Chapter 4

Cognitive Models and Architectures

In chapter 2, we saw that different collaborative groups can be
characterized according to the different types of information they use
and produce over the course of a project and the flow of information
they generate in transforming one type into another. In chapter 3,
several kinds of computer and communication tools were discussed
that support these information processing activities. In this chapter, I
look at models and architectures that describe human cognition as a
form of information processing system. These three perspectives,
then, provide the basic materials needed to build a concept of
collective intelligence as a form of computer-mediated behavior in
which human beings supply the mental processes used to build large,
complex structures of ideas.

The chapter is divided into three sections. In the first, I review
general cognitive models and architectures. Next, I look at specialized
models or frameworks that apply these ideas to particular tasks or
situations encountered by collaborative groups. In the third section, I
look briefly at an objection raised by Allen Newell to the idea of
group intelligence. The goal of the first two sections is to identify a
basic set of components, broader than any single theory, that have
been used to describe human mental function. In Part II, I identify
constructs within computer-based collaborative groups that are
recognizable as extrapolations of these components as a starting point
for building a concept of collective intelligence. I also try to answer
Newell’s objection.

General IPS Models and Architectures

For the past 20 years, cognitive science has been dominated by the
view that human cognition is fundamentally concerned with the
processing of information. In this section, I review Newell’s and

General IPS Models and Architectures 67

Simon’s original Information Processing System (IPS) model that
established this perspective. After that, I look at two more recent
models that sum-up much of the intervening work. These include
Newell’s IPS-based cognitive architecture and an alternative
architecture developed by John Anderson.

IPS

The original Newell and Simon model explains how human beings
carry out complex problem-solving tasks (Newell & Simon, 1972).
Their goal was not to develop an abstract cognitive model as an end in
itself but, rather, to develop computer programs that could simulate
human intelligence. They based their model on think-aloud protocols
of human subjects solving three types of problems — cryptarithmetic,
theorem proving, and chess — but they also incorporated a number of
other results from the literature into the model.

A key assumption in their work was that cognition is inherently
concerned with processing information. Hence, their model
emphasizes the representation, processing, and storage of information
and has come. to be called the Information Processing System
perspective. A high-level view of this model is shown in Fig. 4.1. Its
major components include Receptor and Effector functions that
interact with the external environment, a Memory, and a Processor
that operates on information flowing among these components.

Because the entire system is oriented toward the flow and control
of information, a key concept is symbol, the primitive unit of
information on which and by which the Information Processing
System works. Although the model suggests that effector and receptor
functions map between external phenomena and symbols internal to
the system, these components are not developed in any detail in the
model. Rather, information is directly inserted into the system or
obtained from it by the researcher. Thus, the model is most
concerned with the processing of information after it already exists in
symbolic form within the system.

Although symbols can be stored individually in memory, they are
normally organized into symbol structures. These structures may be
designative, in which case they denote semantic information, or they
may be programs, in which case they represent operations or methods

that can be applied to symbol structures to derive information about

68 4. Cognitive Models and Architectures

them — for example, compare two structures for equivalence — or to
change them — for example, add a new symbol to the structure.
Designative information is stored in the memory as associative
structures of symbols organized into hierarchical chunks. Methods, on
the other hand, are stored as production rules.

1
Environment Ps

~——B | Receptors

Processor

~g—t—— | Effectors

Fig. 4.1. Newell and Simon’s Information Processing
System (IPS) model of cognition. (Adapted by
permission from Newell & Simon, 1972.)

The processor provides the context in which elementary cognitive
processes, represented as production rules, operate on the semantic
contents of memory, represented as a graph structure. Not shown in
the figure is a short-term memory (STM) component that is part of
the processor. It provides a cache that is loaded from memory as well
as from perceptual mechanisms that are part of the receptor.
Processes operate on the symbols/symbol structures within it;
subsequently, its contents can be encoded and stored in the memory.

The IPS model becomes animated through the process of solving
problems. A problem is presented to the system with respect to an
external rask environment. However, the system does not operate on
the problem within that external context but, rather, within an interior
problem space. The problem space contains a goal — the solution to
the problem — a representation of the problem, a representation of
relevant aspects of the task environment, and a data structure
consistent with these representations. Methods are applied to the
initial representation of the problem, producing incremental changes
in the data structure. The process is repeated until a path is

General IPS Models and Architectures 69

constructed that joins the initial problem to the data state that
represents the goal. However, if along the way the processor reaches
an impasse and cannot complete the construction, it generates one or
more subgoals in an attempt to resolve the impasse. Each new
subgoal, in turn, generates a new problem space. Frequently, the new
problem space requires translating the problem or subproblem into an
alternative representation appropriate for that context, and it is often
this change in representation that enables a solution to the problem.
Once the subgoal is achieved, processing returns to the higher level
problem space in which the subgoal was generated and continues from
there. This hierarchical nesting is both recursive and iterative and, in
theory, unlimited in the number of levels of descent that can be
generated.

From this brief description, we can identify several basic
components found in the IPS model. These include the memory, the
processor, and its short-term memory component. Effector and
receptor functions are also included, but they are not developed in any
detail in the model. At a more abstract level, the problem-solving
system also includes goals, problem spaces, and their internal
representations and data structures. Although these latter constructs
play key roles in human problem-solving activities, Newell and Simon
regarded them as task-dependent and, thus, informational objects
learned by the individual problem-solver rather than as basic
components of the IPS model.

Soar

In the 20 years since the publication of the original IPS model,
Newell’s views of human cognition obviously changed. But what is
most striking is not the differences in those views but their continuity.
The changes represent extrapolations and refinements, rather than
completely different formulations. Newell’s more recent goal was to
develop a comprehensive cognitive architecture that could provide a
framework in which to develop unified theories of cognition —
systems that incorporate the sum of what is known about human
cognition (Newell, 1990). The vehicle for supporting such theories
Newell called Soar.

70 4. Cognitive Models and Architectures

Soar is several things at once. First, Newell emphasized that Soar
is an architecture, rather than a model. By that he meant that Soar
includes as basic constituents those mental functions and constructs that
remain fixed under different tasks and conditions. For example, the
mechanism that performs memory accesses is regarded as invariant
and, thus, architectural, whereas the contents of a particular memory
access is variable and, thus, data. This separation between general and
specific makes it possible to define different cognitive models within
the general Soar framework. Second, Soar is a computer
programming language in which to write Artificial Intelligence (AI)
programs. It is based on the OPS-5 expert system language but
includes several enhancements, including a problem space construct
and chunking mechanism that are basic parts of the Soar language.
Third, Soar also refers to individual computer programs, written in
the Soar language, that simulate specific cognitive tasks and processes
or implement specific cognitive models. Soar programs have been
written that duplicate the original problem-solving tasks described in
Newell and Simon (1972), perform syllogistic reasoning, verify
elementary sentences, acquire skills through experience, and simulate
an impressive list of other cognitive functions.

Although Soar bears a strong resemblance to the IPS model, it is
also different in several important ways. In the IPS model memory
and processor were separate components, and the processor contained
within it a small working cache, called the short-term memory. In the
Soar architecture, shown in Fig. 4.2, memory is divided into two
components — Jong-term memory and working memory.
Furthermore, the processor has disappeared as a separate component
and is replaced by a set of basic cognitive processes, a more abstract
concept. These processes are stored in long-term memory but operate
within the new working memory component. Another major
distinction is that the associative network structure of long-term
memory in the 1972 model has been replaced in the Soar architecture
by additional production rules. Thus, both declarative knowledge as
well as cognitive processes are represented as productions.

A Soar system becomes animated through a process of searching,
similar to that in the IPS model. Operators or methods are applied to
a data structure in order to achieve a goal state within a problem
space. Thus, all processing takes place within the context of the
particular problem space that is currently loaded into the working
memory component of the system. The problem space construct is
similar to that for the IPS, but in Soar it is regarded as a fundamental

General IPS Models and Architectures 71

part of the architecture that applies to all human beings rather than as
an ad hoc information structure learned by an individual. Thus, all
processing is cast within the general paradigm of constructing a path
from the initial problem state to the goal state and of resolving the
impasses that arise along the way. However, a major difference is the
way Soar learns from resolving impasses. Once an impasse is
resolved, Soar engages a process called chunking. A new production
rule is created that records, as the conditional part of the rule, the state
of the problem space at the time the impasse was encountered and, as
the action portion of the rule, the path to solution. Chunking is Soar’s
primary learning mechanism and is a basic part of the Soar
architecture, rather than an ad hoc procedure.

