Some Lucubrations and Specifications for a Natural Language Analyzer

JOHNB. SMITH
Department of English and the Computation Center
Pennsylvania State University

The article attempts fo classify the kinds of problems to which the computer has been applied in
natural language analysis. The difficulties encountered with existing programming languages and
systems are inferred and some suggestions are made for a system that would make analyses of this
sort more practical. This system is then related to the concept of the associative processing computer
with the contention that the proposed system would be quite close to what might be expected as a high
order language for this kind of machine. The overall purpose of the article is to stimulate discussion
of the computing needs of natural language analysts by making specific suggestions for future systems.

Within the past several years, there has been a marked in-
crease in the use of the high-speed computing machine for
the analysis of language.! Many graduate departments
thoroughly entrenched within humanities divisions now
accept a computer language as the second research skill
formerly satisfied by a demonstrated reading knowledge
of German or French. There are now at least three
journals (Computers and the Humanities, Computer
Studies, and Hephaistos) dedicated to publishing com-
puter-assisted research in the humanities and related
areas. But perhaps most encouraging of all is the develop-
ing tendency of large funding agencies to sponsor the
training of humanists and their research activities as
evidenced by the institute financed by the N.S.F. and the
A.C.L.S. held this past summer at Kansas University.
Thus, while the growth in the use of computers for
language and humanistic research has been large, it has
not been so large as it might have been. All too apparent is
the fact that computing machines were not designed for
doing language analysis or many of the other tasks that
this group might wish for them to perform, and there
seems no clear intent on the part of the computer industry
to alleviate these difficulties. For example, if one attempts
to do language analysis at more than fifty percent of the
universities in this country, he must choose between the
lesser of two evils in selecting a programming language.
If he uses FORTRAN, then he most likely will have to
write himself or have written for him a number of assem-

1 1 shall use the term language to refer to so called “natural”
languages — those that are or have been used by human beings for
general communication — as opposed to formal or artificial lan-
guages such as those used to program computers. Where the latter is
intended, the term formal language will be used.

bler language string handling routines. At every turn, he
must be conscious of how the machine is ‘viewing’ his data
and how to ‘trick’ it into doing what he might want it to
do. Such games, while satisfying when you ‘win’, soon
grow tiresome to the point of sapping much of the intellec-
tual effort supplied by the researcher. If he chooses a
string-oriented language such as SNOBOL, programming
is easier, but costs for executing programs skyrocket some
three of four hundred percent over what a physicist might
expect to pay for ‘comparable’ computing. If the user
happens to be in a university environment which has IBM
equipment, he might use PL/1 for his programming
language. This choice will solve many of the problems
associated with other languages, but not all. For example,
he must still use structures and arrays for much of his
work; he must index these lists with numbers, not with
letters of the alphabet; he must devote considerable
energies to managing the input and output of his data; and
while he has greater fiexibility in managing his data files,
he is faced with the most complicated and meticulous file
specification language in the industry. In brief, he is con-
fronted at every turn with what is for a considerable time
an overwhelming mass of detail.

What can be done about these inhospitable conditions
that face the scholar interested in language analysis?
We could complain to the representatives of the computer
industry that they are not meeting our needs. To this we
are likely to get one of two answers. They might say that
the proportion of use by language analysts does not
warrant hardware and software development. But this is
a chicken and egg argument -— if machines were more
amenable for language analysis, more language analysts



would use them. The second reply the computer people
often give and one that they love to make with an
annoying note of piousness is that language analysts
don’t know what they want in the way of computers and
computer languages. The unfortunate truth is that we
have not been able to specify very precisely what our
needs are and how they could be satisfied. It is this point
that I wish to consider here. I shall look first at some of
the tasks in language analysis that have been done on
computers and from these try to infer some of the inherent
problems. Secondly, I shall consider some of the charac-
teristics that a system should have to meet these require-
ments; and, finally, I shall examine the implications that
such a system has for hardware realization. I don’t
realistically expect everyone involved in language analysis
to agree with these suggestions. Rather, I hope to evoke a
lively yet serious consideration of our computer needs.
If this can be done, then in the not too distant future we,
as a group, should be able to tell the computer manu-
facturers what we want and how to give it to us.

