Query Reformulation Strategies for an Intelligent Search Intermediary
Susan Gauch and John B. Smith

Department of Computer Science
University of North Carolina
Chapel Hill, North Carolina, 27599-3175
(919) 962-1792, jbsQcs.unc.edu

Abstract

This paper describes an intelligent search intermediary to help end-users locate relevant
passages in large online full-text databases. Passage retrieval has advantages in efficiency
and effectiveness over traditional document retrieval yet is more computationdlly tractable
than question answering systems under development by researchers in artificial intelligeﬁce.
However, casual users need assistance with search strategies for full-text databases. We
provide an ezpert system which automatically reformulates conteztual Boolean gueries io
improve search resulis and ranks the retrieved passages in decreasing order of estimated
relevance. It differs from other intelligent database functions in two ways: it works with
semantically and syntactically unprocessed text and the ezpert systems contains a knowledge
base of domain independent search sirategies. An overview of the system architecture s

given and the knowledge base of query reformulation rules is described in detail.

1 Introduction

1.1 Driving Problem

Technological advances are causing a revolution in information retrieval. Optical char-
acter recognition, word processors, and computer publishing software are capable of pro-
ducing massive quantities of online text. The development of optical storage media will
make the storage and distribution of large collections of online text feasible. Proliferation
of personal workstations, combined with modems, are allowing an increasing number of
end-users to do their own searching of online databases. All these trends lead to end-user

searching of online full-text databases, or teztbases.

The main roadblock to wide-spread use of online textbases will soon be the inability of
end-users to search effectively. Christine Borgman [Borgman, 1987] finds that individuals

differ greatly in their search ability. In fact, more than a quarter of the subjects in her

1

study were unable to pass a benchmark test of minimum searching skills. Carol Fenichel
[Fenichel, 1980] has found that many experienced searchers could greatly improve their
searching, particularly in the area of search strategy. To address these problems we are
developing a-query reformulation expert system to act as a front-end to a textbase. By
providing such a tool novice searchers should be able to search more effectively, thus

removing a major roadblock to usage of online text.
1.2 Research Overview

Our goal is to demonstrate that an expert system can improve a novice searcher’s
retrieval performance. We will evaluate the system using two measures of performanée
described by Gerard Salton [Salton & McGill, 1983]: system effectiveness and efficiency.
" Basically, the effectiveness of an information system is a measure of the system performance

whereas efficiency is a measure of the amount of user effort required to perform a task.

The expert system contains a knowledge base of domain independent search strategies.
Knowledge specific to the textbase’s domain is contained in a thesaurus. The user is asked
to supply an initial Boolean query and a target number, an estimate of the number of
paragraphs they would like to read. The expert system reformulates the user’s query,
using the rules in its knowledge base, and information from the thesaurus, to retrieve the
target number of paragraphs, or passages, from the textbase. The retrieved passages are

ranked in decreasing order of presumed importance before they are presented to the user.

Passage retrieval attempts to present the most relevant passages of a textbase in re-
sponse to a user’s query. John O’Connor [0’Connor, 1975] distinguishes between answer-
reporting and answer-indicative passages. Answer-reporting passages contain information
from which an answer to the question can be inferred, perhaps requiring the user to have
specialized background knowledge. Answer-indicative passages allow the user to infer that
the containing document also contains an answer-reporting passage. He asserts that an

answer-indicative passage is usually near an answer-reporting passage.

Answer-indicative, and answer-reporting 'passage, retrieval can be applied to a multi-
document textbase to locate answer-reporting papers, papers containing answer-reporting
passages. The user can use the retrieved passages to quickly identify the most promising ;
documents, and reject irrelevant documents. In this case, passage retrieval perfofms a type

of automatic abstracting function.

In a single document, or multi-document, environment answer-reporting passage re-

trieval can perform a question answering function. The goal is to retrieve passages which

2

directly provide the information necessary to answer the user’s question. This is the type

of retrieval performed by our system.
1.3 Related Work

Our system needs to be considered in the context of two areas of research: first, passage
retrieval is compared and contrasted with other types of information retrieval; second, the

relationship of our expert system to other expert system front-ends is discussed.
1.3.1 Information Retrieval

Passage retrieval is a compromise between traditional document retrieval and
knowledge-based question-answering systems. The former retrieves documents based on
matching query terms with terms used to index documents [Salton & McGill, 1983]. The
latter builds a knowledge structure from natural language text from which answers are
inferred [Lebowitz, 1981]. Passage retrieval requires less pre-processing than either. The
documents do not need to be indexed as their contents are searched directly. Since no
knowledge base of the document contents is formed, the documents do not require syntactic
or semantic pre-processing. O’Connor [O’Conmnor, 1980] identifies several more advantages.

of passage retrieval; and discusses its feasibility.