Long-term Memory

E c D
Encoding Cognitive Decoding
productions productions productions

(central cognition)

b v by by

Working Memory

d 9 Ay

Perceptual Motor
systems systems
Senses Muscles e
External
+ + Environment * *
Fig. 4.2. Newell’'s Soar cognitive architecture.

(Adapted by permission from Newell, 1990.)

Thus, Soar has retained the IPS’s long-term memory component
and mechanisms for interacting with the external world, although
these latter components are still undeveloped as they were in IPS.

72 4. Cognitive Models and Architectures

However, important changes have been made in the structure of long-
term memory and in the disappearance of the processor component.
Both semantic and procedural knowledge are stored as production
rules in Soar. The processor has been replaced by a working memory
component that provides the context in which processing takes place.
Although particular problem spaces are task specific and, hence,
informational, the underlying form common to all problem spaces is
invariant. Consequently, both problem spaces and the primitive
functions that operate on them — to select a particular problem space,
to select a data state within it, and to select and apply operators to that
state — are considered to be basic parts of the architecture. Finally,
the impasse resolution and chunking functions provide the principle
mechanisms for learning and give Soar much of its generality and
flexibility. They, too, are regarded as part of the architecture.

Act*?

A second comprehensive architecture has been developed by
Newell’s long-time CMU colleague, John Anderson (Anderson, 1983,
1990). Newell called Anderson’s Act* the first unified theory of
cognition (Newell, 1990). It grew out of Anderson’s earlier work on
the semantic structure of human memory, modeled as an associative
network (Anderson & Bower, 1973). Since then, Anderson has added
a process component, in the form of production rules, that acts on the
contents of memory and a skills acquisition feature that allows rules to
perform actions on other rules. Like Soar, Act* is implemented as a
computer system. Act* programs can simulate a wide spectrum of
mental behaviors ranging from basic cognitive processes, such as fact
retrieval and stimulus-response behaviors, to higher level functions
and problem-solving tasks, such as language acquisition and
constructing geometric proofs.

The Act* architecture, shown in Fig. 4.3, is similar to Newell’s
Soar system in its interactions with the external environment and in its
distinction between long-term memory and working memory. But it
differs from Newell’s system in several important respects. Among
these differences are its division of long-term memory into two
separate storage systems, its incorporation of activation as a
fundamental part of the architecture, and its inclusion of multiple data
types for individual node contents within the declarative memory.

General IPS Models and Architectures 73

APPLICATION

DECLARATIVE PRODUCTION
MEMORY MEMORY

STORAGE MATCH

RETRIEVAL EXECUTION
WORKING
MEMORY

ENCODING PERFORMANCES

v

QUTSIDE WORLD

Fig. 4.3. Anderson’s Act* cognitive architecture.
(Adapted by permission from Anderson, 1983.)

Anderson divided long-term memory into two separate stores,
which he called production memory and declarative memory.
Declarative memory is the store for facts and is structured as a
semantic network. Nodes in the graph store information as short
sequences, images, and propositions; more complex structures are
composed of hierarchies of these basic lower level types. Thus, there
are different storage subsystems in the declarative memory for
different types of information. Nodes are joined to one another
through associative relations and each has a level of activation.
Production memory is the store for processes, represented as
production rules. These rules operate on the contents of declarative
memory, but they also operate on the contents of the production
memory itself to produce new rules, modify existing rules, and so on.

Working memory is the context in which processes are applied to
the contents of the declarative and production memories. Thus, it
functions as a form of problem space, but unlike Newell’s systems that

74 4. Cognitive Models and Architectures

include multiple problem spaces, it is the sole problem space in
Anderson’s architecture. The figure is misleading with respect to
working memory in one important respect. Working memory is not a
separate component in Anderson’s system but, rather, that portion of
the other two memory systems that is currently activated. A process
of spreading activation determines which parts of the two memory
systems are the working memory at any given moment. As processing
takes place and, thus, activation levels and conditions for rule selection
change, so working memory changes. By analogy, think of looking
down on a darkened surface — the long-term memory systems — and
sweeping a flashlight across that surface, selectively illuminating
different parts — activating or condition selecting different parts of
the memory stores. The currently lighted/activated/condition-selected
parts constitute the working memory at that moment. This concept of
working memory stands in sharp contrast with the view that it is a
separate component into which contents are copied from long-term
memory and vice versa.

Since the original description of the Act* architecture in 1983,
Anderson extended the capability of the system so that it can formulate
more sophisticated strategies and adapt its behavior to changes in the
environment (Anderson, 1990). This is done through a three-step
process in which the goals of the system are first determined, then a
formal model of the environment is developed, and, third, the
computational limits of the system are identified. From these three
sources of information, an optimal behavior function is defined for the
system in its current context relative to current goals that is then
applied to the relevant problem or task. Because the process may
produce errors, it can be iterated until the system produces behaviors
that are consistent with empirical results. Thus, the additional level
adds a form of rationality to the Act* architecture.

In summary, Anderson’s Act* system grew out of his earlier
work on human memory. It is similar to Newell’s Soar system in
several respects. It represents cognitive processes as production rules.
It employs a type of problem space construct as the context for higher
level functions. And it controls its behavior through a hierarchical
goal-subgoal structure. However, Act* differs from Soar in several
ways. It includes two separate memory systems — a production
memory for processes and a declarative memory for semantic
information. The declarative memory is organized as a network of
nodes whose contents are represented in terms of a small set of basic

General IPS Models and Architectures 75

data types. Activation plays an important role in Act*. Nodes and
productions have associated activation values and a spreading
activation process figures prominently in the architecture. Thus, its
working memory is not a separate component but the currently
activated portion of its memory systems. Although Anderson’s recent
work in rational analysis may lead to a more sophisticated concept of
strategy, that remains a weakness in the Act* architecture as it is for
other IPS systems. Act* is similarly limited with respect to perception
and motor actions.

From these three IPS models/architectures, we can sketch a
composite view of cognitive systems and their components. If we wish
to regard collective intelligence as an IPS system, it, too, is likely to
have components similar to these or components that are at least
recognizable as extrapolations of them.

The system is likely to include a long-term memory component,
probably represented as some form of graph structure and/or as a set
of production rules. If the long-term memory is modeled as a graph
structure, nodes within it may contain relatively small amounts of
typed data or (hierarchical) structures of lower level nodes. The
system should include a working memory, either as a separate
component or as that (small) part of long-term memory that is
currently activated. And it should include either a separate processor
component or, more likely, a set of processes that operate on the
activated contents of working memory.

Higher level tasks — for example, problem-solving — are likely
to be performed within the context of one or more problem spaces or
some similar architectural construct that includes a goal, a scheme or
data type in which to represent problems, and a data structure
consistent with that representation. To chart an overall approach to a
task and to respond to problems or altered conditions within particular
contexts, the system should include sophisticated strategies and tactics.
Although solving a problem the first time may involve considerable
trial and error, with experience, the system should learn to recognize
problems and to retrieve solutions worked out earlier for similar
problems.

Finally, a complete cognitive system would also include receptor
and effector functions that interact with the outside environment,
although these functions have largely been ignored in IPS models and
architectures.

76 4. Cognitive Models and Architectures

Specialized IPS Models

In the preceding discussion, I reviewed three general cognitive
models and architectures. These systems have been most successful at
modeling or simulating isolated forms of human behavior, such as
memory access or stimulus-response behaviors; at solving well-defined
problems, such as cryptarithmetic and chess; and at solving problems
in which weak principles of strategy, such as hill climbing and means—
ends analysis, are sufficient. For problems of this type, one can define
a set of rules that can be used in a systematic way to carry out the task,
and one can tell unambiguously whether or not a solution has been
reached. Consequently, these models have routinely been expressed as
computer simulation programs.