Among the tasks that have been done or could be done
using a computer are the following: concordance and
word index construction, collation of texts, author
identification, stylistic analysis, content analysis, machine
translation, and a catch-all that might be termed linguistic
analysis. To compile a word index implies first of all the
encoding into machine-readable form the text — often
quite massive — the breaking down of that text into in-
dividual words with their contexts, an alphabetical sort
of these records, and finally a printed copy of these sorted
records. The task is straightforward and seemingly simple,
but it is evident from the work done in the early sixties
that general concordance utilities almost invariably have
to be modified for individual texts.

To collate several texts involves passing several files in
sequential order and checking for a match of individual
elements. The tricky part is the ‘restart’ process following
a deviation of several words. This is quite difficult if done
in a batch mode environment and often necessitates
several passes of the data sets. Ideally, the task should be
done in an inter-active environment with manual restart
capabilities.

Author identification studies have most often been
based upon the distributions of several word types —
usually function words — over a text. But like the pre-
ceding tasks, such analysis implies the encoding of the
text, the manipulation of it in terms of individual words
or items, followed by exhaustive and sophisticated
analysis of quantitative measures derived from the text.

The area of language analysis that has perhaps received
the widest attention is that of stylistic analysis. Definitions

of “style” have ranged from broadly defined semantic
patterns that permeate a text down to the distribution of a
single function word. But inherent in most definitions and
analytic approaches is the notion of a distribution of
certain elements or categories over a work often accom-
panied by some attempt to establish interrelations and
dependencies among them. To perform any sort of
sophisticated analysis of this kind involves the same prob-
lems noted in previous examples: encoding and storage
of text followed by some process to extract measures that
can be “fitted” to a stylistic model. While results in this
field have been significant, too often the mechanical
problems of text manipulation have over-shadowed the
more important tasks of defining comprehensive models
of style and evaluating them with regard to actual pieces
of writing.

Another area that is only slightly removed from stylistic
analysis in terms of techniques is that general area termed
content analysis. The implications of research in this area
are most immediate and most important in the fields of
information retrieval, antomatic indexing and classifica-
tion of documents, as well as automatic abstracting.
Because of the voluminous files that develop, most efforts
in this area have approached the problem in terms of
word associations defined over the entire text. To intro-
duce even the slight refinement of searching for associa-
tions of synonomously equivalent terms demands com-
plex, expensive thesaural programs; but work in this area
is still hampered by the problems of file manipulation and
voluminous output. Attempts to define the content of a
document more closely by reducing the defined range of
associativity are promising; however, ‘it is evident, from
the criticism of the work of Tker and Harway, that the
problem cannot simply be “plugged” into a statistical
utility. Before such debate can be resolved, we must know
more about the normative patterns that exist within
natural language texts.

Although interest diminished during the late 1960s,
there is some indication that renewed consideration may
be directed toward machine translation projects. Drawing
heavily from work in stylistic and content analysis, such
efforts may attempt to reduce full, idiomatic texts to a
restricted subset of words and syntactic patterns but with
the important addition of stylistic parameters. The text in
restricted form could be translated into a similar version
of the second language and then expanded into the full
idiomatic expression implied by the stylistic parameters.
However, before such a translator can be expected most
of the technical problems of text processing present in
the other examples must be solved as well as the develop-
ment of a precise, parametric stylistic model similar to that



mentioned above.

