1 September 1970 131

B, PREFIX —- Revised Version

By John B. Smith

The PREFIX program described in detail in Automated Language

Analysis: 1967~1968 has been revised during the past year. As a

result, the logic has been greatly simplified -~ the program is
less than half as long as the first version —- and the run time
reduced. Before discussing-the revised algorithm, I shall
describe briefly the data structures and the logic of the
earlier version of PREFIX: however, the reader is urged to con-
sult last year's annual report for a more detailed description

and listing of the program.

The earlier version of PREFIX was basically a table-lookup
procedure based upon a list of English prefixes, a list of
‘wo:ds accompanying each list, and a key. A word that has
initial letters that match a prefix does not necessarily have
a legitimate prefix. For example, the word ate does not
consist of the at prefix and a stem. Consequently, it was
necessary to associate with each prefix additional information

~in the form of a list of words that indicated when a word with
matching initial characters is or is not a legitimate prefixed
word. Our task would have been simpler if we could have
included in this list all words that are exceptions to the rule.
This procedure would work well for the prefix in ~- there are

only some two to three hundred words listed in the Random House

Dictionary that contain these initial letters but which are

1 September 1970 132

not prefixed words. However, the exceptions for the prefix a
are voluminous. The technique that was employed was to use
either an exception or an inclusion list —- whichever is

shorter —— and to indicate the kind of list by a key. Thus,

associated with each prefix is a list of either exceptions.
or inclusion words and a key indicating the kind of 1list.

To optimize processing time, it was decided to assume
that text words would be passed in alphabetical order against
the alphabetized list of prefixes, resulting in the need for
only one pass of both lists. This works well except when one
prefix is "contained in" the succeeding prefix -- that is,

when the first prefix is shorter in length than the prefix

that follows it and when it matches the prefix that follows it

character by character. . For example, a is "contained in" ab
, ¥y pie, & _ ap,

ad, etc. In this case, words with legitimate a prefixes may

come after words with ab prefixes: atypical would come after

all words with ab, ad, anti, etc., prefixes. To solve this

problem a list of these "troublesome" prefixes was kept and

after "mormal" processing failed to reveal a prefix, the

prefixes on this list were tested. The result was a procedure
of some three hundred statements and fai#ly complex logic.

A simple and more elegant solution to the problem was

found by using truth-table logic. (A truth table is matrix

representation of all possible combinations of values for

‘relevant parameters and the resulting logical condition.) In

the case of PREFIX there are three relevant parameters: the

initial letters of a word match or don't match an English

1 September 1970 133

prefix, the word is or is not found in the associated CLUD list,
and the CLUD list 1s an inclusion or exclusion list. The
following table (Table # 1) summarizes all possible combinations
of these factors and indicates whether or not the word has a
legitimaﬁe prefix. Ones indicate that the parameter or condition
is "true" or present; a zero indicates that the condition is not
met.

Clearly, a word has a prefix only in those cases in which
the initial letters match. But more significantly, it is
meaningless fo test for this condition until a check of the CLUD
list and its accompanying key is made. To facilitate this
érocedure,.a.differgnt data organization was used; The

N
CLUD list was sorted alphabetically and a pointer attached to
indicate the associated prefix and key (see Table 2). The

complete text can thus be processed with a single pass against

the alphabetized CLUD ligt. A scan of the CLUD list reveals

whether a tggt wo:d is on the list or not. The main processing
procedure then branches into two simple nested conditional

logic paﬁhs. 1f the word is found, then a test of the associated
key is made. If it is a one, indicating an inclusion list, a

test for prefix match is made. If all three tests are succesgsful,

R A RS S TS SR et

then we can say that the word hag a legitimate English prefix.

e

On the other hand, if the text word is not found in the CLUD

T [e e

list, a quick search of the prefixes beginning with the same
letter of the alphabet as the text word is made. Those, and only

those, prefixes with a key of zero are tested against the initial

letters of the word. 1If a match is found, we can conclude that

1 September 1970 134
Initial Letter CLUD KEY Has Prefix?

Match Match
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 1
Prefix List - CLUD List

PREFIX XEY ﬂfff’”"“““ﬂx\ PTR CLUD WORD

.

PIR CLUD WORD

PREFIX KEY

1 September 1970 135

the word has a prefix.

Thus, by changing the data representation, the processing
algorithm is greatly simplified. Resulting processing time
for a text of some 100,000 word-tokens is reduced from 8-10
minutes to 6-8 minutes, & 20-25% increase in efficifncy.
PREFIX is now catalegued in the VIAl sequence. For instructions

on how to use it, see the User's Manual included in this .

‘report,