They have been less successful at modeling or simulating coherent
behaviors that extend over long periods of time; at solving poorly
defined problems that require judgment and/or qualitative evaluation;
and at performing tasks that require complex strategies or interactions
with other individuals. Knowledge-construction tasks — such as
writing documents and computer programs, designing a building, or
planning a sales campaign — are typical of this type of activity. The
rules for performing these tasks are usually general — more like rules
of thumb rather than precise procedures that can be systematically
applied — and no rule exists to tell exactly when the task is complete.
They also require strategies that extend over hours, days, or even
longer periods of time. Currently, the state of the art does not support
models for extensive conceptual construction tasks that have the rigor
and consistency of those for well-defined problems. Imagine, if you
will, what would be required to develop a simulation system that could
write a journal article, a proposal, or even a letter to a friend.

Nevertheless, significant progress has been made over the past
decade in understanding complex, real-world forms of cognition.
Researchers have developed specialized models and frameworks that
apply to specific tasks, such as expository writing, or to specific
situations, such as carrying out a particular task using a particular
computer system. They have incorporated concepts from the more
general systems and architectures discussed previously, demonstrating
the applicability of those concepts to ill-defined problems. But they

Specialized IPS Models 77

have also been forced to extend those concepts, change their points of
view, or accept limitations in their research agendas.

In this section, I extend the discussion of basic components for
cognitive systems by looking at the extensions and adaptations made in
three specialized models or frameworks. The first is Dick Hayes’ and
Linda Flower’s cognitive model for expository writing. The second is
the Card, Moran, and Newell models of human—computer interaction.
The third is an architectural framework developed by our group that
combines aspects of both the Hayes and Flower and the Card, Moran,
and Newell models. In all three discussions, I emphasize the steps
taken by these researchers that have enabled them to address these
more complex tasks and situations.

Writing

As noted previously, I consider writing to be the quintessential
conceptual construction task. First, writing requires a number of
different intellectual skills used to transform an inchoate, loosely
structured network of concepts into a well-structured, clearly
expressed document. Thus, it is an inherently complex process that is
made more so by extrinsic and document-specific factors — such as
interruptions and the availability of necessary information. Second,
the vast majority of tasks that involve building complex structures of
ideas express those ideas as some form of document. Thus, writing is
an integral part of most knowledge-construction tasks. Third, at a
sufficiently abstract level, many of the processes and strategies used to
plan, write, and revise documents can also be used to plan, express,
and refine other types of information. This is equally true for
collaborative as well as individual work. Thus, if we can understand
the cognitive and social processes involved in writing, we will be well
on our way to understanding a number of other tasks, as well.

During the past 15 years, a great deal of research has been done
concerning the mental behavior of writers. The most important and
most influential body of work is that of Dick Hayes and Linda Flower.
In this section, I discuss their cognitive model of writing. In doing so,
I want to emphasize two points: the IPS basis of their model, and,
second, the adaptations and changes in research perspective they made
that enabled them to address a task as ill-defined as writing.

78 4. Cognitive Models and Architectures

TASK ENVIRONMENT
WRITING ASSIGNMENT TEXT
Topic PRODUCED
Audience SOFAR
Motivating Cues

—

PLANNING TRANSLATING | | REVEWING
THE WRITER'S LONG TERM
MEMORY > ORGANIZING

. READING
Knowledge of Topic P>
Knowledge of Audience GOAL 5
Stored Writing Plans SETTING EDITING

I

| I l
| MONITOR |

Fig. 4.4. Hayes and Flower's cognitive process model
of writing. (Adapted by permission from Hayes &
Flower, 1980.)

Hayes and Flower studied expository writing, as done by both
students and adult professionals. Because they are colleagues at
Carnegie Mellon University, it is not surprising that many of their
methods and concepts were based on the earlier IPS model and the
methodology developed by Newell and Simon to study human
problem-solving behavior (Hayes & Flower, 1980; Flower & Hayes,
1984). For example, the Hayes and Flower writing model adopts a
basic information processing perspective, and they asked writers to
think aloud as they planned, wrote, and revised texts, just as Newell
and Simon asked subjects to think aloud as they played chess or solved
cryptarithmetic problems.

The Hayes and Flower model of writing is shown in Fig. 4.4. It
includes a representation of the task environment that includes “the
problem” to be solved — in this case, the writing assignment. It
contains a long-term memory component that includes several types of
semantic knowledge relevant to the task. The third major component
of the model, shown at the lower right of the figure, is not labeled;
presumably, it is a processor component because it contains three
high-level processes and their associated subprocesses. Planning

Specialized IPS Models 79

GENERATING
RETRIEVE USING REPLACE CURRENT
———>| CURRENT MEMORY MEMORY PROBE WITH
PROBE NEW PROBE
l 1 FAIL \
SUCCEED
RETRIEVE ELEMENT YES
=> CURRENT MEMORY PROSE
EVALUA
RETRIEVED
E1EMENT
USEFUL
YES
CONSIDERNO
i Yo
WRITE
NOTE v
YES

GOAL = GENERATE?

EXIT

Fig. 4.5. Hayes and Flower's Generating (sub)process.
(Adapted by permission from Hayes & Flower, 1980.)

includes three subprocesses: memory access (generating), a process for
constructing a plan for the document expressed in some schematic
form (organizing), and a goal-setting component to control movement
among these processes. Translating, which contains no subprocesses,
is concerned with encoding the ideas produced during planning into
continuous prose — the text produced so far. Finally, reviewing

80 4. Cognitive Models and Architectures

involves two subprocesses: reading the text produced so far and
editing it. The monitor is a different type of process, which I will
discuss in just a moment.

Processes are represented in the model as decision procedures,
expressed as flow charts. Fig. 4.5 shows the flow chart for
generating, a subprocess that is part of the larger planning process. It
is driven by three operations. First, long-term memory is accessed
using the current contents of working memory as a cue. Second, an
evaluation is made to determine whether or not the retrieved concept
is useful. Third, if the concept is useful, it is externally represented as
some form of note — Hayes and Flower’s term for any type of
information other than sustained prose, such as a word, phrase,
symbol, and so forth. This (sub)process continues so long as goal =
generate. When the goal changes, a new process is engaged.

Overall control of the writing system is provided by the monitor.
It engages the different processes in accord with a set of strategies
using a goal/subgoal mechanism, similar to that found in general IPS
models and architectures. It differs from those systems, however, in
storing only the current goal, rather than a hierarchy of
goals/subgoals. The control program that runs in the Monitor is
shown in Fig. 4.6. It is defined as a sequence of production rules. All
decisions are based on the current contents of working memory.
When working memory contains continuous prose, the monitor
engages the edit process (rule 1). When it contains abstract
information, the generate process is engaged (rule 2). When it simply
contains a goal, the corresponding process used to achieve that goal is
engaged (rules 7-10). Goal-setting productions that change the
current goal (acted on in rules 7-10) appear as rules 3-6 in the
program. Here, individual differences among writers come into play.
Hayes and Flower describe four different strategies found in the
writers they studied. Each strategy, which they refer to in the figure
as a configuration, consists of an alternative sequence of rules 3-6.
These alternative strategies are inserted into the overall control
sequence in accord with the individual writer’s personal writing
habits.

Hayes and Flower used their model as a framework with which to
analyze specific writing behaviors. They typically asked writers to
think aloud as they plan and write their documents. Human judges
then code the individual statements in the transcribed protocol to
identify which cognitive (or metacognitive) process is currently

Specialized IPS Models

81

1. [Generated language in STM — edit]

2. [New information in STM — generate]

3.-6. Goal setting productions (These vary from writer to
writer; see different configurations, below.)

7. [(goal=generate) —» generate]

8. [(goal=0organize) —» organize]

9. [(goal=translate)— translate]

10. [(goal=review) - review]

Configuration 1 (Depth first)

3. [New element from translate
[New element from organize
[New element from generate
[Not enough material

il

4.
5.
6.

