

Digital Camera Register Reference Revised February 19, 2004

www.ptgrey.com

Table of Contents

1.	Intro	oduction	4
	1.1.	Scope	4
	1.2.	Using this Manual	5
2.	Can	nera Control Command Registers	6
	2.1.	Register map	6
	2.2.	Camera Initialize Register	
	2.3.	Inquiry Registers for Video Format / Mode / Frame Rate	
		2.3.1. Video Format Inquiry Registers	
		2.3.2. Video Mode Inquiry Registers	
		2.3.3. Video Frame Rate Inquiry Registers	
	2.4.	Inquiry Registers for Basic Functions	
	2.5.	Inquiry Registers for Feature Presence	. 14
	2.6.	Inquiry Registers for Feature Elements	. 15
	2.7.	Control and Status Registers (CSRs)	
		2.7.1. CURRENT_FRAME_RATE: 600h	
		2.7.2. CURRENT_VIDEO_MODE: 604h	
		2.7.3. CURRENT_VIDEO_FORMAT: 608h	18
		2.7.4. ISO_CHANNEL / ISO_SPEED: 60Ch	
		2.7.5. CAMERA_POWER: 610h	
		2.7.6. ISO_EN / CONTINUOUS_SHOT: 614h	
		2.7.7. ONE_SHOT / MULTI_SHOT: 61Ch	
		2.7.8. SOFTWARE_TRIGGER: 62Ch (v1.31)	
		2.7.9. DATA_DEPTH: 630h (v1.31)	
	2.8.	Control and Status Registers for Features	
		2.8.1. BRIGHTNESS: 800h	
		2.8.2. AUTO_EXPOSURE: 804h	
		2.8.3. SHARPNESS: 808h	
		2.8.4. WHITE_BALANCE: 80Ch	
		2.8.5. HUE: 810h	
		2.8.6. SATURATION: 814h	
		2.8.7. GAMMA: 818h 2.8.8. SHUTTER: 81Ch	
		2.8.9. GAIN: 820h	
		2.8.10. IRIS: 824h	
		2.8.11. FOCUS: 828h	
		2.8.12. TRIGGER_MODE: 830h	
		2.8.13. TRIGGER_DELAY: 834h (v1.31)	
		2.8.14. FRAME_RATE: 83Ch (v1.31)	
	2.9.	Absolute Value CSR Registers	
	2.0.	2.9.1. Inquiry Registers for Absolute Value CSR Offset Address	
		2.9.2. Units of Value for Absolute Value CSR Registers	
		2.9.3. Calculating Absolute Value Register Values	
		2.9.4. ABS_VAL_AUTO_EXPOSURE: 900h	
		2.9.5. ABS_VAL_SHUTTER: 910h	
		2.9.6. ABS_VAL_GAIN: 920h	
		2.9.7. ABS_VAL_BRIGHTNESS: 930h	
		2.9.8. ABS_VAL_GAMMA: 940h	38
		2.9.9. ABS_VAL_TRIGGER_DELAY: 950h (v1.31)	38

	2.10.	Video Mode Control and Status Registers for Format 7	
		2.10.1. MAX_IMAGE_SIZE_INQ: A00h	.40
		2.10.2. UNIT_SIZE_INQ (A04h) and UNIT_POSITION_INQ (A4Ch)	
		2.10.3. IMAGE_POSITION (A08h) and IMAGE_SIZE (A0Ch)	
		2.10.4. COLOR_CODING_ID (A10h) and COLOR_CODING_INQ (A14h) 2.10.5. PIXEL_NUMBER_INQ (A34h), TOTAL_BYTES_HI_INQ (A38h), and	.41
		TOTAL_BYTES_LO_INQ (A3Ch)	4 1
		2.10.6. PACKET_PARA_INQ (A40h) and BYTE_PER_PACKET (A44h)	
		2.10.7. PACKET_PER_FRAME_INQ: A48h	
		2.10.8. VALUE_SETTING: A7Ch	
	2.11.	Advanced Registers	44
		2.11.1. ACCESS_CONTROL_REGISTERS: 1000h-100Ch	.44
		2.11.2. EXTENDED_SHUTTER: 1028h	.44
		2.11.3. SOFT_ASYNC_TRIGGER: 102Ch	
		2.11.4. BAYER_TILE_MAPPING: 1040h	
		2.11.5. BAYER_TILE_GAIN: 1044h	
		2.11.6. Y16_DATA_FORMAT: 1048h 2.11.7. AUTO_EXPOSURE_RANGE: 1088h	
		2.11.7. AUTO_EXPOSORE_RANGE: 10881 2.11.8. AUTO_SHUTTER_RANGE: 1098h	.40 ⊿8
		2.11.9. AUTO_GAIN_RANGE: 10A0h	. - 0 48
		2.11.10. GPIO_CONTROL: 1100h	
		2.11.11. GPIO_XTRA: 1104h	
		2.11.12. SHUTTER_DELAY: 1108h	
		2.11.13. GPIO_CTRL_PIN_0: 1110h	
		2.11.14. GPIO_XTRA_PIN_0: 1114h	
		2.11.15. GPIO_CTRL_PIN_1: 1120h	
		2.11.16. GPIO_XTRA_PIN_1: 1124h	
		2.11.17. GPIO_CTRL_PIN_2: 1130h	
		2.11.18. GPIO_XTRA_PIN_2: 1134h 2.11.19. GPIO_CTRL_PIN_3: 1140h	
		2.11.20. GPIO_XTRA_PIN_3: 1144h	
		2.11.21. PIO_OUTPUT: 11F0h	
		2.11.22. PIO_INPUT: 11F4h	
		2.11.23. PIO_DIRECTION: 11F8h	
		2.11.24. FRAME_TIME: 1240h	
		2.11.25. FRAME_SYNC_OFFSET: 1244h	
		2.11.26. FRAME_TIMESTAMP: 12F8h	
		2.11.27. XMIT_FAILURE: 12FCh	
		2.11.28. SERIAL_NUMBER: 1F20h	
		2.11.29. BUILD_TIMESTAMP: 1F40h 2.11.30. FIRMWARE_VERSION: 1F60h	
		2.11.31. FIRMWARE_BUILD_DATE: 1F64h	.00
		2.11.32. FIRMWARE_DESCRIPTION: 1F68-1F7Ch	
		_	
3.	lsoc	hronous Packet Format	62
	3.1.	Isochronous Packet Format for Format_0, Format_1 and Format_2	62
	3.1.	3.1.1. Isochronous Bandwidth Requirements	
	3.2.	Isochronous Packet Format for Format_7 (Partial Image Size Format)	
	5.2.	isocitionous racket i offiation i offiat_i (ratial image Size i offiat)	04
4.	Gen	eral Purpose Input / Output	65
	4.1.	GPIO Modes	65
		4.1.1. GPIO_Mode_0: Input	
		4.1.2. GPIO_Mode_1: Output	.66
		4.1.3. GPIO_Mode_2: Asynchronous (External) Trigger	
		4.1.4. GPIO_Mode_3: Strobe	
		4.1.5. GPIO_Mode_4: Pulse Width Modulation (PWM)	
	10	4.1.6. GPIO_Mode_8: Output (DCAM Specification v1.31)	
	4.2.	GPIO Control Using DCAM v1.31 Functionality 4.2.1. Parallel Input / Output (PIO) Registers 11F0h – 11F8h	
		± 2.1 , i araller input / Output (FIO) registers $\pm 11^{\circ}01 = \pm 1701$.07