In terms of user efficiency, passage retrieval is more efficient than document retrieval
since only selected passages from each document must be read. However, it is less efficient
than question-answering systems as the user must read the retrieved passages, and infer
his own answer rather than receiving a direct answer to his question. We believe that
there are many applications, for example scholarly research, for which it is more appro-
priate to present the actual text of a document than its distilled contents. We agree with
Karen Sparck Jones [Sparck Jones, 1983] that “the language of documents is part of their

information content”.
1.3.2 Expert Systems

Several i)rototype expert systems for information retrieval are under development.
Many are strongly tied to their domain of applicafion, including domain specific informa-
tion in the rule base. CANSEARCH [Pollitt, 1987] is a rule-based expert system written in
PROLOG to search cancer therapy literature in the MEDLINE database. It retrieves in-
dexed documents from the MEDLINE database. RUBRIC [Tong, Applebaum, Askmann,

& Cunningham, 1987] searches for word patterns in online text, rather than retrieving

3

pre-indexed documents. However, RUBRIC requires users to tailor the rule base. While
this allow to have specialized rule bases for each user’s area of interest, it requires a lot
of work to adapt the system for new subject areas. PLEXUS [Vickery & Brooks, 1987] is
an expert system to retrieve references on gardening. While PLEXUS contains a module
of domain independent search strategies it differs from our project by retrieving from a
database of indexed document abstracts. OCLC [Teskey, 1987] is also in the early stages
of developing an an expert system interface for passage retrieval. Their system uses the
table of contents and the index at the back as sources of domain knowledge for an online
book.

Similar to RUBRIC and the OCLC project our system searches directly in the text.
We also separate the search strategies knowledge base from the domain knowledge, as do
PLEXUS and OCLC. Unlike the OCLC system, however, we use an online thesaurus as

the source of domain knowledge.

2 System Architecture

@ {Thesaurus) { Textbase)

N v
/7| User Expert MICRO-
é——— Interface System ARRAS

Figure 2.1 System Architecture

The system we are developing has five major components:

1) MICROARRAS which serves as the full-text search and retrieval engine

2) a full-text database .

3) a hierarchical thesaurus of words specific to the textbase’s domain

4) an expert system controls the search process, reformulates the query, and ranks
" the search results _ .

5) a user interface which accepts the user’s queries, presents requests for mformatmn

* from the expert system, and displays the search results.
This section briefly describes MICROARRAS, the textbase, and the thesaurus. The expert

system is described in detail in section 3. The user interface is not a major thrust. of this

4

project, and is not discussed further in this paper. A more detailed description of the
system architecture is presented in [Gauch & Smith, 1988].

2.1 System Components

MICROARRAS is an advanced full-text retrieval and analysis system [Smith, Weiss,
& Ferguson, 1987] that system provides immediate access to any passage in the textbase,
regardless of the length of that document. MICROARRAS also provides Boolean search
on any word or set of words in the text. Contexts for searches can be indicated in terms of
words, sentences, paragraphs, etc., for the entire search expression or for different parts of
it. MICROARRAS can also compute and report various frequency of occurrence statistics

in the form of distribution vectors over a text or set of texts.

The textbase contains a Computer Architecture manuscript by Brooks and Blaauw
[Brooks & Blaauw, 1987] consisting of 3172 paragraphs. An inverted file was created from
the text for use by MICROARRAS.

The thesaurus was hand-built from the Brooks and Blaauw text and strongly reflects
the word usage of that textbase. At the lowest level words with the same root are grouped
together in stemgroups. All words in the text are assigned to a stemgroup. Consider the

grouping of for words with the root ‘structure’.

