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Abstract

In this paper a stereo algorithm suitable for implementa-
tion on commodity graphics hardware is presented. This
is important since it allows to free up the main proces-
sor for other tasks including high-level interpretation of
the stereo results. Our algorithm relies on the traditional
sum-of-square-differences (SSD) dissimilarity measure be-
tween correlation windows. To achieve good results close to
depth discontinuities as well as on low texture areas a multi-
resolution approach is used. The approach efficiently com-
bines SSD measurements for windows of different sizes. Our
implementation running on an NVIDIA GeForce4 graphics
card achieves 50-70M disparity evaluations per second in-
cluding all the overhead to download images and read-back
the disparity map, which is equivalent to the fastest com-
mercial CPU implementations available. An important ad-
vantage of our approach is that rectification is not neces-
sary so that correspondences can just as easily be obtained
for images that contain the epipoles. Another advantage is
that this approach can easily be extended to multi-baseline
stereo.

1 Introduction

Depth from stereo has traditionally been, and continues to
be one of the most actively researched topics in computer
vision. While some recent algorithms have obtained excel-
lent results by casting the stereo problem as a global opti-
mization problem, real-time applications today have to rely
on local methods, most likely correlation-based ones, to ob-
tain dense depth maps in real time and online.

It is only recently that real-time implementations of
stereo vision became possible on commodity PCs, with the
help of rapid progress in CPU clock speed, and assem-
bly level optimizations utilizing special extensions of the
CPU instruction set, such as the MMX extension from Intel.
While it is quite amazing that some of them could perform
up to 65 million disparity estimations per second (Mde/s) in
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software [3, 4, 5], there are few CPU cycles left to perform
other tasks including high-level interpretation of the stereo
results. In many real-time applications, such as robot navi-
gation, to calculate a raw depth map is only the first step in
the entire processing pipeline.

In this paper, we will take advantage of an ubiquitous
component of every commodity PC – the graphics card.
We present a multi-resolution stereo algorithm that allows
a standard Graphic Processor Unit (GPU) to perform many
tens of millions of disparity evaluations per second. Our
method runs completely on the graphics hardware. Once
the input images are downloaded to the graphics board, the
CPU is essentially idle.

At the heart of our method is a multi-resolution approach
to achieve good results close to depth discontinuities as well
as on low texture areas. We combine the sum-of-square-
differences (SSD) dissimilarity measures for windows of
different sizes. This is, in fact, equivalent to using a large
weightedcorrelation kernel with a pyramid shape. By utiliz-
ing the mipmap functionality [13] on the graphics hardware,
we can compute this dissimilarity measure very efficiently.

2 Related Work

Stereo vision is one of the oldest and most active re-
search topics in computer vision. It is beyond the scope
of this paper to provide a comprehensive survey. Interested
readers are referred to a recent survey and evaluation by
Scharstein and Szeliski [12]. While many stereo algorithms
obtain high-quality results by performing optimizations,to-
day only correlation-based stereo algorithms are able to pro-
vide a dense (per pixel) depth map in real time on standard
computer hardware.

Only a few years ago even correlation-based stereo al-
gorithms were out of reach of standard computers so that
special hardware had to be used to achieve real-time perfor-
mance [2, 7, 15, 8, 6].

In the meantime, with the tremendous advances in
computer hardware, software-only real-time systems be-
gin to merge. For example, Mulligan and Daniilidis pro-
posed a new trinocular stereo algorithm in software [10]
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to achieve 3-4 frames/second on a single multi-processor
PC. Hirschmuler introduced a variable-window approach
while maintaining real-time suitability [4, 3]. There is also
a commercial package from Point Grey Research [5] which
seems to be the fastest one available today. They reported
45Mde/s on a 1.4GHz PC, which extrapolates to 64Mde/s
on a 2.0GHz PC.

All these methods used a number of techniques to accel-
erate the calculation, most importantly, assembly level in-
struction optimization using Intel’s MMX extension. While
the reported performance of 35-65Mde/s is sufficient to ob-
tain dense-correspondences in real-time, there are few CPU
cycles left to perform other tasks including high-level in-
terpretation of the stereo results. Furthermore, most ap-
proaches use an equal-weight box-shaped filter to aggregate
the correlation scores, so the result from the previous pixel
location can be used in the current one. While this simpli-
fies the implementation and greatly reduces computational
cost, the size of the aggregation window has a significant
impact on the resulting depth map.