The last category that will be listed is that of general
linguistic analysis. This group could include almost any
type of natural language analysis ranging from a pattern
analysis of graphemes to a study of the semantic structure
of an author’s canon. If he begins with the former, the
researcher must be able to break a word into individual
letters or groups of letters, but scanning of this sort
represents a high relative cost for computation. If he is
doing semantic analysis, he is faced with the problem of
defining associative contingencies, categorizing, establish-
ment of distributions, statistical analysis and inference.
Too often the mechanical problems in the first two or
three steps preclude the researcher’s ever getting to the
task of inferring comprehensive structures for the work
under investigation. ‘

If we look back at this list of some of the more general
types of language applications for which the computer
has been used, what can we infer as to general characteris-
tics? First, the text must be encoded, usually through a
key punch, into a machine readable form. If it is of any
length, this can be an extensive, laborious, and expensive
undertaking. Secondly, it must be read into the machine
and broken down into some sort of storable form. On
many machines, the input expense is inordinately high in
comparison with other tasks. If the data set consists of a
number of sub-parts, the management of them can become
extremely messy. Also, the function of scanning a string
of input text is not one that the machine was designed to
do particularly efficiently and costs for this service can also
become exorbitant. Perhaps the most serious problem
involves the relocation of an item in a text. Since the
language analyst’s data sets are often voluminous, he
must either pass them sequentially a number of times —
and hence accumulate a large bill — or use large random
access files. Both alternatives imply laborious file manage-
ment problems. Fourthly, internal manipulation involves
primarily sorting, table look-up tasks, character-by-
character comparisons of strings, and the accumulation of
various counts. Once these counts are derived, however,
the analyst may call in various statistical procedures that
involve a degree of ‘number crunching’. Therefore, both
efficient string scanning facilities as well as the complete
algebraic and logical manipulative capabilities of the large
scientific machines are needed. If the analyst’s purpose
is to produce output for photo-reproduction, such as a
concordance, his machine must be able to produce high
quality print-out. On the other hand, if his purpose is
analytic, he may produce many pages of data — if he is
running in a batch mode — so that he can later leaf
through it to find the particular information he desires.

If existing systems make such tasks difficult and/or
expensive, what sort of system would be better? First, to
absorb the high relative costs of input, the system should
be designed to carry both batch and inter-active services
simultaneously. By doing this the user could have his text
prepared in the batch mode and then perform much of
his actual analysis interactively. If he knows that he can
easily and quickly obtain a desired piece of information,
then he may no longer require the voluminous printed
output now produced in much language analysis work.
Thus, the application and system languages should be
designed to work efficiently in both modes. Secondly, the
researcher, especially the humanist, should be freed from
as many of the details of input and output and file manipu-
lation as possible — these tasks should be handled by the
system after initial file creation. Thirdly, the language
should be in free format form with as much of the jargon
and gobbledy-gook removed as possible. Fourthly, since
utilities almost invariably have to be rewritten for
specific applications, the language should embody a
number of functions that perform the fundamental tasks
now done by utilities, but in a germinal form so that the
user may tailor his program to do his specific job. Ob-
viously these functions and the hardware should be
designed in conjunction. Finally, a number of statistical
procedures, graphic and other display facilities, as well as
an extensive library of computer accessible dictionaries,
thesauri, grammars, etc., should be immediately available
and easily employed through the application language.

This list of desirable attributes for a language analysis
system could obviously be longer, but from it we can see
some of the things that such a system should do that are
not done easily or not done at all by existing languages
and systems. Below, I shall give a sketch of some of the
characteristics of such a language and consider some of its
implications both for the hardware and the system as a
whole. The description is obviously not complete, but
emphasizes those aspects that are most immediately
relevant for the language analyst. The functions described
might be thought of as being embedded in a general pur-
pose language such as PL/1 with its algebraic, logical,
macro, and subroutine capabilities.

