. . . vy
« C S e

A Middle-Level Text Utility System

i

John B. Smith

’I-l‘me Random-Accessible Text Systems (RATS) is an intermediate level utility,
written in PL/I, for the researcher who has some knowledge of programming.’ It provides
a highly flexible representation of a text, allowing the researcher to write specific
programs to perform the exact analysis he desires. There are, of course, a number of
natural-language utilities available, but often they do not fit exactly the user’s research
design. He must then either modify his analysis or set out to-develop his own system.
Such “rediscovery of the wheel” is sometimes educational but unnecessary. The RATS,
~ system allows the user to bypass most of the “housekeeping” steps of file creation and
begin with the actual analytic steps. Thus, he can concentrate on the more important
phases of his project, thereby maintaining the integrity and sensitivity. of his research
design. This flexibility is achieved by breaking the text into three data sets linked by
pointers, such that the user has access to the text in both alphabetical and text or linear
order and may move easily from one to the other. Once the text is in the RA TS structure,
_most of the programs that the user tailors to his needs are quite simple to write, as will be
seen in the examples discussed below.

Input ‘
RATS uses as its initial text scanner the INDEX program of 8.Y. Sedelow’s VIA-IL.
This scan program was chosen because of its availability, its relative ease of use, and the
‘practicality of the information generated. I shan’t attempt a complete description of it
(see S.Y. Sedelow’s Automated Analysis of Language Style and Structure, 1970, for a
user’s manual for this program); however, I shall describe briefly input and output
format. Input is punched text in columns 1-72, in blank delimited form, that is, all words
and punctuation marks are separated by blanks. Output is a token data set, one word per
logical record, with two sets of index values: a linear number indicating text position (the
first word is numbered 1, the second 2, etc.) and a set of hierarchical counters that
indicate, for example, volume, chapter, paragraph, sentence, and word in sentence for
prose texts and similar counters appropriate for other genres. RATS uses this data set,
sorted in alphabetical order.

. ! These programs were developed in part through the assistance of an N.S.F. Institutional Grant.
Coding was done by Nancy Abbatiello. .

John B. Smith is an assistant professor of English and a research consultant with the Computation
Centerat the Pennsylvania State University.

271




ratver

278  Computers and the Humanities/Vol.6, No.5/May 1972

Example: Punched data.
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THE PARTY .

Example: Ouput records from VIA-I INDEX program.

£
n

lin vol ch

para sent page idiom prefix length word

1 1 1 1 1 1 1 3 NOw
2 1 1 1 1 2 1 2 Is

3 1 1 1 1 3 1 3 THE
4 ' 1 1 1 1 4, 1 4 TIME
5 1 1 1 1 5 1 3 FOR
6 1. 1 1 1 6 1 3 ALL
7 1 1 1 1 7 1 4 GOoD
8 1 1 1 1 8 1 3 MEN
9 1 1171 1 9 1 2 TO
10 1 1 1 1 10 1 4 COME
1" 1 1 1 1 11 1 2 TO
12 1 1 1 1 12 1 3 THE
13 1 1 1 1 13 1 3 AlD
14 1 1 1 1 14 1 2 OF
15 1 1 1 1 15 1 3 THE
16 1 1 1 1 16 1 5 PARTY
17 1 1 1 1 17 1 1 .

Data Structures

The token input set is built into three interconnected data sets that are stored on
tape, disk, or some other auxiliary storage medium. The user then reads in the portions of
these data sets appropriate for his particular analysis. The three data sets are:

1) DICTIONARY, a type file in which each word and punctuation mark is listed
along with its frequency of occurrence in. the text and a pointer to the second file where
the index information for each Ooccurrence is stored. These records are fixed length, with
eighteen characters allotted for each text word. If this space is insufficient, it would be a
simple programming problem to modify this; however, eighteen characters has been
sufficient space for all texts that I have encountered.

2)' AB, a token data set of index information for each occurrence of each word in
the text arranged in alphabetical order by word.

3) LIN, a token data set of index information for each occurrence of each word
arranged in linear or text order. Instead of storing the word itself in each record, a pointer
back to the dictionary indicates the word that appears at each linear position.

