the proper access authorizations and if the request is in conflict with other requests

in progress. Conflict can occur when different users try to access the same object concurrently. To specify allowable
concurrent accesses, the API defines three access modes for nodes, links, and subgraphs: DGS_READ, DGS_WRITE,
and DGS_READ_NO_ANCHOR. Applications must specify one of these modes as a parameter to Open(). DGS_READ

Hypertext '93 Proceedings 6

November 1993




allows operations that do not change subgraph membership, linking information, or attribute or content values. In
the case of nodes, DGS_READ also allows anchor creation and deletion, but only when the application has read_write
authorization on the HS-link that is being anchored. DGS_READ_NO_ANCHOR is defined only for nodes and allows
all operations of DGS_READ except anchor creation and deletion. DGS_WRITE allows all operations.

The following rules govern concurrent access to an object:

»  For links and subgraphs, multiple opens with DGS_READ access and a single open with DGS_WRITE access
are allowed concurrently (as is the weaker case of multiple DGS_READ opens alone).

»  For nodes, multiple opens with DGS_READ_NO_ANCHOR access and a single open with DGS_WRITE access

are allowed concurrently (as is the weaker case of multiple DGS_READ and/or DGS_READ_NO_ANCHOR
opens alone). :

Thus, for nodes the design supports multiple non-annotating readers and a single writer OR multiple annotating
readers. A consequence of this is that a writer is blocked from accessing a node that is being annotated by a reader
and vice versa. Changes to an object are not visible to any applications with overlapping opens of the object until it
is closed by the writer and then only to applications that open it after the close completes.

ACCESS CONTROL FOR OBJECTS

Groups can control access to parts of the artifact by specifying access authorizations for node, link, and subgraph
objects. Authorizations are expressed in an access control list that is stored with each object. An access control list
maps names of users or groups of users to categories of operations that they are allowed to perform on the associated
object. Two categories of authorizations are defined: access and administer. Access authorizations give users
permission to access the data associated with a particular object. Administer authorizations give users permission to
perform operations such as changing the object's access control list. Although the API does not define an explicit

annotate permission, a similar effect can be accomplished by restricting the access authorizations associated with HS-
subgraphs.

DISTRIBUTED IMPLEMENTATION

In this section we discuss the distributed implementations (DGS-M1 and DGS-M2 in Figure 3) with emphasis on
key design decisions.

Given an artifact composed from small elements and user access via interactive browsers, we believe many
characteristics and access patterns of objects will strongly resemble those observed in distributed file systems
supporting software teams using workstations (Baker et al., 1991), (Kistler and Satyanarayanan, 1991). Our design
is based on the notion that a scalable implementation can be achieved by applying design principles such as local
caching, bulk-data transfer, and minimal client-server interactions pioneered in high-performance, scalable file
systems like AFS (Howard et al., 1988), Sprite (Nelson et al., 1988), and Coda (Kistler and Satyanarayanan, 1991).
We also model our approaches to data consistency, concurrency semantics, and replication after these distributed file
systems. This provides a sufficient level of function to users without requiring the full complexity of mechanisms
(e.g. distributed transactions) used in database systems. '

The basic structure of the system is shown in Figure 6. A browser or application process acts on behalf of a user to
read and modify objects. Each user’s workstation runs a single Graph-Cache Manager (GCM) process that services
all applications running on that machine. Application requests are directed over local interprocess communication
facilities to the GCM. The GCM maintains a local copy of node, link, and subgraph objects used by application
processes and is responsible for implementing all operations on objects in the data model except for anchor table
merging. The GCM is also responsible for maintaining the consistency of typed S-subgraphs. It is important to
note that this design distributes the processing for all complex object operations to the users' workstations and thus
minimizes the processing demands on shared (server) resources.