		4.2.2.	Strobe Signal Output Registers	67
5.	Trig	ger Mo	odes	70
		5.1.1. 5.1.2. 5.1.3. 5.1.4.	Trigger_Mode_0 – Standard External Trigger Mode Trigger_Mode_1 – Bulb Shutter Mode Trigger_Mode_3 – Skip Frames Mode Trigger Modes	70 71
6.	Tec	hnical	Support Resources	72
	6.1. 6.2. 6.3. 6.4.	Knowle Produc	ng a Customer Login Account edge Base ct Downloads cting Technical Support	72 72
7.	Con	tacting	g Point Grey Research Inc	73
8.	Арр	endix	A	74
			are and Firmware Version Numbering Scheme Overview Alpha Beta Release Candidate Release	
9.	Inde	ex		76

1. Introduction

The PGR IEEE-1394 Digital Camera Register Reference is a source of general information pertaining to all PGR IEEE-1394 cameras.

This manual attempts to provide the user with a detailed specification of the various features, formats, modes, frame rates, and control parameters implemented by each PGR IEEE-1394 camera. It should be used in conjunction with the camera-specific *Technical Reference Manual* to determine the full functionality offered by an individual camera system.

The reader should be aware that PGR camera systems are complex and dynamic – if any errors or omissions are found during experimentation, please contact us using our support web form at http://www.ptgrey.com/support/contact.

1.1. Scope

The *PGR IEEE-1394 Digital Camera Register Reference* lists all of the registers that are used by PGR IEEE-1394 cameras. Not all registers are implemented by all cameras (See the section *Using this Manual*). For model-specific information, such as supported format and frame rates and detailed technical information, consult the *Technical Reference Manual* specifically for your camera.

Most registers are implemented according to the *IIDC 1394-based Digital Camera (DCAM)* Specification Version 1.30. Other registers are implemented according to Version 1.31 of the DCAM specification; these registers are noted with a (v1.31) beside the register name. Most registers detailed in section 2.11 Advanced Registers are outside of the DCAM specification; those that are not are explicitly noted.

1.2. Using this Manual

Each register section contains a **Format** table and a **Feature Availability** table. The Format table describes the purpose of each bit in the 32-bit register. Some bits have an associated field name listed in the Field column of the Format table. Field names are always *italicized* when referred to outside of the Format table.

The Feature Availability table describes whether that register is implemented or used by the specified camera (indicated by a \checkmark) and whether a certain piece of functionality is implemented (or not) by the camera. For example, the GPIO_XTRA: 1104h has a variety of functions, some (or none) of which may be implemented by a particular model of Scorpion. If a camera does not use a register, a minus (-) sign is shown together with the comment, "Not implemented".

2. Camera Control Command Registers

This section details all of the registers implemented by PGR IEEE-1394 cameras. As a general rule, PGR IEEE-1394 cameras attempt to conform to the *IIDC 1394-based Digital Camera Specification v1.30*, which can be purchased from the 1394 Trade association at:

http://www.1394ta.org/

The base address for all camera control command registers is 0xFFFF Fxxx xxxx. All camera control registers are offset from the base address: 0xFFFF F0F0 0000

2.1. Register map

The following detail summarizes the layout of the PGR IEEE-1394 camera register space and lists the associated section of this manual.

Offset	Register Name	Description	Section
000h	INITIALIZE	Camera initialize register	2.2
100h	V_FORMAT_INQ	Inquiry register for video format	2.3.1
180h	V_MODE_INQ_X	Inquiry register for video mode	2.3.2
200h	V_RATE_INQ_y_X	Inquiry register for video frame rate	2.3.3
300h	Reserved		
400h	BASIC_FUNC_INQ	Inquiry register for feature presence	2.4
	FEATURE_HI_INQ FEATURE_LO_INQ		2.5
500h	Feature_Name_INQ	Inquiry register for feature elements	2.6
600h	CAM_STA_CTRL	Status and control register for camera	2.7
640h		Feature control error status register	
700h	ABS_CSR_HI_INQ_x	Inquiry register for Absolute value CSR offset address	2.9.1
800h	Feature_Name	Status and control register for feature	2.8

2.2. Camera Initialize Register

Format:

Offset	Name	Field	Bit	Description
000h	INITIALIZE	Initialize	[0]	If this bit is asserted, the camera will reset to its initial state and default settings. This bit is
				self-cleared.
		-	[1-31]	Reserved

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	~	This register is supported on all PGR IEEE-1394 DCAM cameras

2.3. Inquiry Registers for Video Format / Mode / Frame Rate

The following registers may be used to determine the video formats, modes and frame rates that are available with the camera.

0: Not Available, 1: Available

2.3.1. Video Format Inquiry Registers

rormat.				
Offset	Name	Field	Bit	Description
100h	V_FORMAT_INQ	Format_0	[0]	VGA non-compressed format
				(160x120 through 640x480)
		Format_1	[1]	Super VGA non-compressed format (1)
				(800x600 through 1024x768)
		Format_2	[2]	Super VGA non-compressed format (2)
				(1280x960 through 1600x1200)
		Format_x	[3-5]	Reserved for other formats
		Format_6	[6]	Still Image Format
		Format_7	[7]	Partial Image Size Format
			[8-31]	Reserved

Format:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	√	This register is supported on all PGR IEEE-1394 DCAM cameras