Punched via -1 | |uriury | [ RaTs — Jas )
" Data INDEX SORT | —— i

RATS Organization - - - o e o

Ly
Example i
.

DicTion.

Files two angj
the chaining 4

Programs

BUILD.,
the data struc
pointer file; t}-
linearly ordere.
program is ope;

COMPRF
compresses it .
of the dictiona
the whole stru.
specify, say, th,
By performing
and greatly sim,
This program js .

EXPAND,
it is desirable |,
data sets, Expa

2of cburse, 1
Space on tape js r.
requires the DICT!

.,.infor—mation‘woum



~yord
NOwW

THE
TIME
FOR
ALL
GOO0OD
MEN

TO |
COME
TO
THE

AID

OF
THE
PARTY

tored on
rtions of

¢ is listed
ile where
gth, with
ould be a
has been
1 word in

ach word
a pointer

DICT '
AB ’

LIN

Smith(PL/I Text Utilicy 279

Example: RATS file structure
Trace of the word, the

DICTIONARY AB ‘ LINEAR
word  freq ptr index ' ptr index ptr _
] 1 17 9 {NOW)
AlD 1 2 13 7 {1s)
ALL 1 3 6 > 12 =3  (THE)
COME |1 4 10 13 {(TIME)
FOR |1 5 5 5 (FOR)
GOOD | 1 6 7 3 {ALL)
IS 1 7 .2 , 6 (GOOD)
MEN |1 8 "8 8 {MEN)
Now |1 ) 1 14 (TO)
OF |1 10 14 4 . {COME)
PARTY | 1 11 , 16 . 14 (to)
> THE |3 12 0 a | 12 sy  (THE)
TIME |1 15 | (THE) 12 J 2 . (AID)
TO 2 - 16 15 ' 10 1 (oFR
) 4 L 12 (THE)
9 11 : (PARTY)
11 I ()

Files two and three are linked by a pointer from file two to file three, thus completing
the chaining among all three data sets.?

Programs

BUILD. This program takes the sorted token file from V1A-11 INDEX and builds
the data structure just discussed as three independent files: a dictionary, frequency, and
pointer file; the alphabetically ordered file of index information and pointer; and the
linearly ordered file of index information and word pointer back to the dictionary. This
program is operational and available,

CoMPRESS. This program takes the file structure created by BuUILD and
compresses it to either a linear subset of the text or a subset represented by a partitioning
of the dictionary. Thus, a file structure for a chapter, for example, may be created so that
the whole structure can fit into core. The second mode of compression allows the user to
specify, say, the words he wishes to consider images or a theme and work with them only.
By performing the analysis in logical modules the user can reduce costs in data handling
and greatly simplify many of his programming problems that concemn file manipulation.
This program is operational and available.,

EXPAND. This program does exactly the opposite of what coMPRESS does. Often

" it is desirable to procéss texts in small chunks and later amalgamate the results and/or

data sets. EXPAND takes the file structures created by BUILD for several texts or subsets

2of course, the index information attached to both files two and three is redundant, but since
space on tape is relatively cheap it is included so that it will be available when a particular analysis
requires the DICTIONARY and only one of the second or third files. It is unlikely that this index
information would be stored within memory for both data sets at the same time.




280 Computers and the Humanities/Vol.6, No.5/May 1972

of a text and combines them into 'a single RA TS file structure. This program is expected
to be operational by summer 1972. A

A number of other functions and programs are planned, but discussion of them will
be delayed until after the séction concerning examples of application.

Examples of Application

Once a text is represented in the RATS file structures, many of the tasks that are
commonly performed in textual analysis are easily programmed, but even more
important, the representation -affords such flexibility that the user may tailor his
procedures to compute exactly the measures that fit his experimental model. To illustrate
this, three applications are discussed briefly: a concordance procedure, a procedure to
calculate the distribution of a “theme,” and finally a procedure to construct the matrix
of transitions among words over the text. ' '

- Concordance Construction. There have been, of course, many procedures to
produce concordances; however,- most of these do little more than produce the
concordance and require that the text be punched with input conventions that make it
unsuitable for other utilities. Since the user may wish to print the context for only a
subset of words, like the imagery in a text or a thematic cluster, it is desirable for him to
be able to easily tailor his concordance for his particular needs. If we look forward to the
-day of large-scale interactive systems, the user may eventually be able to bypass the
voluminous output phase often associated with concordance construction and text
analysis by having a program available that will produce the context information for only
the words he is interested in when he needs it. : : :

For this application most of the index information of the second and third files can
be ignored. The user will read into PL/1 structures the DICTIONARY.file, the pointer in
file two, and the pointer in file three. Depending on how he wishes to define the context
of words, the user may ignore most of the index information in files two and three. If he
wants, say, the five words on each side of the key word, then all of it can be ignored; if he
wants the complete sentence, then the sentence-number within the index field of file
three should be réad in. - . .