Stemgroup Name: Structure

Stemwords: structure, structuring, structured, structures

Selected synonym stemgroups are combined to form thesaurus classes. Non-technical
stemgroups and extremely low frequency stemgroups are excluded. High frequency techni-
cal stemgroups, for example ‘data’ and ‘structure’, are combined to form lower frequency
multiple word phrases, e.g. ‘data structure’ which are included in the thesaurus. The high
frequency technical stemgroups also appear in the thésaurus, as more generic instances of

their multi-word phrases.

Conceptually, a thesaurus class can be viewed as a node in a lattice structure as shown
in Figure 2.2. Each node contains a name, a list of synonym stemgroups, the names of
zero or more parent nodes and the names of zero or more children nodes. Parent riodes—
nodes higher in the thesaurus structure—represent more general concepts than the current
node. Children nodes—nodes lower in the thesaurus structure—represent more specific
terms. Nodes containing multi-word phrases have as parents' the nodes containing each
- of the component stemgroups. For example, consider the thesaurus entry for the phrase
Data_Structure. '

Node Name: DATA_STRUCTURE

Node Stemgroups: Data_Structure

Parent Node(s): DATA, STRUCTURE, NAME_SPACE
Children Nodes(s): ARRAY, QUEUE, STACK, LIST

./ Name__
Space . Format
Data_ - { Data_
Structure Format
Queve A Array
. Fifo Vector
’ : Matrix

Figure 2.2 A Sample Thesaurus.

A major advantage of this architecture is the separation of strategic knowledge, con-
tained in the knowledge base for the expert system, from domain knowledge, contained in
the thesaurus.- Once the search strategy rules have been developed and tested with the
existing textbase, the expert system could be extended to other content domains by simply

providing a suitable thesaurus for the new textbase.

The system is being implemented on a Sun 3 workstation. MICROARRAS is written
in the C language. The thesaurus construction and access routines are also written in C.
For an expert system shell, we are using OPS83. The textual database for our current

demonstration project consists of an unpublished manuscript on computer architecture
written by F. P. Brooks, Jr., and Gerard Blaauw [Brooks & Blaauw, 1987]..

2.2 Functional Overview

The search process consists of a dialogue between the user and the expert system. The

user enters the initial contextual Boolean query which the expert system translates into a

6

request for information from MICROARRAS. The Boolean operators available are ‘and’,
‘or’, and ‘andnot’.- The expert system assumes a default context of one sentence for ‘and’
and ‘andnot’ operators. In this, the first prototype, the user is also asked to supply the

number of passages they would like to see, the target number.

MICROARRAS retrieves text passages from the full-text database and informs the
expert system of the number of passages that satisfy the request. The expert system

evaluates the search results and decides whether or not to reformulate the query.

To reformulate a search query, the expert system uses three different techniques, alone
or in combination: first, using the thesaurus, it can add to the sets of search terms;
second, it can adjust contextual constraints on the Boolean operators; third, it can replace

the Boolean operators.

Once an appropriate number of passages are identified, the expert system attempts to
rank order them in terms of probable relevance. It does this by performing a rudimentary
content analysis on the passages retrieved by MICROARRAS and computing a relevance
index for each. The relevance index for each passage is a function of the number of search
terms actually found in that passage, the number of distinct types for each (for terms
that are sets), and the number of different thesaural categories represented. The retrieved
passages are then ranked by their relevance indices and presented to the user in order of

probable interest.
3 Knowledge Base

The expert system performs three main functions: 1) it controls the operation of
the system as a whole; 2) it reformulates the Boolean query based on previous search
results; and 3) it ranks the retrieved passages in decreasing order of estimated relevance
for presentation to the user. To perform these functions, it uses a working memory elements
to describe the current state of the reformulation, a knowledge base of search strategies and
passage ranking procedures. As we pointed out above, all domain knowledge is contained

in the thes aurus.

One of the advantages of rule-based systems is that they are data-driven. The knowl-
edge base is a collection of rules which fire based on the current contents of working
memory. Thus, the control of the system can be explained in terms of the rules in the
knowledge base and the working memory elements (data) that cause them to fire. Section

3.1 describes the reformulation process used by the expert system and section 3.2 describes

7

the structure of the knowledge base which realizes this process. The passage ranking algo-
rithm has not been implemented yet, and our preliminary work in this area is not described

here for reasons of brevity.