Format:				
Offset	Name	Field	Bit	Description
180h	V_MODE_INQ_O	Mode_0	[0]	160x120 YUV(4:4:4) Mode (24bit/pixel)
	(Format 0)	Mode_1	[1]	320x240 YUV(4:2:2) Mode (16bit/pixel)
		Mode_2	[2]	640x480 YUV(4:1:1) Mode (12bit/pixel)
		Mode_3	[3]	640x480 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	640x480 RGB Mode (24bit/pixel)
		Mode_5	[5]	640x480 Y8 (Mono) Mode (8bit/pixel)
		Mode_6	[6]	640x480 Y16 (Mono16) Mode (16bit/pixel)
			[7-31]	Reserved
184h	V_MODE_INQ_1	Mode_0	[0]	800x600 YUV(4:2:2) Mode (16bit/pixel)
	(Format 1)	Mode_1	[1]	800x600 RGB Mode (24bit/pixel)
		Mode_2	[2]	800x600 Y (Mono) Mode (8bit/pixel)
		Mode_3	[3]	1024x768 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	1024x768 RGB Mode (24bit/pixel)
		Mode_5	[5]	1024X768 Y (MONO) MODE (8BIT/PIXEL)
		Mode_6	[6]	800x600 Y (Mono16) Mode (16bit/pixel)
		Mode_7	[7]	1024x768 Y (Mono16) Mode (16bit/pixel)
			[8-31]	Reserved
188h	V_MODE_INQ_2	Mode_0	[0]	1280x960 YUV(4:2:2) Mode (16bit/pixel)
	(Format 2)	Mode_1	[1]	1280x960 RGB Mode (24bit/pixel)
		Mode_2	[2]	1280x960 Y (Mono) Mode (8bit/pixel)
		Mode_3	[3]	1600x1200 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	1600X1200 RGB MODE (24BIT/PIXEL)
		Mode_5	[5]	1600x1200 Y (Mono) Mode (8bit/pixel)
		Mode_6	[6]	1280x960 Y (Mono16) Mode (16bit/pixel)
		Mode_7	[7]	1600X 1200 Y (Mono16) Mode (16bit/pixel)
			[8-31]	Reserved
18Ch				
:			Res	erved
197h				1
19Ch	V_MODE_INQ_7	Mode_0	[0]	Format_7 Mode_0
	(Format 7)	Mode_1	[1]	Format_7 Mode_1
		Mode_2	[2]	Format_7 Mode_2
		Mode_3	[3]	Format_7 Mode_3
		Mode_4	[4]	Format_7 Mode_4
		Mode_5	[5]	Format_7 Mode_5
		Mode_6	[6]	Format_7 Mode_6
		Mode_7	[7]	Format_7 Mode_7
			[8-31]	Reserved

2.3.2. Video Mode Inquiry Registers

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	These registers are supported on all PGR
				IEEE-1394 DCAM cameras

2.3.3. Video Frame Rate Inquiry Registers

This set of registers allows the user to query the camera for available frame rates for all Formats and Modes.

Offset	Name	Field	Bit	Description
200h	V_RATE_INQ_0_0	FrameRate_0	[0]	Reserved
	(Format 0, Mode 0)	FrameRate 1	[1]	Reserved
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
			[5-31]	Reserved
204h	V_RATE_INQ_0_1	FrameRate_0	[0]	Reserved
	(Format 0, Mode 1)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
			[5-31]	Reserved
208h	V_RATE_INQ_0_2	FrameRate_0	[0]	Reserved
	(Format 0, Mode 2)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
			[5-31]	Reserved
20Ch	V_RATE_INQ_0_3	FrameRate_0	[0]	Reserved
	(Format 0, Mode 3)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
			[5-31]	Reserved
210h	V_RATE_INQ_0_4	FrameRate_0	[0]	Reserved
	(Format 0, Mode 4)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
			[5-31]	Reserved
214h	V_RATE_INQ_0_5	FrameRate_0	[0]	Reserved
	(Format 0, Mode 5)	FrameRate_1	[1]	Reserved
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
			[6-31]	Reserved
218h	V_RATE_INQ_0_6	FrameRate_0	[0]	Reserved
	(Format 0, Mode 6)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
			[5-31]	Reserved

21Ch						
: 21Eb	Reserved					
21Fh 220h	V_RATE_INQ_1_0	FrameRate_0	[0]	Reserved		
22011	(Format 1, Mode 0)	FrameRate 1	[0]	3.75fps		
	(I office 1, wrote 0)	FrameRate 2	[1]	7.5fps		
		FrameRate_3	[2]	15fps		
		FrameRate 4	[4]	30fps		
			[5-31]	Reserved		
224h	V_RATE_INQ_1_1	FrameRate_0	[0]	Reserved		
	(Format 1, Mode 1)	FrameRate_1	[1]	Reserved		
		FrameRate 2	[2]	7.5fps		
		FrameRate_3	[3]	15fps		
		_	[4-31]	Reserved		
228h	V_RATE_INQ_1_2	FrameRate_0	[0]	Reserved		
	(Format 1, Mode 2)	FrameRate_1	[1]	Reserved		
		FrameRate_2	[2]	7.5fps		
		FrameRate_3	[3]	15fps		
		FrameRate_4	[4]	30fps		
		FrameRate_5	[5]	60fps		
			[6-31]	Reserved		
22Ch	V_RATE_INQ_1_3	FrameRate_0	[0]	1.875fps		
	(Format 1, Mode 3)	FrameRate_1	[1]	3.75fps		
		FrameRate_2	[2]	7.5fps		
		FrameRate_3	[3]	15fps		
			[4-31]	Reserved		
230h	V_RATE_INQ_1_4	FrameRate_0	[0]	1.875fps		
	(Format 1, Mode 4)	FrameRate_1	[1]	3.75fps		
		FrameRate_2	[2]	7.5fps		
			[3-31]	Reserved		
234h	V_RATE_INQ_1_5	FrameRate_0	[0]	1.875fps		
	(Format 1, Mode 5)	FrameRate_1	[1]	3.75fps		
		FrameRate_2	[2]	7.5fps		
		FrameRate_3	[3]	15fps		
		FrameRate_4	[4]	30fps		
			[5-31]	Reserved		
238h	V_RATE_INQ_1_6	FrameRate_0	[0]	Reserved		
	(Format 1, Mode 6)	FrameRate_1	[1]	3.75fps		
		FrameRate_2	[2]	7.5fps		
		FrameRate_3	[3]	15fps		
		FrameRate_4	[4]	30fps		
0201	V DATE NO 17	Energy Derty O	[5-31]	Reserved		
23Ch	V_RATE_INQ_1_7 (Format 1_Mode 7)	FrameRate_0	[0]	1.875fps		
	(Format 1, Mode 7)	FrameRate_1	[1]	3.75fps		
		FrameRate_2	[2]	7.5fps		
		FrameRate_3	[3]	15fps Deserved		
2401-	V DATE INO 2.0	EromoDeta 0	[4-31]	Reserved		
240h	V_RATE_INQ_2_0 (Format 2 Mode 0)	FrameRate_0	[0]	1.875fps		
	(Format 2, Mode 0)	FrameRate_1	[1]	3.75fps 7.5fps		
		FrameRate_2	[2]	7.5fps Posserved		
244h	V DATE NO 2 1	EromoDoto 0	[3-31]	Reserved		
244h	V_RATE_INQ_2_1	FrameRate_0	[0]	1.875fps		