We in 2002 proposed a completely different ap-
proach [16]. We presented a real-time multi-baseline sys-
tem that takes advantage of commodity graphics hardware.
The system was mostly aimed at novel view generation, but
could also return depth values. We used the programmabil-
ity of modern graphics hardware to accelerate the compu-
tation. But at that time it was limited to use a1 × 1 cor-
relation window, so that multiple images had to be used to
disambiguate matching and achieve reliable results.

In this paper we extend our original method. Aimed to
overcome the limitation of the support size, we propose
to use a pyramid-shaped correlation kernel that strikes a
balance between large windows (more system errors) and
small windows (more ambiguities), and can very efficiently
be evaluated on graphics hardware. The extended method
can still be implemented on commodity graphics hardware
and works well with two cameras in a general configuration,
without the need for rectification.

3 Method

Comparing images To efficiently compute dense corre-
spondence maps between two images using graphics hard-
ware a plane-sweep algorithm can be used [16, 1]. Given
a plane in space, it is possible to project both images onto
it using projective texture mapping. If the plane is located
at the same depth as the recorded scene, pixels from both
images should be consistent. This can be verified by evalu-
ating the square difference between the pixel intensities:

(I ′x,y − Ix,y)2, (1)

whereI ′x,y andIx,y denote pixels in two images. To esti-
mate a dense set of correspondences, a plane hypothesis is

set up for every possible disparity value. In the standard
stereo case consisting of two fronto parallel cameras (and
the optical axis aligned with the Z-axis), the planes should
be placed atZ = −

fb
d , with d ranging over the desired dis-

parity range,f the focal length measured in pixels andb the
baseline.

Note that if the images are in a more general configura-
tion the same strategy can still be followed. It is interesting
to note that a priori rectification is not necessary since this is
effectively provided in the projective texture mapping step.
An important advantage of our strategy compared to recti-
fication is that configuration with the epipole contained in
the image can also be addressed. This is due to the fact
that the projective texture mapping operation is carried out
independently for every depth hypothesis1.

As typical for real-time approaches we use a Winner-
Takes-All strategy to select the best match along a ray in
space. This ray can correspond to the line of sight of a
pixel in one of the two images (in which case our approach
is equivalent to the traditional left-to-right or right-to-left
stereo matching) or be orthogonal to the family of planes
used as hypotheses (which is more typical for plane-sweep
algorithms, especially when more than two view are con-
sidered). In this paper we will computed correspondences
for pixels of one of the two images.

Hardware-based SSD aggregation Although the simple
consistency measure might be sufficient in multi-view ap-
proaches [9, 16], it is necessary to use larger support region
in the two-view stereo case. Therefore, one of the typical
dissimilarity measures used in real-time stereo is the Sum-
of-Square-Differences (SSD):

SSD(x, y) =

n/2∑

p=−n/2

n/2∑

q=−n/2

(I ′x+p,y+q − Ix+p,y+q)
2,

(2)
wheren is the support size. This type of measured can be
evaluated very efficiently on a CPU. By reusing data from
previous pixels, the algorithm becomes independent of the
window size. However, on todays graphics hardware it is
not so simple to efficiently implement this type of optimiza-
tion. On the other hand todays GPUs have build in box-
filters to efficiently generate all the mipmap levels needed
for texturing [14]. Starting from a base imageJ0 the fol-
lowing filter is recursively applied:

J i+1
u,v =

1

4

2v+1∑

q=2v

2u+1∑

p=2u

J i
p,q,

1For standard rectification the two images are also warped to one of
the depth hypotheses, but then it is assumed that other hypothesis can be
generated by a simple horizontal shift of the image.
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where(u, v) and(p, q) are pixel coordinates. Therefore, it
is very efficient to sum values over2n

× 2n windows. Note
that at each iteration of the filter the image size is divided
by two. Therefore, a disadvantage of this approach is that
the SSD can only be evaluated exactly at every2n

× 2n

pixel locations. For other pixels, approximate values can
be obtained by interpolation. Note that given the low pass
characteristic of the box-filters the error that is induced this
way is limited.