3.1 Query Reformulation Techniques

Legend
B: broaden

. N: narrow
v . S: success
: +ve: positive concepts

-ve: negative concepts

g JllUll’lll Lot . a_yuun_yul »

B N

S ™ N B Aecrease\ S
: context
B N

S +ve N B S

B & parents
24
?)
S +ve N B -ve S
siblings siblings -

B N
B N

S N N B .decn:asc S
context
B N

B

5
. S (loosen \ N tighten
eperatol operato
B N

] B -

Figure 3.1 ‘Reformulation Teclmiqués

Following the initial search, the decision to reformulate the query is based on the target
number, the number of passages retrieved, and the history of broadening and narrowing

8

techniques already applied. Figure 3.1 diagrams the flow of control among these techniques.
This figure is somewhat simplified as it does not show the use of context to converge to
the target number once queries have been found which bracket the target number from
above and below. The left side of the Figure 3.1 diagrams the broadening techniques, the

right side the narrowing techniques.

Examining the figure in more detail we see that the first broadening technique used
is adding stemwords to positive concepts, followed by adding synonyms. Next, the expert
system increases context simultaneously in three ways: strict adjacency between terms
in multi-word phrases is relaxed to the component words appearing, in any order, within
three words of each other; the context around positive operators is loosened from the same
sentence to +/- one sentence; and the context around negative operators is tightened to
+/- seven words. Related terms from the hierarchical thesaurus are added next: words
from parent classes first, followed by siblings, and finally children. Context is then further
broadened such that terms from multi-word phrases are required to appear within the
same sentence, positive operators are evaluated with a context of the same paragraph, and

negative operators have their context decreased to +/- three words.

More drastic approaches are attempted if the previous techniques do not broaden the
query enough. These affect the Boolean operators in the query. First the positive operators
are loosened from ‘and’ to ‘or’, while negative operators are tightened from ‘or’ to ‘and’.
If the query still requires broadening the expert system removes the negative portions of
the query altogether.

Narrowing techniques are identical to broadening techniques but are applied to the
opposite parts of the query. We narrow by expanding terms in the negative concept groups,
tightening positive context, loosening negative context, tightening positive operators and
" loosening negative operators. The right side of Figure 3.1 shows the order in which these

techniques are applied.

The expert system stops the reformulation process when the target number has been

reached, or it has run out of techniques to try.
3.2 Knowledge Base Design

In conventional programs design is discussed in terms of data striictures and algo-
rithms. The analogous discussion for and expert system covers working memory elements
(in section 3.2.1) and the rule base (in section 3.2.2). The working memory elements con-
tain the information available to the expert system describing the current state of affairs,

while the rule base contains the system’s knowledge of search strategies.

9

3.2.1 Working Memory Elements

There are seven types of working memory elements, wme:

1) start: created to startup the system

2) goal: the current high-level goal

3) reform: contains information about the reformulation state

4) query: contains information about the query as a whole

5) concept: contains information about the concept group; one per concept
6) stem: contains information about the stemgroup; one per stemgroup

7) passage: contains information about the retrieved passage; one per passage

The wme attributes, and their contents will now be described in more detail. Several
attributes contain indices into C structures which contain further information. Information
is duplicated, and additional is information stored, in C structures mainly for reasons of

efficiency, and they will not be described in this paper.

start. No attributes. Created upon system startup, it triggers the creation of a MICROAR-

RAS process and a goal wme, then is removed.

goal. Attributes:
type: current goal, e.g. ‘get query’, or ‘reformulate’, or ‘rank passages’
subgoal: temporary goal during reformulation, e.g.' ‘add stemword’
justright: target number entered by vser '
toomany: maximum number of passages, set to justright * 2

toofew: minimum number of passages, set to justright / 2

The first goal type is ‘get query’. This causes a rule to fire which receives a query from
the user and creates the query, concept, and stem wmes. Each search term entered by the
user is assumed to represent a distinct concept and a concept and stem wme is created for

each term.

query. Attributes:
status: indicates queries reformulation status, e.g. ‘new’; or ‘reformulated’, or ‘final’
version: index into C array for this query’s parse tree -
name: name of MICROARRAS’s represention of this query
numpassages: the number of passages retrieved by this query
context: number representing the current context for the query
hi: the broadest context tried with this query so far

lo: the narrowest context tried with this query so far

10

There is only one query active at a given time. Information about the structure of the
query is stored in a C array of parse trees. When the Boolean operators are changed or
removed, the current query’s status is set to ‘reformulated’ and a new parse tree is created.
A new query wme is created with a new version and name. Changes to context or sets of
search terms do not require new query wme, merely an update to the name field to reflect
the new MICROARRAS category, or the context and hi or lo fields to reflect the new
context. The numpassages field is also updated to reflect the number of passages retrieved

at each step along the way.