	(Format 2, Mode 1)	FrameRate 1	[1]	2.75fm
	(Format 2, Mode 1)		[1]	3.75fps
		FrameRate_2	[2]	7.5fps
0.401	V DATE INO 2.2	En Data O	[3-31]	Reserved
248h	V_RATE_INQ_2_2	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 2)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
			[4-31]	Reserved
24Ch	V_RATE_INQ_2_3	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 3)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
			[3-31]	Reserved
250h	V_RATE_INQ_2_4	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 4)	FrameRate_1	[1]	3.75fps
			[3-31]	Reserved
254h	V_RATE_INQ_2_5	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 5)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
			[4-31]	Reserved
258h	V_RATE_INQ_2_6	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 6)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
			[3-31]	Reserved
25Ch	V_RATE_INQ_2_7	FrameRate_0	[0]	1.875fps
	(Format 2, Mode 7)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
			[3-31]	Reserved
260h				
:			Reser	rved
2BFh				
2E0h	V_CSR_INQ_7_0	Mode_0	[0-31]	CSR quadlet offset for Format_7 Mode_0
2E4h	V_CSR_INQ_7_1	Mode_1	[0-31]	CSR quadlet offset for Format_7 Mode_1
2E8h	V_CSR_INQ_7_2	Mode_2	[0-31]	CSR quadlet offset for Format_7 Mode_2
2ECh	V_CSR_INQ_7_3	Mode_3	[0-31]	CSR quadlet offset for Format_7 Mode_3
2F0h	V_CSR_INQ_7_4	Mode_4	[0-31]	CSR quadlet offset for Format_7 Mode_4
2F4h	V_CSR_INQ_7_5	Mode_5	[0-31]	CSR quadlet offset for Format_7 Mode_5
2F8h	V_CSR_INQ_7_6	Mode_6	[0-31]	CSR quadlet offset for Format_7 Mode_6
2FCh	V_CSR_INQ_7_7	Mode_7	[0-31]	CSR quadlet offset for Format_7 Mode_7

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	~	These registers are supported on all PGR IEEE-1394 DCAM cameras

2.4. Inquiry Registers for Basic Functions

The following registers show which DCAM-compliant basic functions are implemented on the camera.

0: Not Available, 1: Available

Format:

Offset	Name	Field	Bit	Description
400h	BASIC_FUNC_INQ	Advanced_Feature_Inq	[0]	Inquiry for advanced feature. (Vendor Unique Features)
		Vmode_Error_Status_Inq	[1]	Inquiry for existence of Vmode_Error_Status register
		Feature_Control_Error_Status_Inq	[2]	Inquiry for existence of Feature_Control_Error_Status register
		Opt_Func_CSR_Inq	[3]	Inquiry for optional function CSR.
			[4-7]	Reserved
		1394.b_mode_Capability	[8]	Inquiry for 1394.b mode capability
			[9-15]	Reserved
		Cam_Power_Cntl	[16]	Camera process power ON/OFF capability
			[17-18]	Reserved
		One_Shot_Inq	[19]	One shot transmission capability
		Multi_Shot_Inq	[20]	Multi shot transmission capability
			[21-27]	Reserved
		Memory_Channel	[28-31]	Maximum memory channel number (N)
				Memory channel no 0 = Factory setting memory
				1 = Memory Ch 1 2 = Memory Ch 2
				:
				N= Memory Ch N If 0000, user memory is not available.

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	This register is supported on all PGR
				IEEE-1394 DCAM cameras

2.5. Inquiry Registers for Feature Presence

The following registers show the presence of the DCAM-compliant camera features or optional functions implemented on the camera.

Offset	Name	Field	Bit	Description
404h	Feature_Hi_Inq	Brightness	[0]	Brightness Control
		Auto_Exposure	[1]	Auto Exposure Control
		Sharpness	[2]	Sharpness Control
		White_Balance	[3]	White Balance Control
		Hue	[4]	Hue Control
		Saturation	[5]	Saturation Control
		Gamma	[6]	Gamma Control
		Shutter	[7]	Shutter Speed Control
		Gain	[8]	Gain Control
		Iris	[9]	IRIS Control
		Focus	[10]	Focus Control
		Temperature	[11]	Temperature Control
		Trigger	[12]	Trigger Control
		Trigger_Delay	[13	Trigger Delay Control
		White_Shading	[14]	White Shading Compensation Control
		Frame_Rate	[15]	Frame rate prioritize control
			[16-31]	Reserved
408h	Feature_Lo_Inq	Zoom	[0]	Zoom Control
		Pan	[1]	Pan Control
		Tilt	[2]	Tilt Control
		Optical Filter	[3]	Optical Filter Control
			[4-15]	Reserved
		Capture_Size	[16]	Capture image size for Format_6
		Capture_Quality	[17]	Capture image quality for Format_6
			[18-31]	Reserved
40Ch	Opt_Function_Inq	-	[0]	Reserved
		PIO	[1]	Parallel input/output control
		SIO	[2]	Serial Input/output control
		Strobe_Output	[3]	Strobe signal output
		-	[4-31]	Reserved
410h-47Fh	Reserved			

Format:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	√	These registers are supported on all PGR
				IEEE-1394 DCAM cameras

2.6. Inquiry Registers for Feature Elements

The following registers show the presence of specific features, modes and minimum and maximum values for each of the DCAM-compliant camera features or optional functions implemented by the camera (see the section *Inquiry Registers for Feature Presence*).