There exists another efficient possibility to sum the con-
tent of multiple pixels which does not reduce resolution. By
enabling bilinear texture interpolation and sampling in the
middle of 4 pixels, it is possible to average those pixels.
Note that in a single pass only a summation over a2 × 2
window can be achieved. Both approaches can be combined
if desired.

Multi-resolution approach Choosing the size of the ag-
gregation window is a difficult problem. The probability
of a mismatch goes down as the size of the window in-
creases [11]. However, using large windows leads to a loss
of accuracy and to the possibility of missing some important
image features. This is especially so when large windows
are placed over occluding boundaries. This problem is typ-
ically dealt with by using a hierarchical approach [2], or
by using special approaches to deal with depth discontinu-
ities [4].

Here we will follow a different approach that is better
suited to the implementation on a GPU. By observing cor-
relation curves for a variety of images, one can observe
that for large windows the curves mostly only have a single
strong minimum corresponding in the neighborhood of the
true depth, while for small windows often multiple equiv-
alent minima exist. However, for small windows the min-
ima are typically well localized. Therefore, one would like
to combine the global characteristics of the large windows
with the well-localized minima of the small windows. The
simplest way to achieve this in hardware consist of just
adding up the different curves. In Figure 1 some example
curves are shown for the Tsukuba dataset.

Summing two SSD images obtained for windows differ-
ing by only a factor of two (one mipmap-level) is very easy
and efficient. It suffices to enable trilinear texture mapping
and to enforce the right mipmap-level bias. More SSD im-
ages can easily be summed by using multiple texturing units
(that can all refer to the same texture data, but using differ-
ent mipmap-level biases).

In fact, this approach corresponds to using a large win-
dow, but with larger weights for pixels closer to the center.
An example of a kernel is shown in Figure 2. The peaked re-
gion in the middle allows good localization while the broad
support region improves robustness.

We will call this approach the Multiple Mip-map Level
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Figure 1: Correlation curves for different points of the
Tsukuba stereo pair. Case A represents a typical, well-
textured, image point for which SSD would yield correct
results for any window size. Case B shows a point close to
a discontinuity where SSD with larger windows would fail.
Case C and D show low-texture areas where small windows
do not capture sufficient information for reliable matching.

Figure 2: Shape of kernel for 6-level SSD.

(MML) method. In contrast, the approach that only uses
one mip-map level will be called the Single Mip-map Level
(SML) method.

In addition to these two variations, we also implemented
an additional min filtering step. The use of min filter was
proposed in [12]. It is equivalent to replace each pixel’s dis-
parity with the one from its local neighborhood that has the
minimum SSD score in thefinal disparity map. So it is suf-
fice to overlay the final disparity map with different offsets
and select the minimum at each pixel location. This can be
applied to both the SML method and the MML method, and
it incurs little additional computation.
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Implementation Details We outline our implementation
as follows. There are basically three stages at each step, the

Algorithm 1 Outlines for a real-time implementation
for (i = 0; i< steps; i++) {

// the scoring stage;
computeSSD();

// the aggregation stage;
// MML is the Maxinum Mipmap Level
if (MML > 0)

sumAllMipLevels(MML);

// the selection stage;
SelectMinimumSSD();

}
// optional, only needed once
MinFilter();

scoringstage to compute the SSD scores, the optionalag-
gregationstage to sum up all scores from different mipmap
levels, and the finalselectionstage to select the depth with
minimum SSD scores. The depth value is encoded in the
RGB channel while the SSD score is stored in the alpha
channel. An optional min filter can be applied to the fi-
nal disparity map. Interested readers can refer to the ap-
pendix of [16] for implementation details about the scoring
and the selection stage. Note that if we only want to use a
single mipmap level, which is equivalent to aggregate the
SSD scores over a fix-sized support region, we only need
reduce the rendered image size proportionally (by changing
the viewport setting) in the last selection stage. The auto-
matic mipmap selection mechanism will select the correct
mipmap level. Texture shift can also be applied in the last
selection stage to increase the effective resolution.

In the aggregation stage, we first have to copy the frame
buffer to a texture, with automatic mipmap generationen-
abled. Then we use the multi-texturing functionalities to
sum up different mipmap levels. Note that all texture units
should bind to the same texture object but with different
settings of the mipmap bias. This is possible because the
mipmap bias is associated with per texture unit, not per tex-
ture object, as defined in the OpenGL 1.4 specification.