(goal=review)]
(goal=translate)]
(goal=organize)]
(goal=generate)]

Configuration 2 (Get it down as you think of it, then review)

3. [New element from generate - (goal=organize)]

4. [New element from organize -3 (goal=translate)]

5. [Not enough material - (goal=generate)]

6. [Enough material - (goal=review)]
Configuration 3 (Perfect first draft)

3. [Not enough material - (goal=generate)]

4. [Enough material, plan not complete— (goal=organize)]
5. [New element from translate -> (goal=review)]
6. [Plan complete - (goal=translate)]
Configuration 4 (Breadth first)
3. [Not enough material -» (goal=generate)]
4. [Enough material, plan not complete— (goal=organize)]
5. [Plan complete -» (goal=transliate)]
6. [Translation complete - (goal=review)]
Fig. 4.6. Hayes and Flower's monitor control program,
with four different strategies used by individual
writers. (Adapted by permission from Hayes & Flower,
1980.)

operating. Figure 4.7 shows a single writing session for a subject
analyzed in this way. Each think aloud statement is shown at the time
it occurred and classified as one of four processes. The session can be
divided into three large sections in which planning, writing, and
revising processes dominate, respectively. Using analytic diagrams
such as this, Hayes and Flower were able to manually trace the writing
behaviors of their subjects through the various levels of their model,
confirming that the model could account for the strategies and shifts
from process to process exhibited by them.

82 4. Cognitive Models and Architectures

SECTION

0 20 40 60 80 100 120 140 160
GENERATE pemmge o fe 0 domes | oo ofe | Joos o]
ORGANIZE . of o b b —
TRANSLATE
EDIT ol o e ele of @ o .o oo
SECTION2
180 200 220 240 260 280 300 320
GENERATE ed ccees . e
ORGANIZE o | oe of el 00 |o eese] & eecs
TRANSLATE L peo | owed 60 bove
EOIT . o o e |w oo °
SECTION 3
340 360 380 400 420 440 460
GENERATE v [o o . -
ORGANIZE
TRANSLATE |eseen e | D - (we 08 cn @ {encan -t on oo 8 dew s jremme
EDIT oo wecelow |o . o e ° ° w o] co |»

* = Content Statemsnt
*» Metacomments ond Mixad

Fig. 4.7. Sequence of processes generated by one
subject during a writing session. (Adapted by
permission from Hayes & Flower, 1980.)

Such analyses led to a number of insights into the writing process
that were not incorporated into the model, per se. For example, in a
study of the differences in strategies between expert and novice
writers, they found that the goals structures generated by the experts
were so much more extensive and complex than those of the novices,
the two groups of writers could be viewed as carrying out different
tasks, rather than exhibiting different strategies for the same task
(Hayes & Flower, 1986).

In summary, the Hayes and Flower model has much of the look
and feel of the formal IPS models and architectures discussed in the
preceding section. It consists of three major types of components: the
overall framework for the model, represented as a box structure;
specifications for individual processes, represented as flow charts; and
a control procedure, represented as production rules, that includes
alternative strategies. It describes both the overall writing process
common to all writers as well as specific strategies used by individual
writers, and a human interpreter can trace the behavior of an
individual writer through the model. Research that has used the model
as a framework for analysis has led to a number of interesting and

Specialized IPS Models 83

useful insights that have enriched the model without being
incorporated into it.

Although the Hayes and Flower model offered a much more
detailed view of the writing process from what existed prior to its
publication, one must keep in mind its limitations. The model is not
sufficiently precise that it could be implemented as a simulation
program or that it could be used to generate strong predictions of
writers’ behaviors. This is not a deficiency but, rather, indicates a
different set of assumptions and goals. It was intended to be an
analytic and conceptual model, to guide studies of individual writing
behaviors, and to help researchers understand this particularly
complex intellectual process. It took this approach to research because
it promised more interesting and more practical results, given current
knowledge of the task. And it has delivered good results. At some
future time, using what we learn from this and other similar analytic
models, we may eventually be able to build interesting predictive
models or simulation systems for writing, but that time seems distant.

Finally, granting Hayes and Flower the informality of their
approach, basic components of the model need to be defined more
precisely. For example, process is not defined explicitly but, rather,
by example through descriptions of specific processes. If we step back
and ponder their underlying form, processes appear to be large-grain
structures similar to problem spaces, as opposed to the small-grain
cognitive operations or methods that occur within those spaces in other
IPS systems. Each process is associated with a goal that causes the
monitor to invoke that process. Processes include subprocesses. And
they normally produce some form of intellectual product, such as a
note that represents a concept retrieved from long-term memory, or a
change in an existing product, such as an editorial change made to the
Text Produced So Far. However, both the data types and structures
used within processes are left as informal concepts, such as the
traditional notion of a text, rather than as formally defined
components of the model. Thus, although processes seem very similar
to problem spaces, the relationship between the two is not spelled out.
What is needed is an additional level of detail that makes explicit the
basic architecture on which the model is built.

84 4. Cognitive Models and Architectures

Human-Computer Interaction

A second application of IPS concepts to a specialized task or
situation is models of human—computer interaction. Just as writing is
a part of many collaboration tasks, so an increasing number of groups
use computer systems to help them with their work. Consequently,
this work is also highly relevant for a concept of collective
intelligence. In this section, I describe a particular view of human—
computer interaction (HCI) research that has dominated the field for
nearly a decade.

Card, Moran, and Newell (1983) defined a general framework in
which specific models can be developed that characterize the behaviors
of users performing specific tasks with specific computer systems.
The framework has two major parts. Their model human processor
(MHP) provides both a cognitive architecture and a set of quantitative
measures derived from the literature for a range of basic processes
and motor actions required to work with a computer. The second part
of the framework is a set of categories for describing computer-
related tasks. Because Allen Newell was one of the co-authors, it is
not surprising that this framework resembles both the earlier Newell
and Simon IPS model and Newell’s more recent Soar architecture.

The model human processor, shown in Fig. 4.8, includes the
following architectural components: a long-term memory, a working
memory that includes separate stores for visual and auditory
information, perceptual and motor processors, and a cognitive
processor. A key aspect of this model is the set of parameters derived
from the literature that quantize both the capacity of components (e.g.,
the amount of information that can be held in working memory) and
the time required for fine-grained cognitive actions (e.g., the amount
of time required to access long-term memory or to move the eyes).
Thus, if one can decompose a task into a sequence of basic cognitive
and motor actions, then one can use the model to predict the time that
will be required for someone to perform that task.

The basic MHP model is extended to include some 10 higher level
regularities, called principles of operations. Two examples are the
power law of practice, which describes the time expected for a user to
perform a given task after a varying number of practice trials, and
Fitt’s law, which describes the relationship between the time required

Specialized IPS Models 85

= 3 {2.5~4.1] chunks
* =7 [5~0] chunks
Agn * T [5~226}sec
Ayrg = 200 {10~1000] msec{igg < 1500 [900~3500 | msec| .1 chuak) = 73 173226 sec

s = W (T~ tetters Jugg = 5 8.4~6.2 etters | (3 chunks) = 7 {534 sec
wypg = Physieal ~ sy - Physical www = Acaustic or Visuat

A Z)

Eye movement = 230 $70~700 | msae

Process

Fig. 4.8. Card, Moran, and Newell's Model Human
Processor. (Reproduced by permission from Card,
Moran, & Newell, 1983.)

by a user to move his or her hand a given distance toward a target and
the size of that target. These regularities provide larger behavioral

structures in which to fit the more basic processes and components of
the MHP architecture.

The second major part of the Card, Moran, and Newell
framework is a set of categories, called GOMS, that is used to define
models for tasks performed with a given computer system. GOMS is

86 4. Cognitive Models and Architectures

an acronym for goals, operators, methods, and selection rules. A task
typical of those that have been described in terms of GOMS categories
is a user of a particular computer editor making changes to a
document from a previously marked copy of the text (Card, Moran, &
Newell, 1983). Tasks are described in terms of a set of goals. Higher
level goals generate lower level goals; for example, a goal of making a
given change in the computer version of the text as indicated in the
marked paper version might generate the subgoal to find the
appropriate location in the computer version where the change is to be
made. Thus, tasks produce hierarchies of goals and subgoals, similar
to those produced in the other IPS models and architectures discussed
above. Operators are basic system actions, such as a menu selection or
a single typed command. They represent the user’s knowledge of how
the system works. Methods are short sequences of operators known to
the user that are routinely used to accomplish a goal. Thus, for
example, inserting a word in a line may require moving the cursor,
typing a control sequence, typing the character string to be inserted,
followed by typing another control sequence to conclude the task.
Sequences of operations such as these may be used so often that they
become automatic.