After the appropriate information from the files is read in, the main logic consists
of only three nested po-loops. The outermost goes from the first to last DICTIONARY
entries. The second begins with the value of the pointer stored with the DICTIONARY
and goes to (pointer_value + freq. 1) where freq. is the frequency for the particular
DICTIONARY word-type. The third loop begins with the value stored in the pointer in
file two and moves out on each side of that position in file three the desired number of
locations. If the context is + 5 words, then the third loop goes from (pointer -5) to (pointer
+5); if the context is the complete sentence, the Do-loop is executed as long as the
sentence number is the same as that of the word for which context is being sought.

Basic PL/1 statements for simplest concordance example:

DO 1= 1 to DICTOP;
DO J = DICT_PTR(I) to DICT_PTR(I) + DICT_FRQ(I)-1;
DO K = AB_PTR(J)-5 TO AB_PTR(J) + 5;
PUT EDIT (WORD (LIN_PTR(K))) (A):

END;
END;
END;

The user would, of course, have to test for top and bottom limits for K, and supply .
appropriate print statements, page control, etc. :

IEn/s3giur

28°¢ -

L1INN/S394uL

>

"ee

L %

65'§

s0°2
i

B



ill

re
re
\is

te’

to
X

to
he
it

to
he
he

ile

he

. Smith/PL/I Text Utiliy 281

Thematic Distribution. It is often quite helpful to represent the distribution of a
theme by a line graph. For example, the smoothed distributions of fire and water imagery
from Joyce’s Portrait of the Artist given below show their “parallel” use in Chapter I and
their respective dominance in Chapters Il and IV..

There has been considerable discussion concerning the defining of theme; however,
most methods boil down to defining it by semantic grouping, perhaps with the help of a
computer-accessible thesaurus, context-clustering tendency,. or by inspection. One

* FIRE/HEAT IMAGERY

[}

ﬂ
T
44,

WATER/TOLD IMAGERY

6e°2

1IKN/S3g4ur

8zt
1

T T T -t - — -
5 I7 .3 86.0 120. § 143, 167, 191,
S00 WOAD UNITS

Fire/Heat Imagery

V! :
M/\] oo ¢
2

T
1.00 2%.8

1Irn/s3geat

9.0 120,
500 ¥ORD UKITS

Water/Cold Imagery




282 .Computers and the Humanities/Vol.6, No.5/May 1972

interesting aspect of the RATS system is the clear distinction it makes between operative
definition of a concept like theme and its interpretation, which is often mistaken as the

definition itself. A thematic group of words is essentially a partitioning of the vocabulary; -

operatively, then, a theme is defined in these examples as a set of words that are
denotatively similar; the fire/heat theme thus consists of images such as fires, flame,
flames, burn, hot, etc. The distributions sliown are the collective distribution of such sets
of images. This partition can probably be most easily specified by a list .of the index
values’of the words in the picT file or by a logical vector, one entry per DICT item, with

“1s” indicating inclusion and “0s” representing exclusion. With this approach it makes:

little difference where the partitioning came from or how it is interpreted: operatively, all
such groupings function in the same way.