The language should contain the usual facilities for
variables, matrices, and multi-dimensional arrays. In
addition, there should be facilities for defining structures.
The user should be responsible for specifying the logical
relations among the elements of the structure, but he
should not be responsible for specifying the size of the
structure. That is, he should not have to specify that there
will be 500 repetitions of the particular logical arrange-
ment of variables. At most he should be asked to supply a

.



rough estimate of the number of elements for each variable
or structure. All allocation of physical resources should be
maintained by the system; more on this point will be said
later. If the data in the structure is stored on some ex-
ternal device after its creation, the system should also
store in that data set a description of the structure and all
specifications necessary to access that data set in its
logical arrangement. Thus, the user could call for a
structure by merely giving its name: the system would, in
turn, take care of all internal allocations and input
specifications.

Often in language analysis it is useful to maintain a text
in the form of several lists or structures. These might
include a dictionary of word types that is associated with
another list of index values or indicators of text locations
of individual tokens of this particular word type. A
second function, GROUP, could be used to indicate that
several such structures are to be associated with one ano-
ther. Subsequent operations, such as a search, might then
be applied to this collection of structures to locate data
that can be accessed easily only from the combined use of
these individual components. Thus, a number of different
structures might be associated with a single text. The
system would maintain a catalogue of these group
designators and would write with them on the data sets
where they are stored descriptions of any logical relations
that might exist among them.

Since so many tasks associated with language processing
involve table look-up and pattern searches, extremely
powerful and efficient functions to perform these opera-
tions must be built into the system at the most fundamental
level. These tasks could be accomplished through com-
binations of several functions, but the most basic should
be a SEARCH function. It will take as its arguments a
text, a set of texts, or perhaps a group of lists or structures
and, secondarily, a set of values to be sought in the desig-
nated texts or lists. As a default condition, the system
should search whatever major text or structure is currently
being processed. The value parameter, on the other hand,
may be literals, variables, or logical configurations of both.

Working closely with the SEARCH function should be
another function called RETURN. It will be used to
indicate what values from the structures or texts are to be
returned once the SEARCH function finds the appropriate
locations. Stated another way, the SEARCH function can
be performed on a data configuration used as a key, and
the RETURN function will return in list form data contain-
ed in the structure configuration for those entires having
the specified key.

Another function that could be used in conjunction with
the SEARCH function is a CHANGE function. It takes

as its arguments a list of locations, a structure designa-
tion, and a value. The function will change the structural
elements at the specified locations according to the value
specified. Again the value could be a literal or a masked
literal resulting in direct modifications of those characters
of the variables indicated; or it could be a logical or
algebraic function that modifies the variables accordingly.

Another important aspect of language analysis is that
of category designation. Since a number of non-disjoint
categories may be imposed over a text or list, it is desirable
for the designation of categories to be flexible and not
result in any literal or actual rearrangement of the textual
materials. For example, category designation should not
be done by flagging, sorting, and rearrangement of the
text or list. Instead, categorization should be viewed as a
set of logically designated independent partitionings of the
set of elements of a text or list. This designation may take
the form of an algebraic or logical function, or it may be
lists of elements or a logical vector denoting membership
or exclusion. To realize this, a CATEGORY function
could be used with a parameter indicating the text over
which the category exists and a set of parameters indicat-
ing categorical groupings of items in that text. As indicat-
ed above, the item specification could be a logical or
algebraic expression or even a call to a subroutine that
performs a number of such operations. Thus category
specification can be by literal inclusion, variable inclusion,
and procedural or algorithmic inclusion.

Interest in the statistical analysis of natural language
texts has increased dramatically in the past few years.
Often the most difficult aspect of these investigations is
not the statistical procedure itself — there are catalogued
procedures for most models that are likely to be used —
but is the preparation of the data for input into one of
these procedures. To facilitate this step of the process there
should be a COUNT function and a DISTRIBUTE
function. Given a set of texts and a value, COUNT will
return the number of times that value occurs. Of course,
value could be a literal, a variable, a category, or an
algebraic or logical expression. DIST, given a set of texts,
a value similar to that provided for COUNT, and a unit
interval, would return the distribution of that value over
the text using the appropriate unit for a grid. The output
of these functions could be stored, used as the set of
arguments for a statistical function, or fed to a more
complex statistical utility. To facilitate this last process,
there should be an extensive library of statistical proce-
dures that can be called directly from the user-language
program.