Hypertext '93 Proceedings 7 November 1993




User's Workstation

What in the warid
Auter & veed o

fe grove 1ihe i
blants.,.iree o

Apbllcat!on

User's Workstation

Ay | |erke

Appli Browsar

TN i Y :
e i o e\ s Y e e e s e s b e s bV e e e @ D] ECE
R _\5'\\ . = 3 R Interface
Graph-Cache Manager Graph-Cache Manager
eem |33 [ gem ([ ==
= [ 1 03
Partiti Authentication
ng;ﬁ%?, N & and Protection
Service Service

Interface

‘Server Workstation Server Workstation -
/ N
Storage Server Storage Server
3 [~ ——Object ——— —| | E e

—— Files — — __

Do

—] N
Figure 6: DGS System Structure

When an application opens an object, the GCM, in turn, opens the object at the storage server and retrieves it using
a whole-file transfer. The received object is converted from its representation in a file to an object representation
designed for fast access in memory. As the application makes requests, the GCM performs those operations on the
copy in its local cache. Write operations are reflected in the storage server only when the GCM closes the object
and returns the modified file representation to the storage server. Each file retrieved from the storage server contains
either a whole node (including data content, if present), a whole subgraph, or a group of links. An important
performance optimization is that context-dependent attributes (graph attributes) and link information for all nodes in
a subgraph are stored in one subgraph file. Thus, all of the data needed by a browser to display a subgraph is
available from a single request (open) to the storage server. The structure of each type of file is shown in Figure 7.
Nodes and subgraphs are stored individually, whereas links are grouped according to the subgraph in which they were
created. :

access control list
r—~—common & system attributes

subgraph fil I link information; graph attributes
node file I content
link file ‘Ilinkrecords" l *multiple links from

same sugraph in file

= representation processed by storage server

Figure 7: Structure of Object Files

The file-oriented interface to the storage server is designed to isolate it as much as possible from the representation
and semantics of objects. The primary responsibility of the storage server, therefore, is to store and control access
to files indexed by an object's OID. Storage servers are also responsible for maintaining’ access control lists,
enforcing access authorizations, enforcing concurrency semantics, creating unique OIDs and anchor IDs, and merging
anchor table information created by concurrent readers of the same node. The storage server must perform several
checks before completing an open request. First, it must determine whether the user who is running the application

November 1993

Hypertext '93 Proceedings 8




has the correct authorizations to open the object in the requested access mode. Then, the storage server must
determine whether the requested access mode is in conflict with any overlapping opens for the same object. An

open request will fail if the user lacks proper access authorization or if the open conflicts with other opens in
progress.

Each GCM may need to communicate with multiple storage servers, including servers that provide protection
services and mappings from an OID to the host system that is the custodian for that object. Object location is
based on dividing the artifact store into non-overlapping collections of nodes, links, and subgraphs called partitions.
Each partition is associated with real storage devices. Partitions form boundaries for administrative controls such as
space quotas, load balancing among servers, and replication of data. The partition number of an object is embedded
in its OID but this substructure is never made visible outside the storage service. An object must (logically) remain
in the same partition for its entire lifetime because its OID cannot be changed.

We distinguish the partition number of an object from its absolute physical location(s) and, by introducing a level
of indirection (a partition directory), it is possible to change the physical location of an object while preserving its
OID and, therefore, all its link and composition relationships with other objects (see Figure 8). Partition-location
servers maintain a mapping of logical partitions to host(s) running server processes for that partition. The GCM
extracts the partition number from the OID of the object and uses the partition location service to find the host
running a storage server process maintaining a directory for that partition (the GCM can also cache the partition
location information for use in references to other objects). We expect that in most cases one storage server
maintains both the partition directory and data storage for an object. Despite their importance, partitions are
invisible to users. Only system administrators and system programmers need to understand partitions. An RPC
interface to the storage servers is provided for administrative processes to use in creating new partitions, moving
objects from one physical partition to another, and performing backup and recovery operations.

Object Identifier

Reserved | Type | Logical Partition j Object Number

in Partition
24 bits B bits 32 bits 32 bits
I i | } 1 i
Partition , ' Storage
Location Server
Service
Host(s)
Storage
Server Directory Server Partition Directory
Lr
1
<

ﬁ
Figure 8: OID and Objéct Location

Storage servers are responsible for managing partitions on disk, replicating partitions for availability and fault
tolerance in case of media or process failures, and for recovering from most failures. The key to our implementation
of fault tolerance is the ISIS system developed by Ken Birman and his colleagues at Cornell University (Joseph and
Birman, 1986). In particular, we use ISIS process groups to maintain replicated copies of physical partitions and to
provide the location independence of logical partitions. Each logical partition corresponds to an ISIS process group.