concept. Attributes:
status: indicates whether or not this concept is in current query, e.g. ‘active’
id: index into C array for this concept
sign: indicates whether concept is positive or negative’, e.g. ‘+’ or *-’
freq: number of occurrences of all stemgroups in the concept in the textbase

state: the last reformulation performed on the concept, e.g. ‘add synonyms’

A concept wme is created for each search term in the user’s initial query. The expert system
distinguishes between the concepts on which the user wishes information, the positive
concepts, those which are to be excluded, the negative concepts. For example, the query
‘boundary and word andnot page’ contains two positive concepts, ‘boundary’ and ‘word’,
and one negative concept, ‘page’. Additionally, the ‘and’ operator is considered positive, ..

while the ‘andnot’ is negative. The operators are so tagged in the parse tree.

stem. Attributes:
id: index into C array for this stemgroup
concept: identifier for the concept containing this stemgroup
name: English name for the stemgroup, e.g. ‘boundary’
freq: number of occurrences of this stemgroups in the textbase

added: reformulation step which caused this stemgroup to be added to the query

Initially, a stem wme is created for each concept in the user’s query which contains only
the user’s search term. Reformulation may cause the other members of the stefngroup to
be added, which updates the freq field, but doesn’t cause new stem wme to be created.
Further reformulation may add whole new stemgroups to the concepts, causing new stem

wmes to be created.

11

reform. Attributes:
global: the type of reformulation required by the user’s initial query, e.g. ‘broaden’
local: the opposite of global
lastglobal: the last reformulation technique tried in the global direction
lastlocal: the last reformulation technique tried in the local direction
laststate: the last reformulation technique

step: counts the number of reformulations performed

If the user’s query needs reformulation, i.e. does not retrieve the target number of passages,
a reform wme is created. The type of reformulation to be performed on the user’s query is
stored in global. Our sample query of ‘boundary and word andnot page’ would retrieve one
passage. If the target number was 15, global would be set to ‘broaden’, local to ‘narrow’.
Lastglobal, lastlocal, and laststate would all be set to ‘original’ as no reformulation has
yet been done. Step is initialized to 0. ‘

passage. Attributes:
status: ‘new’, or ‘ranked’, or ‘displayed’
contents: index into C array for this passage

rank: estimated rank of this passage

After the query reformulation stops, the passages corresponding to the final query are re-
trieved, ranked, and displayed. A passage wme is created for each passage, and information

stored on it as indicated above.

Based on the presence, and contents, of the wmes described above, rules in the knowl-

edge base fire. The strategies for query reformulation are described in section 3.2.
3.2.2 Reformulation Control

For each of the reformulation techniques described in section 3.1 there are a set of
rules to recognize, based on the current contentes of working memory, that the technique

is applicable and to carry out the required actions. .

For example, consider the following collection of rules for adding synonyms, written in
pseudoOPS83. Each rule is a¢ccompanied by an informal description, preceded by — in the

margin to indicate that it is a comment.

The first rule, AddSynonymsInitl covers the case where we are continuing to apply
techniques in the global reformulation direction. ‘

12

AddSynonymslnit2 is applicable when we are applying techniques in the local refor-
mulation direction. Not that in this case we already have upper and lower bounds on the
target number. Consider global broadening. The initial query must have retrieved too few
passages for ‘broaden’ to be the global goal. However, we must have broadened too far for
‘narrow’ to be the current goal. The expert system does not apply techniques in the local
direction farther down the reformulation graph of Figure 3.1 than those already applied in
the global direction. The reasoning for this is that the farther down the graph the tech-
niques are, the less confidence we have in it. When reform’s local and global attributes
become equal, and they are not ‘original’, the expert system adjusts context up or down

to get as close to the target number as is possible.

Rule AddPositiveSynonyms shows that the synonyms stemgroups are added to e#ch
positive concept group in turn. Synonyms are added to the lowest frequency concept
group first, then to the others in increasing order of frequency. There is a related rule,
AddNegativeSynonyms, which adds synonyms to negative to negative concept groups when

We are narrowing.