The most complex part of the GOMS model is the set of selection
rules. Normally written as production rules, they identify a set of
conditions and the action that will follow when those conditions are
met. Thus, they predict users’ behaviors under different conditions.
Because goals may be part of both the conditional and action parts of a
selection rule, they can generate hierarchies of goals and subgoals that
eventually terminate in specific methods defined as sequences of basic
operations. Consequently, by applying the timing parameters from the
model human processor model, one can also predict the amount of
time these sequences will take, and hence the task as a whole.

The selection rule component has been extremely influential in
determining the kinds of problems GOMS can and cannot address.
GOMS has been used most successfully for predicting short,
independent sequences of actions, ranging from three or four to a
dozen or so. Tasks comprised of sequences of this length are usually
measured in seconds or tens of seconds. Typical examples, in addition
to the editing task described previously, include performing
independent operations with a spreadsheet program (Olson & Nilsen,
1988) and playing video games (John & Vera, 1992).

Two recent extensions to the basic GOMS model have extended
this limit. The first, called CPM-GOMS, includes a critical path

Specialized IPS Models 87

component and has been used to model the behavior of long distance
telephone operators (Gray, John, & Atwood, 1992). It enabled
researchers to predict behaviors of operators using two different
computer workstations for transactions involving 15 to 20 operations
and lasting about as many seconds. A second extension, called
Browser-Soar, combines the basic GOMS approach with the problem
space concept from Soar. Developed by Virginia Peck and Bonnie
John at CMU, Browser-Soar has been used to model independent
browsing operations performed by users of a help system lasting for
approximately 100 seconds and involving several subtasks (Peck &
John, 1992).

Although CPM-GOMS and Browser-Soar significantly extend the
GOMS approach, the tasks they model are quite different from the
sustained, interdependent activities that occur in knowledge-
construction tasks, such as writing. Consider what would be involved
in developing a detailed GOMS model for expository writing,
comparable to the Hayes and Flower model. This would require
predicting the order in which a writer will engage the different
processes identified in the model: when and under which conditions he
or she will switch from one process to another; when a particular line
of thought will run dry; when someone will hear a stray conversation
in the background and be reminded of an idea that can be incorporated
into the document; and so on. A predictive model that could handle
behaviors of this sort would constitute an artificial intelligence capable
of simulating expository writing. This is not to say that all aspects of
complex behavior are unpredictable. Indeed, we can predict behaviors
such as the average length of time spent in continuous work episodes
based on attention span and limits of working memory. But predicting
specific cognitive behaviors that are affected by complex strategies and
tactics, the semantics of the task domain, and extrinsic factors lies far
beyond current capabilities.

This difference between a GOMS approach and a Hayes and
Flower approach is a paradigmatic difference. The first is quantitative
and formal and assumes that the ultimate value of a model, as well as
its verification and refinement, are based on its capability to generate
predictions. The second is qualitative and informal and assumes that
the value of a model lies in its capability to provide interesting and
useful insights into complex, real-world tasks. The second does not
deny the value of the first; it just defers it until such future time when
the base of knowledge is sufficient that generative models can be
developed that can handle the same factors and situations. Although

88 4. Cognitive Models and Architectures

the Hayes and Flower model was not entirely satisfactory, it illustrates
the kind of model that is likely to be most practical and most useful
for current considerations of collaborative groups.

Although the MHP/GOMS framework is based on IPS concepts, it
is not as developed. Like other IPS systems, it includes goals,
goal/subgoal hierarchies, and a set of basic operations. These
components are situated within the user’s long-term and working
memories. But the framework does not include the additional
structure provided by a problem space. Thus, it includes no inherent
concept of data type or data structure. Such concepts may be part of
the computer system presumed by a GOMS model, but direct
references to conceptual data must be incorporated into other
components of the framework. Frequently, goals have served this
purpose. But this overloads the concept: Sometimes goals refer to
abstract intentions, at other times to changes in the system’s data model
that will realize those intentions. Given Soar’s subsequent inclusion of
both a problem space and its associated functions as basic components
of the human cognitive architecture, omitting some form of larger
context in which cognition is presumed to take place appears to be a
severe limitation in GOMS.

Finally, the MHP/GOMS approach has been used most frequently
to characterize the behavior of users working with existing computer
systems. It has not been used extensively as a tool for designing new
or improved systems. One reason for this is that there is no
independent cognitive component in the framework. As a result, task
descriptions are normally cast in terms of the options offered by an
existing computer system — operators or sequences of operators —
for accomplishing a basic task goal. Consequently, there is no natural
mechanism in which to develop a separate cognitive model for a task
that can then be mapped onto a separate system model that, in turn,
can inform subsequent design and implementation of that system. If
we wish to develop computer systems that closely match users’
cognitive behaviors and strategies, as is the goal for intelligence
amplification systems, we will need capabilities that go beyond those
included in the MHP/GOMS framework.

Cognitive Modes and Strategies

In this section, I discuss a framework developed by our research
group that can be used both to describe complex, real-world

Specialized IPS Models 89

knowledge-construction tasks and to develop theory-based computer
systems to support those tasks. Its basic constituents are a set of
cognitive modes used by individuals to perform a given task and the
strategies they use to guide them as they shift from one mode to
another in carrying out that task.

The approach combines aspects of both the Hayes and Flower and
the Card, Moran, and Newell models/frameworks. Like the Hayes and
Flower approach, the mode/strategy approach is oriented toward
analysis and description, rather than prediction; thus, it, also, bypasses
the limiting factor in the GOMS approach — selection rules — by
regarding users’ strategies as the object of discovery rather than a
constituent that must be in place prior to analysis. Consequently,
mode-based models can address coherent, interdependent behaviors
that extend over hours, days, and even longer periods of time. Like
the Card, Moran, and Newell approach, the mode/strategy framework
is a well-defined architectural construct; thus, it avoids the ambiguity
of the Hayes and Flower process model. However, unlike
MHP/GOMS models, mode/strategy models can be mapped directly
onto system design. Thus, the mode/strategy framework retains key
features of these other approaches while addressing several of their
limitations.

In this section, I first define the mode/strategy framework as a
general architectural construct and then illustrate its use by describing
a set of modes for expository writing. After that, I describe a writing
support system whose design was based upon that set of modes.
Finally, I describe a mode-based analytic model developed by our
group for studying the cognitive strategies of writers using the system.

Mode/Strategy Framework

A cognitive mode is a particular way of thinking used for a
particular purpose. For complex tasks, such as conceptual
construction tasks, human beings engage different cognitive modes in
order to accomplish different parts of the task. Consequently, they
move from one mode to another in accord with strategies they know
for the task and in response to changing conditions in both the content
domain and the external environment.

A mode is determined by four factors: goals, products, processes,
and constraints. Thus, a particular mode of thought is associated with
a particular goal that will be realized by producing a particular type of

90 4. Cognitive Models and Architectures

conceptual product, drawing on particular cognitive processes in
accord with a particular set of constraints (Smith & Lansman, 1989).
By implication, a given mode may exclude or discourage certain kinds
of products and the processes used to develop those products. Let’s
look more closely at each of these four factors that identify a given
mode. Although the discussion is general, I use expository writing as
the example task. Other tasks would include other sets of modes, but
those modes would be cast within the general framework described
here.

Goals represent the intentions that lie behind a person’s use of a
given mode. Thus, for example, one may engage a brainstorming
mode as part of the overall task of writing in order to gain a general
sense of the information that is available to the writer. A goal is
normally realized by creating some form of conceptual product or by
making a change in one or more existing products, but the two are not
the same: Goals are abstract; products are concrete.

Different cognitive modes provide different options for
representing concepts or structures of concepts. Consequently,
different modes support the development of different types of
information products. These include words, phrases, sentences,
outlines, diagrams and drawings, symbols, equations, computer code,
and other forms. Thus, product encompasses both the data type and
the data structure components of the problem space architecture.

Cognitive processes act on cognitive products to create them, to
extend or modify them, or to transform one type into another. For
example, some processes are concerned with accessing and
representing a portion of the associative or semantic network of an
individual’s long-term memory. Others are concerned with
transforming that network into a hierarchy. Still others are concerned
with translating abstract ideas into specific representations, such as
sentences or diagrams. Consequently, certain processes are favored in
particular modes, whereas other processes are de-emphasized or even
suppressed. Thus, process is a small-grain concept in the modes
framework, comparable to operator in GOMS and IPS systems, but
distinctly smaller than the process found in the Hayes and Flower
model.