Performance and scalability are two key requirements for the system. To evaluate the current implementation with
respect to these requirements, we have begun a series of benchmark experiments similar to those used to evaluate
performance and scalability of distributed file systems such as AFS (Howard et al., 1988) and Sprite (Nelson et al.,

Hypertext '93 Proceedings 9 November 1993




G e T S A

1988). We have created several benchmark programs designed to stress different aspects of the system. The most
interesting of these is a "synthetic browser" program that mimics the requests that result when users search for
information in an artifact stored in the system. Load on the storage service is generated by running copies of the
synthetic browser on several workstations. This program has parameters that can be used to produce a wide range of
browsing behaviors. In our first experiments we are using parameter values that represent the observed behavior of
human subjects in a series of experiments we conducted to understand how people would use a hypertext system for
problem solving (Smith, 1992). With these values, each instance of the program running on one workstation
generates a load on the server corresponding to approximately 10 users working with interactive browsing
applications. We have also written an "artifact generator" program that, based on a number of input parameters,
creates a structure of subgraphs, nodes, and links to serve as data for the browsing benchmark.

The results of our initial measurements have been very encouraging. The configuration for these measurements
consisted of one storage server running on a DECstation 5000/25¢ and up to 7 workstations (DECstation
5000/120s) each running a copy of the synthetic browser program. All workstations were connected by a single
ethernet segment. The most significant results are:

e CPU utilization on the server is at most 0.5-1.0 % per active user.

e Server response times to requests from 50 users increased by less than 20 % over response times to requests
from 10 users.

The results show that one server can support at least 50 users. More extensive benchmark experiments are underway

. to validate this conclusion for a variety of configurations.

We are currently using the DGS for developing browsers and other collaboration support tools. We continue to
make enhancements (mostly for operations and administration) and plan to have a version suitable for distribution to
other groups by Fall 1993.

COMPARISON WITH RELATED WORK

In this section, we compare our design with several hypertext systems that have significant capability for supporting
collaborating groups, i.e., Intermedia(Haan et al., 1992; Yankelovich et al., 1988), HyperBase/CHS(Schiitt and
Streitz, 1990; Schiitt and Haake, 1993), Augment(Engelbart, 1984), Telesophy(Caplinger, 1987; Schatz, 1987),
KMS(Akscyn et al., 1988), and HAM(Campbell and Goodman, 1988; Delisle and Schwartz, 1987). These systems
differ widely on factors such as the data model supported, scalability, concurrent reader/writer semantics, and
protection. '

DGS, HyperBase/CHS, and Dexter(Halasz and Schwartz, 1990) support rich data models that include aggregates
(named groups of objects), aggregates of aggregates, and aggregates as endpoints of links. Intermedia, HAM, and
Augment do not use aggregates in composition or linking. Telesophy's data model has aggregates but does not give
first-class status to links. HB1(Schnase et al., 1991) and Trellis(Stotts and Furuta, 1989) provide strong support for
computation within hypertext but do not have aggregates. The DGS data model benefits from the graph-theoretical
metaphor on which it is based and is the only system to provide strongly-typed aggregate objects.

Other areas in which these systems differ substantially are in the semantics of concurrent reading and writing and in
the access protection mechanisms (see Table 1). These systems also differ in their capability to scale up to large
numbers of users (and objects) while preserving the illusion of location transparency. Both Telesophy and the DGS
have made scalability a central issue in their designs. However, the DGS provides more flexibility in its data model
and stronger consistency semantics.

Hypertext '93 Proceedings 10 November 1993

O PR T AR T UV

P

ot o 3




Hypermedia
System

Concurrent Reader/Writer Semantics

Protection of Objects

Augment

Can have multiple readers of documents that
have been submitted to the Journal system

Objects in the Journal are read-only.
Access to Journal entries can be
restricted at submission time

HAM

could not be determined

Access Control Lists (optional):
access, annotate, update, and destroy
permissions

HyperBase/CHS

Activity markers are provided to warn
applications of concurrent activity, but these
markers are advisory in nature. All
applications are notified when data is changed,
so that they can update their view (if desired).