0: Not Available, 1: Available

Format: Offset Description Name Field Bit 500h BRIGHTNESS_INQ Presence_Inq [0] Presence of this feature Abs_Control_Inq Absolute value control [1] [2] Reserved One_Push_Inq One push auto mode (controlled [3] automatically by camera only once) ReadOut_Inq [4] Ability to read the value of this feature On_Off_Inq Ability to switch feature ON and OFF [5] Auto_Inq [6] Auto mode (controlled automatically by camera) Manual_Inq Manual mode (controlled by user) [7] Min_Value [8-19] Minimum value for this feature control Max_Value [20-31] Maximum value for this feature control 504h AUTO_EXPOSURE_INQ Same format as the BRIGHTNESS_INQ register 508h SHARPNESS_INQ Same format as the BRIGHTNESS_INQ register WHITE_BALANCE_INQ 50Ch Same format as the BRIGHTNESS_INQ register 510h HUE_INQ Same format as the BRIGHTNESS_INQ register SATURATION_INQ Same format as the BRIGHTNESS_INQ register 514h Same format as the BRIGHTNESS_INQ register 518h GAMMA_INQ SHUTTER_INQ Same format as the BRIGHTNESS_INQ register 51Ch Same format as the BRIGHTNESS_INQ register 520h GAIN_INQ Same format as the BRIGHTNESS_INQ register 524h IRIS_INQ 528h FOCUS_INQ Same format as the BRIGHTNESS_INQ register 530h TRIGGER_INQ Presence of this feature Presence_Inq [0] Abs_Control_Inq [1] Absolute value control [2-3] Reserved ReadOut_Inq [4] Ability to read the value of this feature On_Off_Inq [5] Ability to switch feature ON and OFF Polarity_Inq Ability to change trigger input polarity [6] Value_Read_Ing [7] Ability to read raw trigger input Trigger_Source0_Inq [8] Presence of Trigger Source 0 ID=0 Trigger_Source1_Inq [9] Presence of Trigger Source 1 ID=1 Trigger_Source2_Inq [10] Presence of Trigger Source 2 ID=2 Trigger_Source3_Inq [11] Presence of Trigger Source 3 ID=3 [12-14] Reserved ID=4-6 Software_Trigger_Inq [15] Presence of Software Trigger ID=7 Trigger_Mode0_Inq [16] Presence of Trigger Mode 0 Trigger_Mode1_Inq [17] Presence of Trigger Mode 1 Trigger_Mode2_Inq [18] Presence of Trigger Mode 2 Trigger_Mode3_Inq [19] Presence of Trigger Mode 3 Trigger Mode4 Inq [20] Presence of Trigger Mode 4 Trigger Mode5 Inq [21] Presence of Trigger Mode 5 [22-29] Reserved

[30]

Trigger_Mode14_Inq

Presence of Trigger Mode 14

(Vendor unique trigger 0)

		Trigger_Mode15_Inq	[31]	Presence of Trigger Mode 15
				(Vendor unique trigger 1)
534h	TRIGGER_DLY_INQ	Presence_Inq	[0]	Presence of this feature
		Abs_Control_Inq	[1]	Absolute value control
			[2]	Reserved
		One_Push_Inq	[3]	One push auto mode (controlled
				automatically by camera only once)
		ReadOut_Inq	[4]	Ability to read the value of this feature
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
			[6-7]	Reserved
		Min_Value	[8-19]	Minimum value for this feature control
		Max_Value	[20-31]	Maximum value for this feature control
538h	WHITE_SHD_INQ	Same format as the BRIGHTNESS_INQ register		
53Ch	FRAME_RATE_INQ	Same format as the BRIGHTNESS_INQ register		

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	These registers are supported on all PGR
				IEEE-1394 DCAM cameras

2.7. Control and Status Registers (CSRs)

The following section details a series of standard control and status registers.

2.7.1. CURRENT_FRAME_RATE: 600h

Allows the user to query and modify the current frame rate of the camera.

Field	Bit	Description
Cur_V_Frm_Rate	[0-2]	Current frame rate FrameRate 0FrameRate 7
	[2, 21]	
	[3-31]	Reserved.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	 FrameRate_6 is defined as 0.469fps (1/8 FrameRate_1). FrameRate_7 is defined as 0.938fps
				 FrameRate_7 is defined as 0.938fps (¼ frame rate 1). Through the adjustment of the EXTENDED_SHUTTER register at offset 1028h, the published frame rates would vary accordingly. For example, if the camera is put into 32Hz mode, frame rate 4 would
				become 32, 3 would become 16, 2 would become 8 and so on. This is true for all extended shutter modes except for the 50Hz mode.
ALL	ALL		\checkmark	This register is supported on all PGR IEEE-1394 DCAM cameras

2.7.2. CURRENT_VIDEO_MODE: 604h

Allows the user to query and modify the current video mode of the camera.

Field	Bit	Description
Cur_V_Mode	[0-2]	Current video mode Mode 0 Mode 7
	[3-31]	Reserved.

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	This register is supported on all PGR
				IEEE-1394 DCAM cameras

2.7.3. CURRENT_VIDEO_FORMAT: 608h

Allows the user to query and modify the current video format of the camera.

Format:

Field	Bit	Description
Cur_V_Format	[0-2]	Current video format
		Format_0 Format_7
	[3-31]	Reserved.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	√	This register is supported on all PGR IEEE-1394 DCAM cameras

2.7.4. ISO_CHANNEL / ISO_SPEED: 60Ch

Allows the user to query the camera's isochronous transmission channel and speed information.

rormat:					
Field	Bit	Description			
ISO_Channel	[0-3]	Isochronous channel number for video data transmission			
		(Except for Format_6)			
	[4-5]	Reserved			
ISO_Speed	[6-7]	Isochronous transmit speed code.			
		(Except for Format_6)			
		0 = 100 Mbps			
		1 = 200 Mbps			
		2 = 400Mbps			
	[8-15]	Reserved			
Operation_Mode	[16]	1394 operation mode			
-		Change control register sets of ISO_Channel and ISO_Speed			
		registers			
		0 = Legacy (v1.30 compatible)			
		1 = 1394.b (v1.31 mode)			
		Camera shall start in legacy mode for backward compatibility			
	[17]	Reserved			
ISO_Channel_B	[18-23]	Isochronous channel number for video data transmission of 1394.b			
		mode			
		(Except for Format_6)			
	[24-28]	Reserved			
ISO_Speed_B	[29-31]	Isochronous transmit speed code of 1394.b mode			
		(Except for Format 6)			
		0 = 100Mbps			
		1 = 200 Mbps			
		2 = 400Mbps			
		3 = 800Mbps			
		4 = 1.6Gbps			
		5 = 3.2Gbpss			

Format:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	√	This register is supported on all PGR
				IEEE-1394 DCAM cameras

2.7.5. CAMERA_POWER: 610h

Allows the user to power-up or power-down components of the camera. The exact components, e.g. image sensor, A/D converter, other board electronics, will vary between camera models. Putting the camera into grab mode will automatically power-up the camera; however, stopping image grabbing does not automatically power-down the camera.