In each stage, there is a texture copy operation that
copies the frame buffer to the texture memory. We found
that texture copies are expensive operations, especially
when the automatic mipmap generation is enabled. The
frame rate can be doubled if we bypass the second stage.
We have tested in a separate program the use ofP-buffer,
an OpenGL extension that allows to render directly to an
off-screen texture buffer. We found that no performance
gain could be obtained (in fact, performance is even slightly
worse in some cases). We suspect that this extension is still

a “work in progress” in the current drivers from NVIDIA.
We expect to see a dramatic performance boost when this
work is done.

Furthermore, the last texture copy for the selection stage
can be eliminated with small changes in the graphics hard-
ware. There is the alpha test in the graphics pipeline that
only allows to compare the alpha value (which is the SSD
score in our case) to a constant. It would be ideal to change
the alpha test to compare to the current alpha value in the
frame buffer, in a fashion similar to the depth test. We be-
lieve these are opportunities for graphics hardware venders
to improve their future products.

Though we have not implemented yet, it is also possi-
ble to remove lens distortions as an additional texture map-
ping step. Today’s graphics card supports texture index-
ing through a lookup table, so the lens distortions can be
removed precisely. The performance impact is minimal
since only two additional passes (one for each image) are
required.

4 Results

We have implemented our proposed method in OpenGL
and tested on a variety of image pairs. Our first test set
is the Tsukuba set that has been widely used in the com-
puter vision literature. The results are shown in Figure 3,
in which we show the disparity maps with two variations
of our method. For disparity maps on the left column, we
used the SML method so that the SSD image was only ren-
dered at a single mipmap level to simulate a fix-sized box
filter. Note that texture shift trick effectively doubles the
size of filter. So it is equivalent to use a2 × 2 kernel at
mipmap level zero, and a4× 4 kernel at mipmap level one,
etc. For the right column, we used the MML method, i.e.
we summed up different mipmap levels and show different
disparity maps by changing the only parameter – the maxi-
mum mipmap level (abbreviated asMML to abuse the no-
tion) from zero up to six. We can see that the result using
a 1 × 1 kernel is almost meaningless, as in the second row.
This would be the result achieved by the method described
in [16] with only two input images. If we use a higher
mipmap level or in other words increase theMML, results
are getting better. But the image resolution drops dramat-
ically with the SML method. The disparity map seems to
be the best whenMML = 4 (i.e. 16 × 16 kernels). Little
was gained whenMML > 4. Results from another widely
used stereo pair usingMML = 4 are shown in Figure 4.

In term of performance, we tested our implementation
on an NVIDIA GeForce4 Card – a card with four multi-
texture units. We found virtually no performance difference
whenMML is set from one to four. This is not surprising
since we can use all four texture units to sum up all four
levels in a single pass. IfMML is set to over four, another
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Figure 3: Results on the Tsukuba data set. The second im-
age shows the ground-truth disparity map. For the remain-
ing rows, on the left column we show the disparity map
using a single mipmap, while on the right we show the ones
with summed scores. The mipmap levels are set to 1, 3, 4,
and 6, respectively.

additional rendering pass is required, which results in less
than 10% increase in calculation time2. In practice, we find

2We do not use trilinear interpolation in our performance testing, and
it seems that in practice settingMML over four has an detrimental effect
on the final result.

Figure 4: Calculated disparity map from another widely-
used stereo pair.

Output Search Times Img. Update Read Disp. Calc.

Size Range (ms) (Hz) (ms) (ms) (M/sec)

20 71.4 14 (VGA) 58.9
5122 50 182 5.50 5.8 × 2 6.0 65.6

100 366 2.73 68.3
20 20.0 50 (QVGA) 53.1

2562 50 49.9 20 1.6 × 2 1.5 60.0
100 99.0 10.1 63.2

Table 1: Performance on an NVIDIA GeForce4 card when
summing all mipmap levels. The two input images are
640 × 480, the maximum mipmap level (MML) is set to 4
in all tests.

that settingMML to four usually strikes a good balance
between smoothness and preserving small details. Details
of the performance data for the MML method can be found
in Table 1. Plotting these data in Figure 5, we can see that
our algorithm exhibits very good linear performance with
respect to the image size.