Access control will be based on user
roles such as "manager" and
"secretary” (not yet implemented).

Intermedia

Supports multiple users reading and
annotating, and a single writer. First user to
write an object locks out other potential
writers

Provides read, write, and annotate
permissions that can be granted to
users and groups of users.

KMS

Uses an optimistic concurrency method.
When a writer attempts to save a node, he/she
may be denied because someone else has
concurrently written to the same node. In this
case, the human user must manually merge
the two conflicting versions

Owner can protect a frame from |
modification or read access. In
addition, an intermediate form allows
users to add annotation items, but not
to modify existing items.

Telesophy

Supports multiple concurrent readers and
writers. When writes overlap, the last writer
completely overwrites the work of others

could not be determined

DGS

Supports multiple non-annotating readers and
a single writer OR multiple annotating
readers. Applications must declare their intent
at the time that they open an object. Intent
can be one of: read and annotate; read-only;
read/write and annotate.

Access Control Lists: access (read or
read/write) and administer
permissions. Rather than associate a
single annotate permission with a
node, the DGS provides a more
flexible mechanism of associating
annotate permission with the HS-
subgraphs that contain the node.
Thus, a user might be allowed to
annotate a node within his personal
context at the same time that he is
denied the ability to annotate the node
in a public context.

Table 1: Concurrent Reader/Writer Semantics and Object Protection

SUMMARY AND CONCLUSIONS

Collaborative groups face many problems, but one of the hardest and most important is to meld their thinking into a
conceptual structure that has integrity as a whole and that is coherent, consistent, and correct. Seeing that construct
as a single, integrated artifact can help. But groups must also be able to view specific parts of the artifact in order to
understand and manage it. Our design was guided by these requirements, along with others discussed above. The
graph-based data model permits us to both partition the artifact and to compose those pieces to build larger

Hypertext '93 Proceedings .11

November 1993




components and the whole. The distributed architecture, in turn, permits us to build a system that can scale up in
terms of the size of the artifact, the number of users, and their geographic distances from one-another.

We observe that most of the academic research in hypermedia is not based on the sort of modular architecture that
was described at the beginning of this paper. Although many communities view hypermedia as an "interesting"
application, we take the perspective (also expressed in (Schnase et al., 1991)) that hypermedia has a broader role to
play. In our opinion, hypermedia is not just an application, but is a new paradigm for the way we work and
collaborate with each other. As such, it will be an essential component of the next generation of operating system
support. Our experiences with DGS strongly indicate that it is possible to achieve the richer functions needed for
hypermedia storage with cost, performance, and scalability comparable to the best conventional distributed file
systems (e.g., AFS).

As we look to the future, additional issues we will explore pertain to wide-area network access, dynamic change
notification, graph traversal, and support of a richer set of graph and set operations and queries. Many of these
extensions lend themselves to the sort of modular approach that is suggested in the Strawman Reference Model
(Thompson, 1990). ' ' '

REFERENCES

Akscyn, R. M., D. L. McCracken, and E. A.Yoder (1988, July). KMS: A distributed hypermedia system for
managing knowledge in organizations. Communications of the ACM 31(7), 820-835.

Baker, M. G., J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout (1991, October). Measurements of
a distributed file system. Operating Systems Review, Special Issue: Proceedings of the 13th ACM Symposium
on Operating Systems Principles (Pacific Grove, CA) 25(5), 198-212. .

Campbell, B. and J. M. Goodman (1988). HAM: A general purpose hypertext abstract machine. Communications
of the ACM 31(7), 856-861.

Caplinger, M. (1987, October). An information system based on distributed objects. In OOPSLA '87 Proceedings,
pp. 126-137.

Delisle, N. M. and M. D. Schwartz(1987, April). Contexts: a partitioning cbncept for hypertext. ACM
Transactions on Office Information Systems 5(2), 168-186.