The final phase of software design that I wish to discuss
is that concerning input and output. It is hoped that after



initial text processing, most users will approach the system
through remote, visual display terminals of some sort
on an inter-active basis. One immediate benefit would be a
reduction in the voluminous printed output often pro-
duced in language analysis as it is done with existing
systems. For example, a user with access to a system of the
sort that I have been describing might never wish to
produce a printed concordance. Instead, he would store
a program that would supply him with the context in-
formation he needs, when he needs it, and for only those
words he is interested in. Of course, he should have the
facility to get a hard or printed copy of any display in-
formation that interests him, but the system I have
described would make a vast amount of this output
unnecessary. Obviously, then, the system should have
simple yet flexible and sophisticated display and graphic
capabilities. However, through a verb such as DISPLAY,
the user should be able to get a line graph of a distribution
or a listing of a concordance output. Hopefully, the more
detailed display procedures could be accessed through an
analog device such as a light pen, so that the user could
modify the display directly and in a roughly continuous
fashion. :

Many of the other input and output functions associated
with data sets should be transparent to the user. For
example, once-the logical structure of a text is specified,
the user should be able to output the file with only the
word STORE and possibly a designation of some physical
device such as his own disk pack or tape. The system
should then output the data in the format specified by the
logical declaration of the structure along with the descrip-
tion of that structure and all information necessary to
read the data set. The user, in turn, would not be con-
cerned with input at all. He would access the file through
the function he wishes to perform. For example, given a
SEARCH request, the system would locate the appropriate
structure and read it in if it is not in the accessible memory
of the system at the time of the request.

The input of text for the first time, however, is a dif-
ferent matter entirely. Although natural language analysis
has increased dramatically and will undoubtedly con-
tinue to do so, there must be some alternative to key-
punching large volumes of text. The obvious solution is
the optical character reader. Since the system I am describ-
ing is at least five years away from realization, there may
be a realistic hope that developments in that field will
make input via this device practical. If so, then I believe
we can expect a second Gutenburg revolution in the
availability of materials for scholarly research. Another
hopeful sign is the increasing tendency of publishers to
distribute the computer tapes used in the automated

process of type-setting. We may soon see the day when
new publications can bypass the transliteration problem
altogether. Thus, while we can expect continued advances
in language analysis on computers, the automation of the
laborious and costly step of initial text preparation may
well revolutionize the field.

However, the heart of the system I have been discussing
lies not in the input phase but in the automated file
handling capabilities and the SEARCH function. The
first aspect, file handling, is well within the capabilities of
present systems. All sophisticated monitors maintain
extensive catalogues. The only problems inherent in
realizing the file system described are in the input/output
specifications and the bulk of material that would have to
be added to the system catalogue. I/0 specifications
could easily be generated from details of the logical
structure specification and, hence, present no fundamental
difficulty. The second problem, of the added bulk of
material, essentially reduces to the SEARCH problem;
for we could merely shift the file maintenance portion of
the catalogue to a lower cost device and then search it on
request. This solution becomes unfeasible only in propor-
tion to search time required to locate a particular data set.
Thus, if we can solve the search problem, we can solve the
file problem.