We also tested our SML method (results shown in Ta-
ble 2). In this case the frame-rates are higher, especially
when going to a higher mipmap level. Note that for higher
mipmap levels the number of evaluated disparities per sec-
onds drop because in this case the output disparity map has
a smaller resolution. This method might be preferred for
some applications where speed is more important than de-
tail.

We also implemented a real-time system that captures
and processes live data online. Our current prototype per-
forms a few additional steps in software, such as radial dis-
tortion correction and segmentation3. As a proof of concept,
these yet-to-be-optimized parts are not fully pipelined with
the reconstruction. These overheads slow down the overall
reconstruction rate to 6-8 frames per second at256 × 256
resolution with 100 depth planes. In Figure 6, we show
a sample stereo pair and a reconstructed depth map. In

3The cameras are facing a white wall with little texture. So we segment
the images to fill the background with different colors.
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Base Output Search Times Overhead Disp. Calc.

Size Size Range (ms) (Hz) (ms) (M/sec)

20 2.5 40 11.7
5122 1282 50 6.4 15.6 12.0 10.7

(4 × 4) 100 12.8 7.8 8.86
20 28.3 35.3 31.7

5122 2562 50 71.4 14.0 13.1 38.8
(2 × 2) 100 144 6.9 41.7

20 40.8 24.5 89.8
5122 5122 50 106 9.4 17.6 106

100 207 4.8 117
20 12.7 78.7 20.1

2562 1282 50 31.6 31.6 3.58 23.3
(2 × 2) 100 63.1 15.8 24.6

20 16.2 61.7 62.7
2562 2562 50 40.3 24.8 4.7 72.8

100 80.7 12.4 76.7

Table 2: Performance on an NVIDIA GeForce4 card when
using only a single mipmap level with texture shift enabled.
Throughput decreases proportionally to the output resolu-
tion because the majority of the time is spent on computing
the SSD score. The overhead includes both the image up-
date time and the time to read back the depth map from the
frame buffer.
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Figure 5: Performance on a NVIDIA GeForce4 Card. The
data are from Table 1.

our real-time system, darker colors in the depth map mean
that the object is closer to cameras while brighter colors
mean further. The variation of disparity is about 20 pix-
els. We swept over 100 planes to achieve sub-pixel accu-
racy. To better illustrate our results, we also show the re-
constructed 3D point cloud from different perspectives in

Figure 6: Typical results from our real-time online stereo
system. The first row shows the two input images, while the
second row shows the disparity map and the reconstructed
3D point cloud from different perspectives. Some holes in
the 3D views are caused by the rendering. We simply ren-
der fix-size (in screen space) points using the GLPOINT
primitive.

Figure 6. More scenes and their depth maps can be found
in Figure 7.

5 Conclusion and Future Work

We have presented a stereo algorithm suitable for imple-
mentation on commodity graphics hardware. Our algorithm
relies on the traditional sum-of-square-differences (SSD)
dissimilarity measure between correlation windows. Un-
like conventional approaches, wecombineSSD scores from
different resolutions, from coarse to fine. This is, in fact,
equivalent to using acenter weightedfilter kernel, which
achieves good results close to depth discontinuities as well
as on low texture areas, and reduces estimate bias towards
frontal planes.

Our algorithm can be efficiently implemented on cur-
rent commodity graphics hardware. Performance tests
have shown that our implementation running an NVIDIA
GeForce4 graphics card is equivalent to the fastest commer-
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Figure 7: More results from our real-time online stereo sys-
tem. The first column shows the input images; The second
column shows the disparity map.

cial CPU implementation available. We also demonstrated
a real-time online prototype. Even with a rather rudimen-
tary serial architecture and un-optimized code in C, we can
calculate a256×256 depth map with a 100 disparity search
range at 6 to 8 frames per second.

Looking into the future, we are planning on optimizing
our real-time system by also carrying out the radial distor-
tion correction and background segmentation on the graph-
ics hardware. We are also looking at ways to efficiently im-
plement more advanced stereo algorithms on graphics hard-
ware. This work will be eased with newer generations of
graphics hardware providing more and more programmabil-
ity. We are exploring the full potentials of the graphics hard-
ware to make real-time vision faster, better, and cheaper.
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