— If the goal is to reformulate

— and we are continuing in the global direction

— and the last reformulation in the global direction was adding stemwords
— then add synonyms

rule AddSynonymsInitl
goal (type = reformulate)
reform (global = next, lastglobal = addstemwords)

modify goal (type = addsynonyms)

modify reform (lastglobal = addsynonyms, laststate = addsynonyms, step = step+1)

— If the goal is to reformulate

— and we are continuing in the local direction (i.e. not global)

— and the last reformulation in the local direction was adding stemwords

~ and the last reformulation in the global direction was not adding stemwords
— then add synonyms

rule AddSynonymsInit2
goal (type = reformulate)
reform (global <> next, lastlocal = addstemwords, lastglobal <> addstemwords)

modify goal (typé = addsynonyms) ,
modify reform (lastlocal = addsynonyms, laststate = addsynonyms, step = step+1)

13

~ If the goal is to add synonyms

— and there is no subgoal

— and we are reformulating to broaden the query

— and there is a positive concept which hasn’t had synonyms added yet

— and there is no other positive concept without synonyms with a lower frequency
— and there is an active query :

~ then get the set of candidate synonym stemgroups for this concept

rule AddPositiveSynonyms
goal (type = addsynonyms, subgoal=NULL)
reform (next = broaden
conceptl (sign = +, state = addstemwords)
NOT concept2 (sign = +, state = addstemwords, freq < conceptl.freq)
query (status = evaluated)

get the set of synonym stemgroups
for each synonym stemgroup
malke stem (concept = conceptl, added = NEWFLAG)
modify goal (subgoal = frequencyfilter)
modify conceptl (state = addsynonyms)

The techniques that add new stemgroups all follow a common path. First, the set of
candidate stemgroups for a concept are identified. Next, the high frequency candidates
are removed. This action is triggered by the subgoal field containing ‘frequencyfilter’.
Normally thesauri do not contain high frequency terms, but they appear in this thesaurus
as pé.rents of multi-word phrases and need to be filtered out by the expert system. Then,
stemgroups that already appear in the query are removed. Finally, the stemgroups that
pass through the previous two filters are added to the concept one at a time. As ‘each
is added, the resulting number of passages is determined. If the effects of adding the .
stemgroup are too drastic, the system backtracks by removing the stemgroup. When all of
the stemgroups for a given concept have been processed, the expert system processes the
next concept. When all concepts have been processed, the number of passages retrieved is
‘compared to the target number and the decision is made to broaden, narrow, or rank and

display the passages.
4 Sample Scenario

Although the system is still being refined, this example describes the actions of a
" working prototype. The expert system currently broadens and narrows under the direction
of the user, rather than iterating towards a pre-specified target number. Since our current
textbase concerns the domain of computer architecture the following scenario describes
the interactions of the system and a user searching for information on computers with

specialized architectures for array processing.

14

The user might enter a query ‘array_processor’, which indicates that the user wishes
to retrieve passages containing the multi-word phrase ‘array processor’. This would re-
trieve only one passage, although ‘array’ appears 102 times in the textbase and ‘processor’
appears 179 times. The first step would be to replace the word types ‘array’ and ‘proces-
sor’ with their stemgroups. The resulting query would be ‘(array or arrays)-(processor or

processors)’. Still, only one passage would now be retrieved.

The next step would be to broaden the query by including synonym stemgroups for each
of the search terms in turn. Since the ‘array’ stemgroup appears fewer times (146) in the
textbase than ‘processor’ (331), its synonyms would be included first, leading to the query
‘(array or arrays or vector or vectors or matrix or matrices) (processor or processors)’.
This improves the number of passages retrieved to three. Adding processor’s synonym

stemgroups (computer, machine) doesn’t increase the number of passages retrieved at all.

The next technique employed by the expert system would be to increase the allowable
context between the phrase terms from strict adjacency to within 3 words. This new
query would retrieve eight passages, and the user might stop the reformulation. If the user
continues to broaden the query, stemgroups from the search terms parent, sibling, and
children nodes in the thesaurus would be added. Context would also be increased to look

for the phrase terms within the same sentence rather than 3 words apart.