Format:

2 01 111400		
Field	Bit	Description
Camera_Power	[0]	1 = power-up camera
		2 = power-down camera
	[1-31]	Reserved

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	-	Not implemented
Scorpion	SCOR-20SO	0.0.0.43	-	Not implemented
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	
Flea	ALL	0.0.0.22	-	Not implemented

2.7.6. ISO_EN / CONTINUOUS_SHOT: 614h

This register allows the control of isochronous data transmission. Continuous shot must be enabled (Bit 0 = 1) to generate a software trigger using SOFT_ASYNC_TRIGGER register 102Ch. During ISO_EN = 1 or One_Shot = 1 or Multi_Shot =1, the register value which reflects the Isochronous packet format cannot change. Data transfer control priority is ISO_EN > One_Shot > Multi_Shot.

Format:

Field	Bit	Description
ISO_EN/Continuous	[0]	1 = Start ISO transmission of video data.
Shot		0 = Stop ISO transmission of video data. Continuous Shot is not
		enabled.
	[1-31]	Reserved.

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	~	This register is supported on all PGR
				IEEE-1394 DCAM cameras

2.7.7. ONE_SHOT / MULTI_SHOT: 61Ch

This register allows the user to control single and multi-shot functionality of the camera. During $ISO_EN = 1$ or $One_Shot = 1$ or $Multi_Shot = 1$, the register value which reflects the Isochronous packet format cannot change. Data transfer control priority is $ISO_EN > One_Shot > Multi_Shot$.

Format:		
Field	Bit	Description
One_Shot	[0]	1 = only one frame of video data is transmitted.
		(Self cleared after transmission)
		Ignored if $ISO_EN = 1$
Multi_Shot	[1]	1 = N frames of video data is transmitted.
		(Self cleared after transmission)
		Ignored if ISO_EN = 1 or One_Shot =1
	[2-15]	Reserved.
Count_Number	[16-31]	Count number for Multi-shot function.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	
Scorpion	SCOR-20SO	0.0.0.43	\checkmark	
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

2.7.8. SOFTWARE_TRIGGER: 62Ch (v1.31)

This register is defined in DCAM v1.31. This register allows the user to generate a software asynchronous trigger.

Format:

Field	Bit	Description
Software_Trigger	[0]	Write: 0: Reset software trigger, 1: Set software trigger (Self-cleared when Trigger_Mode=0,2,4) Read: 0: Ready, 1: Busy

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	-	Not implemented. Use
				SOFT_ASYNC_TRIGGER: 102Ch.
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented.
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	
Scorpion	SCOR-20SO	0.0.0.43	\checkmark	
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented.
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	
Flea	ALL	0.0.0.22	✓	

2.7.9. DATA_DEPTH: 630h (v1.31)

This register is defined in DCAM v1.31. This register allows the user to query the effective depth of the current image data. The image data format is least significant bit (LSB) and odd bits are filled with zeros.

Format:

Field	Bit	Description
Data_Depth	[0-7]	If read value of Data_Depth is zero, shall ignore this field.
		Write: Ignored
		Read: Effective data depth
-	[8-31]	Reserved

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	-	Not implemented
Scorpion	ALL		-	Not implemented
Flea	ALL	0.0.0.22	-	Not implemented

2.8. Control and Status Registers for Features

The user can control each feature of the camera through these registers. The controllable items are *Mode* and *Value*.

Mode:

Each CSR has three bits for mode control, ON_OFF, One_Push and A_M_Mode (Auto/Manual mode). Each feature can have four states corresponding to the combination of mode control bits.

One_Push	ON_OFF	A_M_Mode	State
Х	0	Х	Off state.
			Feature will be fixed value state and uncontrollable.
Х	1	1	Auto control state.
			Camera controls feature by itself continuously.
0	1	0	Manual control state.
			User can control feature by writing value to the value
			field.
1	1	0	One-Push action.
(Self clear)			Camera controls feature by itself only once and returns to
			the Manual control state with adjusted value.

Note: Not all features implement all modes.

(X: don't care)

Value:

If the *Presence_Inq* bit of the register is one, the value field is valid and can be used for controlling the feature. The user can write control values to the value field only in the Manual control state. In the other states, the user can only read the value. The camera always has to show the real setting value at the value field if *Presence_Inq* is one.

2.8.1. BRIGHTNESS: 800h

Allows the user to control the brightness of the image. It basically allows setting the "black level" intensity.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit $= 1$, the value in the Value field is read-only.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only
		once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If $A_M_M = 1$, this bit is ignored
ON_OFF	[6]	Read: read a status
		0: OFF, 1: ON
		If this bit $= 0$, other fields will be read only
		(Note that this field is read only).
A_M_Mode	[7]	Read: read a current mode
		0: Manual, 1: Automatic
		(Note that this field is read only).
	[8-19]	Reserved
Value	[20-31]	Value.
		A write to this value in 'Auto' mode will be ignored.

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	V	 The <i>Value</i> field specifies the black level using 1/16 pixel units supporting a range of black=0 (0) to black=15.94 (255). This register corresponds to the A/D converter's clamp level register.
Scorpion	SCOR-13SM	0.0.0.33	~	 The brightness CSR value is directly written into the sensor black level control register (0x19)
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	
Scorpion	SCOR-20SO	0.0.0.43	\checkmark	
Scorpion	SCOR-03NS	0.0.1.35	\checkmark	
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

2.8.2. AUTO_EXPOSURE: 804h

This register allows the user to control the camera system's automatic exposure algorithm. It has three useful states:

State	Description
Off	Control of the exposure is achieved via setting both the SHUTTER and GAIN
	registers. This mode is achieved by setting the ON_OFF field to be 0. An
	equivalent mode can be achieved by setting the A_M_Mode fields in the
	SHUTTER and GAIN registers to 0 (Manual).
ON	The camera automatically modifies the SHUTTER and GAIN registers to try
Manual Exposure	and match the average image intensity to the value written to the Value field.
Control	This mode is achieved by setting the <i>A_M_Mode</i> value of the
	AUTO_EXPOSURE register to 0 (manual) and either/both of the A_M_Mode
	values for the SHUTTER and GAIN registers to 1 (Auto).
ON	The camera modifies the Value field in order to produce an image that is
Auto Exposure	visually pleasing. This mode is achieved by setting the A_MODE for all
Control	three of the AUTO_EXPOSURE, SHUTTER and GAIN registers to 1 (Auto).
	In this mode, the Value field reflects the average image intensity.