To compute a distribution the user establishes a unit interval size (perhaps 500
words), computes the number of such intervals within the text, and establishes a vector of
counters—one for each interval. If, for example, his interval is defined in terms of words
as opposed to, say, sentences, he needs only the picT pointers and frequencies from file
1 and the linear numbers from file 2. If he is using a logical vector for the partitioning, his
main logic reduces to two nested DO-loops similar to the outer loops for the concordance
example. To compute the index value for the appropriate counter for each word-token,
the linear number is divided by the unit size and 1 is added to the quotient ([lin#/unit
size] + 1), ‘ , :

Example: for a unit of 500 words, word 1573 would fall into the fourth unit interval of
the text (4 =(1573/500) + 1). ’

Basic logic in pL/1:

DOI = 1 to DICTOP;
IFLOG_VECT() = ‘1’ THEN
DOJ = DICT_PTR(I) TO DICT_PTR(I) +

DICT_FRQ() -1;

COUNTER ((LIN(J)/UNIT) + 1) = .
COUNTER ((LIN()/UNIT) + 1) + 1;

The resulting distribution, stored in ‘COUNTER, can then be smoothed, if desired, and
either printed out or passed directly to the plotter routines available at most computer
centers. : '

Transition Matrix. The problem with computing’ a matrix of transitions or
transition probabilities is the impossibility of storing in core a matrix of counters large
enough for any sizeable text. RATS allows the user to bypass this problem entirely. The
matrix is computed row-wise, and only as many counters as there are DICT items are
required. The pointers in file three must be read in, and then files one and two are read in
or passed sequentially. A bank of counters, one for each DICT item, is established. The
main logic then consists of two nested Do-loops similar to those in the above examples.
At the innermost level, the. counter indexed by the succeeding word in file three is
“bumped.” - : —

Basic logic in pL/1:

DOI=1 to DICTOP; .
DO 1 =DICT_PTR(I) TO DICT _PTR(I) +
DICT _FRQ(I) - 1;
COUNTER (LIN_PTR(AB_PTR(J)+1))
= COUNTER (LIN_PTR(AB_PTR(J)H)) +1;
END; -
(OUTPUT COUNTERS OR PROBABILITIES).
END; ’

This output may either .be printed or passed to some sort of cluster analysis or other
analytic procedure. As before, the user must establish output procedures and appropriate
tests for upper and lower limits and reinitialize counters.

LComment

It i
format fo
redundant
required. |
have to re
only the ir

At t
structures
sizeable te;
for a parti
complete ¢
4 bytes pe:
per entry. .
read in, or
neighborho
requiremen

If this req
problem. O
in as neede:
required sp:
instead of t
pointer valu
be read in :
temporary f

This is
all. The the
pointer valu
both the pi
storage requi

Becaus
became appu

Additional P
. A num
of which sho
RAND:
structures to«
RETUI
he desires (R
a particular w
Conclusion
While t
facilitate grea
Its general fle
his analytic n

hopefully, wi
substantive im



wse WA

- Comments on Use

complete dictionary file at 24 bytes per entry, the pointers from the A B file at either 2 or
4 bytes per entry, and the pointer in the LN file back to the DICTIONARY at 2 bytes
per entry, However, the A p pointers will be used only in sequential order; so they may be
read in, one at a time, as needed. ‘Thus, for a two—hundred-page novel—probably in the

neighborhood of 75,000 word tokens and some 4,000 to 5,000 word types—the storage
requirements would be: '

pICT = Sk x 24 = 120k
LIN = __75kx 2=150k
Total =270k

i

If this requirement exceeds available core, there are two obvious solutions to the’
problem. One, the DICTIONARY file can be put onto a random-access device and brought
‘in as needed, or, better, the word in the DICT can be left out entirely, thus reducing the

for many applications do not need the word at
such a case. Here, only the frequency and

y nothing (10 bytes). ‘
Because of the flexibility of RATS, these and other processing techniques soon
became apparent to the user with several weeks’ experience using the system,

Additional Programs

A number of additional functions and procedures are planned for the system, most .
of which should be operative by fall 1972. These include the following:

RANDOM. This program will load the data sets into random-access files for file
structures too large for core. ! :

RETURN/SEARCH. These functions will allow the user to specify the information

ires (RETURN) and thén obtain that information by a searcH request defined on
a particular word or group of words.

Conclusion

While this systemn does not supply all of the features we might wish, it does

ate greatly many of the tasks that humanists and language analysts often perfo_rm.

Its general flexibility should enable ‘the user to design and implement procedures that fit

his analytic model more precisely and sensitively than is generally possible. The results,

- hopefully, will be a greater number of computer-assisted works that are of definite
substantive importance within the user’s discipline. '