When an adequate number of passages have been retrieved, the expert system would
rank the retrieved passages (if this were implemented) and present them to the user in

decreasing rank-order.

5 Conclusion

5.1 Current Status

The text retrieval software, textbase, and thesaurus are compléte; and the second
version of the strategic rule base for the expert system has been implemented. We are
currently rewriting the prodﬁction rules used by the expert system do deal with multi-
word phrases, iterate to the target number without prompting from the user, and perform
the ranking function. We expect to complete the working prototype over the summer, and

to run evaluation experiments during the fall.

15

5.2 Future Work

The immediate goal is to demonstrate the concept of using an expert system as an
intermediary function between a user interface and an analytic engine. In the future, we
will extend the search and analysis operations that are leveraged by the expert system.
In particular, we would like to look at the effect of using confidence factors to guide the
~ search. Different reformulation techniques have different levels of confidence associated
with them. Candidate search terms also have levels of confidence based on the closeness
of their relationship to the user’s original word. The query—concept—stem hierarchy sug-
gests that an expert system shell incorporating frames as well as rules may be appropriate
for this application. We would like to do more sophisticated content analysis to determine
probable relevance, hopefully incorporating some natural language processing techniques.
We also plan to develop an informal graphical query language in which to specify the initial

search request.

6 Bibliography

Brooks, F.P. and Blaauw G.A., “Computer Architecture, Volume 1 — Design Decisions”,
Draft, Spring 1987.

Borgman, Christine L., “Individual Differences in the Use of Information Retrieval Sys-
tems: Some Issues and Some Data”, Proceedings of the Tenth Annual International ACM-

SIGIR Conference on Research & Development in Information Retrieval, C.J. von Rijs-
bergen and C.T. Yu (ed.), ACM Press, 1987. pp. 61-69.

Gauch, Susan, and Smith, John B., “Intelligent Search of Full-Text Databases”, Proceed-
ings of RIAO 88, Vol. 1, March 1988. pp. 162-171.

Fenichel, Carol Hansen, “The Process of Searching Online Bibliographic Databases: A
Review of Research”, Library Research, Vol. 2, No. 2, 1980. pp. 107-127.

Lebowitz, Michael, “RESEARCHER: An Experimental Intelligent Information System”,
Proceedings of the 9th IJCAI, Vol. 2., 1985. pp. 858-862.

O’Connor, John, “Retrieval of Answer-Sentences and Answer-Figures from Papers by Text
Searching”, Information Processing & Management, Vol. 11, No. 5, 1975. pp. 155-164.

O’Connor, John, “Answer-Passage Retrieval by Text Searching”, Journal of the ASIS, Vol.
31, No. 4, July 1980. pp. 227-238. »

Pollitt, A.S., “CANSEARCH: An Expert Systems Approach to Document Retrieval”, In-
formation Processing & Management, Vol. 23, No. 2, 1987. pp. 119-136.

Salton, G., and McGill, M.J., Introduction to Information Retrieval, McGraw-Hill, New
York, 1983. . '

Smith, John B., Weiss, Stephen F., and Ferguson, Gordon J., “MICROARRAS: An Ad-
vanced Full-Text Retrieval and Analysis System”, Proceedings of the Tenth Annual Inter-
national ACMSIGIR Conference on Research & Development in Information Retrieval,
C.J. von Rijsbergen and C.T. Yu (ed.), ACM Press, 1987. pp. 187-195."

Sparck Jones, Karen, “Intelligent Retrieval”, Informatics 7: Intelligent Information Re-
trieval, Kevin P. Jones (ed.), 1983. pp. 136-143. ' ' '

16

Teskey, Niall “Extensions to the Advanced Interface Management Project”, OCLC Re-
search Review, July 1987. pp. 1-3.

Tong, Richard M., Applebaum, Lee A., Askmann, Victor N., and Cunningham, James F.,
“Conceptual Information Retrieval using RUBRIC”, Proceedings of the Tenth Annual In-
ternational ACMSIGIR Conference on Research & Development in Information Retrieval,
C.J. von Rijsbergen and C.T. Yu (ed.), ACM Press, 1987. pp. 247-253.

Vickery, A., and Brooks, H.M., “PLEXUS ~ The Expert System for Referral”, Information
Processing & Management, Vol. 23, No. 2, 1987. pp. 99-117.

17