Auto exposure can only control the exposure when the SHUTTER and/or GAIN registers have their A_M_Mode bits set. If only one of the registers is in "auto" mode then the auto exposure controller attempts to control the image intensity using just that one register. If both of these registers are in "auto" mode the auto exposure controller uses a shutter-before-gain heuristic to try and maximize the signal-to-noise ratio by favoring a longer shutter time over a larger gain value.

The *Value* field specifies the average image intensity in ¹/₄ pixel units.

Format:		
Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit $= 1$, the value in the Value field is read-only.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only
		once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If $A_M_Mode = 1$, this bit is ignored
ON_OFF		Write: ON or OFF for this feature
		Read: read a status
		0: OFF, 1: ON
		If this bit = 0, other fields will be read only $\frac{1}{2}$
A_M_Mode	[7]	Write: set the mode
		Read: read a current mode
		0: Manual, 1: Automatic
	[8-19]	Reserved

Value	[20-31]	Value.
		A write to this value in 'Auto' mode will be ignored.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	This register is supported on all PGR
				IEEE-1394 DCAM cameras

2.8.3. SHARPNESS: 808h

This register provides a mechanism to control a sharpening filter applied to the image on the camera before it is transmitted to the PC.

Format:

Same definition as BRIGHTNESS.

1 cutui e mit	cuture revenues integr				
Camera	Model/Sensor	Firmware	Avail.	Notes	
Dragonfly	ALL	2.1.2.13	-	Not implemented	
Scorpion	ALL		-	Not implemented	
Flea	ALL	0.0.0.22	-	Not implemented	

Feature Availability:

2.8.4. WHITE_BALANCE: 80Ch

This register controls the relative gain of pixels in the Bayer tiling used in the CCD of a color camera. Control of the register is achieved via the R_Value and B_Value fields and the On_Off bit. Both value fields specify relative gain, with a value that is half the maximum value being a relative gain of zero. This register has two states:

- OFF the same gain is applied to all pixels in the Bayer tiling.
- ON the *R_Value* field is applied to the red pixels of the Bayer tiling and the *B_Value* field is applied to the blue pixels of the Bayer tiling.

The following table illustrates the default gain settings for most cameras.

	Red	Green	Blue
Black and White	32	32	32
Color	50	22	50

Note: The Bayer_Tile_Gain register (offset 1044h) provides an alternate way of setting these gains and allows the setting of both green pixel gains.

One-Shot and Auto Operation

One of the uses of One-Shot/Auto White Balance is to obtain a similar color balance between different cameras that are slightly different from each other. Theoretically, if different cameras are pointed at the same object, using One-Shot/Auto will get their color balances to be even closer together.

One-Shot is identical to Auto white balance, except One-Shot only attempts to automatically adjust white balance for a set period of time before stopping. The white balance of the camera before using One-Shot/Auto must already be relatively close. In other words, if the Red is set to 0 and Blue at maximum (two extremes), One-Shot/Auto will not work. However, if the camera is already close to being color balanced, then it will work (it may only be a small change).

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
- 1		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with value in the Value field
		1: Control with value in the associated Abs Value CSR
		If this bit is 1, then Value is ignored
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only
		once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If $A_M = 1$, this bit is ignored
ON_OFF	[6]	Write: ON or OFF for this feature
		Read: read a status
		0: OFF, 1: ON
		If this bit = 0 , other fields will be read only
A_M_Mode	[7]	Write: Set the mode.
		Read: read the current mode.
		0: Manual, 1: Auto
B_Value	[8-19]	Blue Value.
		A write to this value in 'Auto' mode will be ignored.
R_Value	[20-31]	Red Value.
		A write to this value in 'Auto' mode will be ignored.

Format:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	Bit 1: The camera does not implement
				Abs Value control for white balance and
				as such this bit is always 0.
				Bit 7: The camera does not implement
				auto white balance and as such this bit is
				always 0
				The range of both the <i>R_Value</i> and
				<i>B_Value</i> is 063.
Scorpion	SCOR-13SM	0.0.0.33	~	Color model only.
Scorpion	SCOR-03SO	0.0.0.45	-	Not implemented. No color model.
Scorpion	SCOR-20SO	0.0.0.43	✓	Color model only.
Scorpion	SCOR-13FF	0.0.0.45	-	Not implemented. No color model.
Flea	ALL	0.0.0.22	\checkmark	

2.8.5. HUE: 810h

This register provides a mechanism to control the Hue component of the images being produced by the camera, given a standard Hue, Saturation, Value (HSV) color space.

Format:

Same definition as BRIGHTNESS.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	-	Not implemented

2.8.6. SATURATION: 814h

This register provides a mechanism to control the Saturation component of the images being produced by the camera, given a standard Hue, Saturation, Value (HSV) color space.

Format:

Same definition as BRIGHTNESS.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	-	Not implemented

2.8.7. GAMMA: 818h

This register provides a mechanism to control the function used to non-linearly map a higher bit depth image produced by the sensor to the requested number of bits.

Format:

Same definition as BRIGHTNESS.

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	I	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	
Scorpion	SCOR-03SO	0.0.0.45	-	Not implemented
Scorpion	SCOR-20SO	0.0.0.43	-	Not implemented
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

Feature Availability:

2.8.8. SHUTTER: 81Ch

This register provides a mechanism to control the integration time. Control of the register is via the *Value* field and the *Abs_Control* and *A_M_Mode* bits (ON_OFF is always set). This register has three states:

State	Description:			
Manual/Abs	The shutter value is set by the user via the Abs_Shutter register. The Value field			
	becomes read only and reflects the converted value of the Abs_Shutter register.			
Manual	The user sets the shutter value via the Value field - the Abs_Shutter register becomes			
	read only and contains the current shutter time.			
Auto	The shutter value is set by the auto exposure controller (if enabled). Both the Value			
	field and the Abs_Shutter register become read only.			

See the *Gain and Shutter Settings* section (where applicable) of your camera's *Technical Reference Manual* for conversion of values to real-world units.

Note that the shutter times are scaled by the divider of the basic frame rate. For example, dividing the frame rate by two (e.g. 15fps to 7.5fps) causes the maximum shutter time to double (e.g. 33ms to 66ms).

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit = 1, the value in the Value field is ignored.
	[2-4]	Reserved
One_Push	[5]	Write:
		1: begin to work (self cleared)
		Read:
		Value = 1 currently operating
		Value = 0 not operating
		If $A_M = 1$ this bit is ignored.
ON_OFF		One push auto mode (controlled automatically by camera only
		once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If $A_M = 1$, this bit is ignored
A_M_Mode	[7]	Write: set the mode
		Read: read a current mode
		0: Manual, 1: Automatic
High_Value	[8-19]	Upper 4 bits of the shutter value available only in extended shutter
		mode (outside of specification).
Value	[20-31]	Value.
		A write to this value in 'Auto' mode will be ignored.