Constraints determine the choices available within a mode. They
set thresholds on evaluation functions that guide the flow of conceptual
thought. Examples of these functions, which usually operate
automatically, include determining the relevance of a retrieved

Specialized IPS Models 91

concept, evaluating a change made to a conceptual structure, and
invoking or suppressing corrective processes. Constraints are raised
or lowered in different modes in accord with the general goal or
purpose for engaging that particular way of thinking. Thus, they set
the overall “tone” for a mode. None of the systems discussed
previously include constraints as a basic component of the
architecture, although a limited form of constraint is implicit in the
evaluative component of basic strategies, such as means—ends analysis,
used in IPS problem spaces.

To gain a better feel for the way interdependent combinations of
these four factors determine particular modes of thought, let’s look
more closely at two specific modes used by many writers: exploration
and organizing. During exploration, the goal is to externalize ideas
and to examine those ideas in different combinations and relationships
with one another. Consequently, constraints are kept to a minimum to
encourage creativity and multiple perspectives. For example, during
this mode, many writers pay little attention to spelling, neatness, or
syntactic precision; they may even suppress their tendencies to notice
these things. They may also try not to make decisions about which
ideas are relevant or not relevant in order to generate a larger pool of
possibilities from which to eventually select. As a result, the products
generated are often informal, consisting of notes, jottings, diagrams,
loose networks of concepts, and so on. Processes include recalling
concepts from memory, basic encoding, associating and relating
concepts, and building small component structures.

During organizing, the goal is to plan the actual document to be
written. Consequently, constraints are tightened and thinking becomes
much more rigorous and systematic. The goal is usually achieved by
creating some concrete representation of a plan for the document, such
as an outline, tree, or other form of hierarchical structure. The
processes emphasized in this mode are those needed to construct the
plan. They include analyzing; synthesizing; noting various
relationships between ideas, such as cause and effect or subordinate—
superordinate relationships; and comparing different parts of the
evolving plan for consistency and parallel structure.

Thus, exploration and organizing are distinctly different ways of
thinking. And they differ from other activities such as translating the
abstract ideas in the plan into sentences or editing the resulting
document. Figure 4.9 provides a more complete set of modes for
expository writing. In addition to exploration and organizing, it

92 4. Cognitive Models and Architectures
Processes Products Goals Constraints
*Recalling *Individual *Externalize ideas *Flexible
«Representing concepts *Cluster related Informal
Exploration *Clustering *Clusters of ideas *Free expression
*Associating concepts *Gain general sense
*Noting *Networks of related | of available
subordinate- concepts concepts
superordinate *Consider various
relations possible relations
*Analyzing *High-level «Clarify rhetorical | *Flexible
objectives summary intentions *Extrinsic
«Selecting statement «Identify and rank perspective
*Prioritizing *Prioritized list of potential readers
Situational 'Anquzing rgaders (ty;?es) -Ideptify major
Analysis audiences eList of (major) actions
actions desired «Consolidate
realization
*Set high-level
strategy for
document
*Analyzing sHierarchy of *Transform network | *Rigorous
«Synthesizing concepts of concepts into *Consistent
Organizing *Building abstract «Crafted labels coherent hierarchy | *Hierarchical
structure «Not sustained
*Refining structure prose
«Linguistic *Coherent prose *Transform abstract | *Sustained
Writing encoding representation of expression
concepts and *Not (necessarily)
relations into refined
prose
*Noting large-scale | *Refined text «Verify and revise *Focus on large-
relations structure large-scale scale features and
Editing: «Correcting *Consistent organizational components
Global incopsistqncies structural cues components
Organization *Manipulating large
structural
components
*Noting coherence | *Refined paragraphs | Verify and revise *Focus on structural
relations between and sentences coherence relations among
Editing: sentences and *Coherent logical relations within sentences and
Coherence paragraphs relations between intermediate sized pa‘lragraphs .
Relations *Restructuring to sentences and components *Rigorous logical
make relations paragraphs and structural
coherent thinking
: *Reading *Refined prose +Verify and revise *Focus on
Editing: *Linguistic text of document expression
Expression analysis, +Close attention to
transformation, & linguistic detail
encoding
Fig. 4.9. Seven cognitive modes for expository

writing, including the processes, products, goals, and
constraints for each mode.

Specialized IPS Models 93

includes situational analysis, in which the rhetorical context of the
document is explored; writing, per se; and three modes for editing:
organizational editing, involving large structural components of the
document; coherence editing, involving relationships within individual
paragraphs or small sections of the document; and expression editing,
involving individual sentences (or other basic types of information).

The preceding discussion described cognitive modes as separate
“islands” of thought to emphasize their distinctness. However, modes
are also related to one another in fundamental ways. First, individuals
shift from one mode to another over time; consequently, they exhibit
different tendencies or patterns of behavior in the order in which they
engage different modes and the conditions that cause them to shift
from one mode to another. Second, the intellectual products created
in one mode are often carried to or appear in another mode in which a
different set of processes is used to continue development or to
transform one type of product into another.

The first relationship is concerned with the strategies and tactics
an individual uses to accomplish a task. Strategy refers to an
individual’s overall understanding or image of a task and the large-
grained process that person has learned or developed that enables him
or her to accomplish that task. Examples of strategy include the
“stages” model of writing and the “waterfall” model of software
development. Tactics refer to the shifts people make from one mode
to another in order to respond to problems that arise or to changes in
conditions. For example, writers may return to organizing mode
when they realize during writing that the plans they constructed
earlier have problems (Hayes & Flower, 1980). Thus, modes help
individuals focus their attention on a single activity at a time, whereas
strategies and tactics provide them with the means to move from one
activity to another in coherent ways. Of course, not everyone uses the
same strategy for a given task; in fact, differences in individual
behavior can be characterized in terms of patterns in the sequences of
modes they engage (Lansman & Smith, 1993).

The second relationship is concerned with the transfer of
information from one mode to another. When an individual follows a
global strategy for a task, he or she normally produce a flow of
intermediate products in which the output of one mode becomes the
input for another. For example, during exploration, many writers
represent concepts externally, cluster them, and then link them into a
loose network of associations. During organizing, they transform this
loose network into a coherent, consistent structure for the document.

94 4. Cognitive Models and Architectures

If they use an outline or tree for this purpose, then the transformation
is from a network to a hierarchy. During writing, they transform
abstract concepts and relations in the plan into continuous prose,
graphic images, or other types of information. During editing, they
refine the structure and expression of a draft document to produce an
improved or final version.

This flow of products, however, is not one-way and continuous.
As an individual shifts from one mode to another, intermediate
products flow back and forth, as well. For example, writers may find
while organizing that they do not have crucial information needed for
a particular section. Rather than interrupt their thinking to seek out
that information then, they may decide to continue organizing but
leave the relevant section undeveloped. Later, when the missing
information is available, they may interrupt their writing, revert to
organizing and/or exploration modes to build the missing portion of
the document's structure. When the missing part has been filled in,
they resume writing (Smith & Lansman, 1991).

In summary, for many intellectual activities, individuals divide
tasks into subtasks, set goals and subgoals, produce intermediate as
well as target products, and employ different processes to produce
them. They use general strategies to guide overall behavior and more
specific tactics to resolve problems. The behavior of particular
individuals or groups carrying out specific tasks can be modeled by
identifying the particular set of cognitive modes they use along with
their strategies and tactics. Thus, the general concepts of mode,
strategies, and tactics can be viewed as an architectural framework that
can be applied to a broad range of tasks.

Mode-Based Writing Environment

If a task is described in terms of a set of cognitive modes and the
expected flow of intermediate products from one mode to another,
that description can be used in a direct and natural way to guide design
of a computer system to support that task. This is done by including
different working contexts for the different cognitive modes and
providing mechanisms for moving data from one context to another.
(Smith & Lansman, 1992).