Engelbart, D. C.(1984, February). Authorship provisions in AUGMENT. In Proceedings of the 1984 COMPCON
Conference, San Franscisco, CA, pp. 465-472.

Haan, B. J., P. Kahn, V. A. Riley, J. H. Coombs, and N. K. Meyrowitz (1992, January). IRIS hypermedia
services. Communications of the ACM 35(1), 36-51.

Halasz, F. and M. Schwartz(1990). The Dexter hypertext reference model. In Proceedings of the NIST Hypertext
Standardization Workshop (Gaithersburg, Maryland), pp.1-39.

Howard, J. H., M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Sidebotham, and M. J. West

(1988, February). Scale and performance in a distributed file system. ACM Transactions on Computer Systems
6(1), 51-81.

Jeffay, K., J. K. Lin, J. Menges, F. D. Smith, and J. B. Smith (1992). Architecture of the artifact-based
collaboration system matrix. In Proceedings of ACM CSCW '92 Conference on Computer-Supported
Cooperative Work, CSCW Architectures, pp. 195-202.

Joseph, T. A. and K. P. Birman(1986, February). Low cost management of replicated data in fault-tolerant
distributed systems. ACM Transactions on Computer Systems 4(1), 54-70.

Kistler, J. J. and M. Satyanarayanan(1991, October). Disconnected operation in the Coda file system. Operating
Systems Review, Special Issue: Proceedings of the 13th ACM Symposium on Operating Systems Principles
(Pacific Grove, CA), 25(5), 213-225. . :

Nelson, M. N., B. B. Welch, and J. K. Ousferhout (1988, February). Cacﬁing in the Sprite network file system.
ACM Transactions on Computer Systems, 6(1), 134-154. :

Schatz, B. R.(1987). Telesophy: A system for manipulating the knowledge of a community. In Proceedings of
Globecom '87, New York, pp. 1181-1186. ACM.

Hypertext '93 Proceedings 12 November 1993




Schnase, J. L., J. J. Leggett, and D. L. Hicks (1991, October). HBI1: Initial design and implementation of a

hyperbase management system. Technical Report TAMU-HRL 91-003, Hypertext Research Lab, Texas A&M
University. ,

Schiitt, H. and J. M. Haake (1993, March). Server support for cooperative hypermedia systems. In Hypermedia '93,
Zurich, :

Schiitt, H. A. and N. A. Streitz (1990). Hyperbase: A hypermedia engine based on a relational database managerment

system. In Proceedings of the ECHT'90 European Conference on Hypertext, Databases, Indices and Normative
Knowledge, pp.95-108.

Shackelford, D. E. (1993, January). The Distributed Graph Storage System: A users manual for application

programmers. Technical Report TR93-003, Department of Computer Science, The University of North Carolina
at Chapel Hill.

Smith, D. K. (1992). Hypermedia vs.paper: User strategies in browsing SNA materials. Technical Report TR92-
036, Department of Computer Science, The University of North Carolina at Chapel Hill.

Smith, J. B. and F. D. Smith (1991). ABC: A hypermedia system for artifact-based collaboration. In Proceedings
of ACM Hypertext'91, Construction and Authoring, pp. 179-192. :

Stotts, P. D. and R. Furuta (1989). Petri-net-based hypertext: Document structure with browsing semantics. ACM
Transactions on Information Systems 7(1), 3-29.

Thompson, C. W. (1990, January). Strawman reference model for hypermedia systems. In Proceedings of the NIST
Hypertext Standardization Workshop (Gaithersburg, Maryland), pp. 189-196.

Yankelovich, N. et al. (1988, January). Intermedia: The concept and the construction of a seamless information
environment. IEEE Computer 21(1), 81-96. .

ACKNOWLEDGMENTS

A number of individuals and organizations have contributed to this project. Gordon Ferguson and Barry Ellege
contributed to a Smalltalk prototype that preceded the DGS. Rajaraman Krishnan, Shankar Krishnan, Xiaofan Lu,
Mike Wagner, and Zhenxin Wang have contributed to the implementation of the DGS. This work was supported
by the National Science Foundation (Grant # IRI-9015443) and by the IBM Corporation.

Hypertext '93 Proceedings 13 November 1993