Conventional search techniques have become quite
sophisticated. Many are very efficient for data sets with
certain, rigidly specified organizational schemes. For
example, a binary scan of an ordered data set of N items
can locate any item in the list in at most log2(IN) -1 tries:
thus, only twenty seeks are necessary to locate any item
in a list of one million items. However, frequent modifica-
tion of the file is costly and impractical. Hashing tech-
niques are promising but are efficient only when consider-
able space in the file is left unused and only with a fast,
uniformly distributed hashing function. These techniques
are largely untested on large natural language data sets.
Random access files are unquestionably the widest used
system for quick location of a data item, but the user pays
heavily in system overhead costs during processing. Thus,
the kind of system that I have described could be realized
with conventional hardware and conventional techniques,
but the cost is likely to be enormous; and with multiple
users, the system could grind to a halt because of overhead
alone. In short, this kind of system seems highly imprac-
tical for existing computers.

There is a kind of computer, however, that can handle
the search problem and, indeed, most of the other prob-
lems we have seen associated with natural language
analysis; but this design has been implemented only in
limited or pilot applications. It is also the subject of con-




siderable controversy at the present time. The kind of
machine that I am referring to is one with what is called
an associative memory and one that is capable of associa-
tive processing. I shan’t attempt a complete description of
this concept of computer architecture — an excellent
introduction to the topic and a considered summary of the
factors pertaining to its implementation is M. H. Cannell,
et al., “Concept and Application of Computerized Associa-
tive Processing”, distributed by the MITRE Corporation
— but I will at least define the terms and discuss briefly
the relevance of this approach to language analysis. An
associative memory differs from the conventional, se-
quentially-accessed memory in that its entire contents can
be searched simultaneously for a given item of data. This
mode of operation is exactly opposite that used in the
serially addressed machines of today. Existing machines
search for a data item by taking an address specification
and returning whatever is stored at that address. The
associative memory machine takes the value or data item
to be located, simultaneously scans the associative mem-
ory for that item, and returns the locations at which that
item occurs. This is done by placing the desired content
in a register and then “driving” the memory for the
particular logical configuration of bits contained in the
content register. Where that content resides in the memory
will be indicated by a pulse on the sense wires for that
location. With a bit more hardware, the concept can be
extended to allow a simultaneous search for a logical
configuration of several data items; and a third level of the
associative concept includes the simultaneous processing
or manipulation of data items in the associative memory
itself.

The tremendous importance of such a computer for
language analysis should be obvious. The SEARCH
function seen to be the heart of the system described
above is exactly realized by the search capability of the
associative memory. If we deal with data structures, the
extended capability of the associative store would allow
search for Ipgical configurations of data items which in
turn would allow effective implementation of a function

that groups or categorizes the data set by partitioning
The returned locations of such a category search could be
translated quite easily into a linear distribution of that
category. In short, the system that was inferred from the
problems that appear inherent in natural language analysis
would seem to be quite similar to what a high order lan-
guage for an associative memory machine might be.
Such close and obvious congruence of problem language
and hardware design is quite encouraging for fast, efficient,
and flexible language analysis applications.

The major questions that remain concern the feasibility
and likelihood of developing such machines. Cannell, in
the paper cited above, argues that the feasibility of
developing such a system has been demonstrated: the
operating systems in several current machines use small
associative memories and the Air Force has an experimental
machine at its Rome base with a 2,000 bite associative
memory. Also, the most probable mode of implementation
of associative capabilities involves large scale integrated
circuits. From one standpoint, the use of chips with each
memory component consisting of several flip-flops, and
gates, etc,, is a logical extension of the IBM 370 series and
the CDC 7600. Both of these achieve their high perform-
ance characteristics through a high speed monolithic
buffer. To change that buffer to an associative memory
would seem not only feasible but the logical direction for
hardware design to go. This development would truly
mark a fourth generation of computer architecture.

In closing, let me remark that I don’t feel that the lan-
guage and system I have discussed is the complete answer.
My purpose has been to stimulate interest and a considera-
tion of what our computer needs are. Strong refutation
as well as approval of my arguments would indicate that
I have succeeded. The important point, however, is that
the time has come for those of us involved in language
analysis to specify what is wrong with existing systems
and what future systems should look like. Let us at least
meet once and for all the challenge of the computer in-
dustry that we are unable to state our needs.