Specialized IPS Models 95

More specifically, after identifying a set of cognitive modes for
the task, one can then design a corresponding set of interface or
system modes. Each system mode can be associated with a different
window in the user interface. Each supports a different data model
that includes both data types and data structures appropriate for its
corresponding cognitive mode(s). Each system mode should also
include a set of functions sufficient to construct data objects of that
type. Ideally, these functions would be presented in one-to-one
relationship with corresponding processes in the cognitive mode;
however, in some cases, several system operations may be required to
represent the results of a single cognitive process. Thus, in general,
there is a many-one relationship between cognitive process and system
actions.

To support the flow of intermediate products from one cognitive
mode to another, the system should provide functions for copying or
moving data from one system mode to another. An alternative design
would be to overlay the data with a succession of modes, rather than to
move data between modes; however, this approach is neither as
general nor as flexible as the flow model and can lead to problems,
such as blocking shifts between pairs of modes that have distinctly
different data types/structures.

An example system whose design was based on a mode/strategy
task model is the Writing Environment (WE). Built by our research
group, WE includes four system modes that support six of the seven
cognitive modes included in Fig. 4.9 (Smith et al., 1987). A sample
screen for WE is shown in Fig. 4.10.

Network mode, shown in the upper left window, supports
exploration. The underlying data model is a directed graph embedded
in a two-dimensional space. Thus, the user has maximum flexibility
for representing concepts as nodes (boxes with a word or phrase to
express the idea), moving them to form clusters of loosely related
ideas, and linking them to denote more specific relationships. Small
conceptual structures can also be built here and later used in other
modes. Although writers may do all of their large-grain structural
work in this mode, the system provides another mode that is better
suited for building the actual plan for the document.

Tree mode, shown in the lower left window, supports the
organizing cognitive mode. The underlying data model is a tree or
hierarchy, and the functions provided for building the tree are

96 4. Cognitive Models and Architectures

Writing Envirenmant HyparWE [Warx Spaca Holzing Arsas Systen
28 Savramber 1987
HLETWORK MODE: Nat & l\'hw Cantrzl |uu;nymm TEXT MODE §Vviaw Cantrol isplay Print
s R
[WE: A Hypertext Writing Environsant P
John B. Saitn
laveus, B \ Wt
[Cagritive

[iverecaction

Daseription, .

ot we . Fypartazt s & form of alactronic dacumant

In which data I3 312red f & hatwerk of nodes connactad by finks,
tades can contain Taxt, sourte code, graphics, Audia, vidas, or othar
ferms

of data.

Hypartaxt dsqunants ase normally mant ta ba wiittan, stend,
ratrisvad,

Datadss
[Fmeriens

0t road isnin o pazcusies iz they swond whai

[Cogritive Basis for WE
comvantional pazer sacumants and than far elastranic or Aypartaxt
fview Contret
Tree Moda

[} U 38cton, wa ciacuss tha cognitive pracaises weivad
In writlig. Wa dascride thosa procasses fiest as thay ars wied for
doczmunts.

TEEE MODE: Traa &

EOIT MODE £xiter Moce |w-- Cenerel Fi:;uy/?dn:

Ghercions &t the The UTNor BUIT £ORGANTIALE, AT 1058 Palnt, € prasenting SAEh 6f Fis
moqa vy 14aas in prage; on ancoding the nodaz. Edit Moda, shown in tha towar

AEHT Guadrant of Figurs X, providas ACC43Y 10 & STARSANS SaXT editor,
1212 u1ad 2o sncote tha CoCeps rIprRIANTEd by & node o texe I
tha futury extansians of WE, tha systam wil SUpport sditers for athar
xinds of data, sush a3 Graphics, sound and vides. At that tias the

nciter actuaty invekad wil ba kayed t3 tha typs of tha partisar
Taxt Made

1n the cumant Systea WE uses tha standans Saalitatk taxt efitor, Ta
Bagin writiag the uiar points to the hade kn althar tras or Retwerk

-|2“= and Roxn | mods and salaces the 66t optlen on the Danw. Tazt Sy be kayed in,

salectad for movesant or datation, And 33 on. Tha author leaves Edit

Database Moda simply by noving tha cursor from that &ras into the arsa of tha
'I | 3erasn containing the made 30 wishes to activatk.

Fig. 4.10. Sample screen for the Writing Environment
(WE), showing network, tree, editor, and text system
modes.

constrained so that one cannot denote a relationship that would violate
the integrity of the hierarchical structure. Thus, the functions and
constraints of tree mode are different from those of network mode in
which maximum flexibility is emphasized. This design decision was
based on research in reading comprehension that shows that, in
general, hierarchical documents are more easily and more accurately
comprehended than unstructured documents or documents with other
structures (Smith & Lansman, 1989). Although users may create the
tree from scratch, more often they combine creating new nodes in tree
mode with copying nodes or small component structures from
network mode. Thus, system design encourages writers to transform
the loosely structured network of ideas, developed in

Specialized IPS Models 97

exploration/network modes, into consistent, well-defined hierarchical
structures in organization/tree modes. But it does not require them to
do so.

The writing cognitive mode is supported by editor mode, shown
in the lower right corner. At any time in the overall writing process,
users can open a node in either the network or tree modes and write a
block of text in the editor that will be associated with that node.
Because writers work on the contents of a single node at a time, the
design of the system encourages them to focus their attention on a
single concept and to transform that abstraction into linguistic
expression. Thus, at any given time, the writer is concerned with
writing a small, manageable component as opposed to writing the
entire document, thereby simplifying the overall writing/translating
task. To construct a conventional linear document from all these
pieces, the system “walks” the tree — top to bottom, left to right —
and gathers up the contents of the various nodes. It then sends these
concatenated pieces to a file or printer.

Finally, the upper right system mode, called text mode, is
intended for coherence editing. Although the system reduces users’
cognitive load by enabling them to work with the structure of the
document in abstract, schematic form (tree or network) and to divide
the actual writing of the document into a succession of small writing
subtasks, this approach can lead to documents with inconsistencies and
awkward transitions between sections. To address these problems, text
mode presents the document in its linear, concatenated form for
editing. Thus, one can read the text continuously “across” node
boundaries, check transitions, move sentences from one node to
another, and so forth.

Thus, WE’s four system modes — netwoik, tree, editor, and text
— correspond to four cognitive modes — exploration, organizing,
writing, and coherence editing. For organizational editing, writers
use tree mode — by moving branches and nodes around in the tree,
they can reorganize the text of the associated document. To support
expression editing, writers use either editor or text modes.
Consequently, six of the seven cognitive modes described in Fig. 4.9
are supported by the four WE system modes. WE does not support
situational analysis mode in which writers analyze the rhetorical
context and make strategic decisions about their documents; however,
we have developed heuristics to assist with this process (Smith &
Smith, 1987), which could be incorporated into future versions of the
system.

98 4. Cognitive Models and Architectures

Ideally, development of the task model precedes system design.
In practice, development of the two may be an iterative process, with
work in down-stream phases — for example, system building —
informing work in up-stream phases — for example, model building.
Ultimately, it is not important which came first, but that the two end
up being consistent with one another. The mode/strategy framework
can contribute to this process by making the relationships between the
two straightforward.

Mode-Based Analytic Model

In the preceding sections, I showed, first, that knowledge-
construction tasks, such as expository writing, can be described in
terms of a set of cognitive modes, the transitions that occur between
modes, and the resulting flow of intermediate products from one mode
to another; and, second, that mode-based task descriptions can be
mapped onto system design in a natural and straight-forward way. In
this section, I take this synthesis one step further by introducing the
notion of an analytic model that takes into account the mediating
effects of such a system on task behavior. Here, I only introduce the
idea in order to complete this picture of the mode/strategy approach;
in chapter 7, I describe several such models in more detail in
discussing the general concept of strategy.

In order to study the cognitive behaviors of individuals using the
WE system to plan and write documents, we instrumented the system
so that each time a user selected a data object, chose a menu option, or
moved from one system mode to another, a record of that action was
recorded. The sequence of all such records for a session comprise
what we call an action level protocol. These data provide a detailed
record of the system functions used to represent the results of users’
cognitive processes. They also identify cognitive products produced
by those processes and their evolution over the course of the task.
Thus, they provide a record of the material production of a document,
from earliest brainstorming and planning to final editing. However,
because not all thought results in a system action, we cannot claim that
the record is complete or that it includes no distortions, but because
system model and task model are closely related, the action protocol
should represent to an approximation a trace of the user’s thought
process during the task.

Specialized IPS Models 99

Analytic models can be developed to analyze these protocol data
and to uncover patterns in users’ cognitive behavior. We chose to
express these models as grammars. A conventional grammar takes as
input a string and determines whether or not that string is contained in
a language. Thus, for a natural language such as English, a grammar
takes as input a string of words and determines whether they constitute
a valid sentence in English. To do so, the grammar produces a parse
of the sentence that shows its grammatical structure. An analytic
model that is expressed as a grammar takes as input an action level
protocol and produces as output a parse tree that describes the user’s
strategy for the session.

We developed several models that can analyze writers’ strategies.
One produces parse trees that include six hierarchical levels (Smith,
Rooks, & Ferguson, 1989). The root of the tree is the session. Each
session is divided into a sequence of cognitive modes. Each mode, in
turn, is divided into a sequence of cognitive processes. Each process
symbol is then linked to one or more cognitive products. Thus, the
top four levels of the model are cognitive and, hence, independent of
the WE system.

The bottom two levels of the grammar map the cognitive portion
of the model onto the design of a specific computer system — in this
case, WE. To represent a change to a cognitive product, users
perform one or more system operations, each of which requires
several system actions. Because each protocol record corresponds to a
single system action, actions are the terminal symbols in the grammar,
analogous to individual words.

This grammar is expressed as a set of production rules,
supplemented by some half-dozen functions that recognize particular
context-sensitive relationships. It is implemented as a computer
program; thus, it can be applied consistently and automatically across
multiple user protocols. We used the parser to analyze a number of
user sessions under different experimental conditions. Results of these
studies are described in Smith and Lansman (1989), Lansman (1991),
Smith and Lansman (1992) and Lansman and Smith, (1993).

Perspective

Like the IPS architectures discussed previously, the mode/strategy
framework provides an architectural construct that applies to a wide

100 4. Cognitive Models and Architectures

variety of tasks. It includes an explicit context in which cognition
takes place as well as a set of components that occur or operate in that
context. It differs from them, however, by including constraints and a
richer set of product types as basic components and by regarding
strategies and tactics as the primary objects of discovery.

The mode/strategy framework encourages development of
analytic models for complex, real-world conceptual construction tasks,
rather than predictive models or simulation systems for simple or
artificial tasks. In this respect, it is similar to the Hayes and Flower
approach and differs from the GOMS and IPS approaches that
emphasize generative models and simulation systems. The reasons for
this are practical — we simply do not have an adequate base of
knowledge at this time to support generative models that can address
interesting or meaningful issues for this category of tasks. However,
by developing formal analytic models and by using those models to
study users’ strategies and behaviors, we may eventually be able to
build a sufficient base of knowledge that would make generative
models of complex tasks practical. Thus, I see the two approaches as
potentially complementary.

Like GOMS, the mode/strategy framework can be used to
describe users’ interactions with computer systems. However, unlike
GOMS, it provides direct guidance for designing new or improved
systems. This results from the direct and natural mapping between a
set of cognitive modes and the flow of information among them to a
set of system modes and the flow of data among them. Because a
system built in this way has a well-defined relationship with a
cognitive model of the task, we can identify the specific ways in which
that system amplifies its users’ cognitive skills as well as the extent of
change. Thus, the mode/strategy framework makes it possible to talk
about intelligence amplification in precise and meaningful ways.

Although the mode/strategy model of writing resembles the Hayes
and Flower model in its emphasis on analysis, it differs from it in
several important respects. First, it is defined within the terms of an
explicit architecture, rather than by example in terms of a collection
of specific processes. Second, because it is expressed as a computer
program, all of its terms and rules are well-defined. Thus, it is a
formal, executable model, as opposed to an informal conceptual
model. Third, it can be applied automatically and consistently across
multiple subjects, rather than manually by human judges who
sometimes disagree in their interpretations.

Specialized IPS Models 101

Many of these differences are subtle, but together they add up to
an approach that is particularly well-suited for handling complex,
computer-based conceptual construction tasks.

Objection to Collective Intelligence

Before concluding this discussion of concepts drawn from the
cognitive science literature, I briefly note an objection raised by Allen
Newell to the notion of a collective intelligence, based on the rate at
which knowledge can be communicated from one individual to
another. Because Newell has been so influential in the development of
cognitive science, this objection must be addressed; consequently, I
include his argument in his own words:

A social system, whether a small group or a large formal organization, ceases
to act, even approximately, as a single rational agent. Both the knowledge
and the goals are distributed and cannot be fully brought to bear in any
substantial way on any particular decision. This failure is guaranteed by the
very small communication bandwidth between humans compared with the
large amount of knowledge available in each human’s head. . . . Modeling
groups as if they had a group mind is too far from the truth to be a useful
scientific approximation very often. (Newell, 1990, pp. 490-491))

Elsewhere, he explained in more detail his assumptions and reasoning
regarding fundamental limits in human communication:

Let the rate of knowledge intake (or outflow) between the human and the
environment be ~~K chunks/sec. Then this same rate governs the acquisition
of knowledge prior to the meeting of the group that attempts to share
knowledge by communication. The total body of knowledge in a group
member is ~~KT, where T is the total lifetime of the member. The amount
that can be shared in the group meeting is ~~KAT, where AT is the duration of
the group meeting. But the group meeting time, AT, is small compared to T,
independent of K, the communication rate. . . . The et effect is that the
social band becomes characterized as a distributed set of intendedly rational
agents, in which each agent has a large body of knowledge relative to how
fast it can communicate it. (Newell, 1990, p. 155)

Thus, Newell argued that for a group to exhibit collective
intelligence, all members of the group must share the complete body
of knowledge and goals relevant to the task that are held separately by
its individual members. Newell is right that no group can achieve
total integration of knowledge such as this. However, this may be too
strong a requirement. Individuals do not always utilize all of the

102 4. Cognitive Models and Architectures

potentially relevant knowledge they possess for each decision or
mental operation they perform. Similarly, total shared knowledge
may not be required to achieve a level of coherence within a group
sufficient to justify a concept of collective intelligence. I try to speak
to this objection at several points in the discussion that follows.

Summary

In this chapter, I looked at cognition as an information processing
activity. The discussion began with a review of three general models
or architectures developed from this perspective. A basic set of
components was identified in Newell and Simon’s original IPS
architecture that are subsequently refined in Newell’s Soar and
Anderson’s Act* systems. These include a long-term memory,
possibly divided into separate stores for procedural and declarative
knowledge; a working memory; and a separate processor component
or, alternatively, a set of processes that function within working
memory. These systems also included a context for higher level
conceptual thought called a problem space. This context, in turn,
included a goal, a data type, and a data structure as well as set of
rudimentary strategies for constructing a path from an initial data state
to the goal data state. The architectures differed in their respective
views of a problem space as part of the basic cognitive architecture or
as an informational object acquired as part of learning a particular
skill.

Next, I looked at several models and frameworks that applied
these ideas to specific tasks, such as writing, or specific situations, such
as users working with computers to perform a task. These discussions
added several new concepts. First, the process model of Hayes and
Flower showed that by taking an analytic approach, one can address
conceptual construction tasks that cannot currently be addressed using
predictive or generative models. Second, the GOMS model provided a
set of categories for describing tasks performed in close conjunction
with a computer system. It is limited in the tasks it can model,
however, by the fundamental role played by its selection rules
component. Finally, the mode/strategy framework combines aspects
of both approaches. Its practice of expressing task models as

Summary 103

grammars leads to formal analytic models based on a well-defined
architectural construct. When these grammars are implemented as
parsing programs, they can support extensive studies of users’
cognitive behaviors, perhaps leading to more sophisticated concepts of
strategies and tactics, currently missing from conventional IPS models.

I also reviewed an objection raised by Allen Newell to the notion
that a group can function as a coherent intelligent agent. It states that
for a group to function as an intelligent agent, all members would
have to share complete knowledge of goals and the task domain, an
impossible requirement because of bandwidth limitations.

In Part II, I draw on this research in building a concept of
collective intelligence by identifying components within collaborative
groups that are recognizable as extrapolations of basic IPS
architectural components. I also try to build a path around Newell’s
objection to this concept.