Format:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	This register is supported on all PGR
				IEEE-1394 DCAM cameras
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	The value written to the Symagery
				sensor is the shutter value multiplied by
				the pixel clock (40MHz) divided by
				27,000.

2.8.9. GAIN: 820h

This register controls the gain of the A/D converter. Control of the register is via the *Value* field and the *Abs_Control* and A_M_M bits (ON_OFF is always set). This register has three states:

State	Description
Manual/Abs	The gain value is set by the user via the Abs_Gain register: the Value field becomes
	read only and reflects the converted absolute value.
Manual	The gain value is set by the user via the Value field: the Abs_Gain register becomes
	read only and contains the current gain.
Auto	The gain value is set by the auto exposure controller (if enabled): both the Value
	field and the Abs_Gain register become read only.

See *Gain and Shutter Settings* section (where applicable) of your camera's *Technical Reference Manual* for conversion of values to real-world units.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit $= 1$, the value in the Value field is ignored.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only
		once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If $A_M = 1$, this bit is ignored
ON_OFF	[6]	Read: read a status
		0: OFF, 1: ON
		If this bit $= 0$, other fields will be read only
		(Note that this field is read only).
A_M_Mode	[7]	Write: set the mode
		Read: read a current mode
		0: Manual, 1: Automatic
	[8-19]	Reserved
Value	[20-31]	Value.
		A write to this value in 'Auto' mode will be ignored.

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	This register is implemented on all PGR IEEE-1394 DCAM cameras.

2.8.10. IRIS: 824h

This register provides a mechanism to control the iris on cameras that support lenses with an automatic or motorized aperture.

Format:

Same definition as BRIGHTNESS.

Feature Availability:

Camera	Model/Sensor Firmware		Avail.	Notes	
ALL	ALL	ALL	-	Not implemented	

2.8.11. FOCUS: 828h

This register provides a mechanism to control the focus on cameras that support lenses with an automatic or motorized focus.

Format:

Same definition as BRIGHTNESS.

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	-	Not implemented

2.8.12. TRIGGER_MODE: 830h

This register controls the trigger mode. Control of the register is via the *On_Off* bit and the *Trigger_Mode* and *Parameter* fields.

The *Trigger_Polarity* bit can be used to invert the polarity of *all* trigger signals. Polarities default to active low. Writing a 1 to this bit would therefore set all trigger polarities to be active high.

The *Trigger_Queue* field in the GPIO_XTRA register 1104h can be used to control how an external trigger signal that is sent during integration (between shutter open and close) is handled: queued (stored to immediately trigger the next frame) or dropped. Refer to this register to determine if this implemented for your camera.

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A, 1: Available	
Abs_Control	[1]	Absolute value control	
		0: Control with the value in the Value field	
		1: Control with the value in the Absolute value CSR.	
		If this bit = 1, the value in the Value field is read-only.	
	[2-5]	Reserved	
ON_OFF	[6]	Write: ON or OFF for this feature	
		Read: read a status	
		0: OFF, 1: ON	
		If this bit $= 0$, other fields will be read only	
Trigger_Polarity	[7]	Select trigger polarity (except for Software_Trigger)	
		0: Trigger active low, 1: Trigger active high	
Trigger_Source	[8-10]	Select trigger source	
(v1.31)		Sets trigger source ID from trigger source ID_Inq	
Trigger_Value (v1.31)	[11]	Trigger input raw signal value	
		Read only	
		0: Low, 1: High	
	[8-11]	Reserved	
Trigger_Mode	[12-15]	Value: 0, 1, or 3	
		A write to this value in 'Auto' mode will be ignored.	
	[16-19]	Reserved	
Parameter	[20-31]	Parameter for trigger function, if required (optional)	

Format:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13 🗸		Does not implement Trigger_Source or
				<i>Trigger_Value</i> – implemented through
				GPIO registers
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	
Scorpion	SCOR-20SO	0.0.0.43	\checkmark	
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

2.8.13. TRIGGER_DELAY: 834h (v1.31)

This register provides control over the time delay between an external asynchronous trigger and the start of integration (shutter open).

Format:

Field	Bit	Description			
Presence_Inq	[0]	Presence of this feature			
		0: N/A, 1: Available			
Abs_Control	[1]	Absolute value control			
		0: Control with the value in the Value field			
		1: Control with the value in the Absolute value CSR.			
		If this bit $= 1$, the value in the Value field is read-only.			
	[2-5]	Reserved			
ON_OFF	[6]	Write: ON or OFF for this feature			
		Read: read a status			
		0: OFF, 1: ON			
		If this bit $= 0$, other fields will be read only			
	[7-19]	Reserved			
Value	[20-31]	Value.			

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes	
Dragonfly	ALL	2.1.2.13	-	Not implemented. See register 1108h	
				SHUTTER_DELAY.	
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented	
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented	
Scorpion	SCOR-13FF	0.0.0.45	-	Not implemented	
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	Delay is in units of a 24.576MHz clock.	
				Less than 1024 ticks is linear; greater	
				than 1024 ticks is non-linear.	
				Recommend using register 950h	
				ABS_VAL_TRIGGER_DELAY.	
Scorpion	SCOR-20SO	0.0.0.43	\checkmark	Delay is in units of a 24.576MHz clock.	
				Less than 1024 ticks is linear; greater	
				than 1024 ticks is non-linear.	
				Recommend using register 950h	
				ABS_VAL_TRIGGER_DELAY.	
Flea	ALL	0.0.0.22	\checkmark	Delay is in units of a 24.576MHz clock.	
				Less than 1024 ticks is linear; greater	
				than 1024 ticks is non-linear.	
				Recommend using register 950h	
				ABS_VAL_TRIGGER_DELAY.	

2.8.14. FRAME_RATE: 83Ch (v1.31)

This register provides control over the frame rate of the camera. The actual frame interval (time between individual image acquisitions) is fixed by the frame rate value. When this feature is ON, exposure time is limited by the frame rate value dynamically. The available frame rate range depends on the current video format and/or video mode.

Format:

Same definition as BRIGHTNESS.

reature Avanability.								
Camera	Model/Sensor	Firmware	Avail.	Notes				
Dragonfly	ALL	2.1.2.13 -		Not implemented. See FRAME_TIME:				
				1240h.				
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented.				
Scorpion	SCOR-03NS	0.0.1.35	\checkmark					
Scorpion	SCOR-03SO	0.0.0.45	\checkmark					
Scorpion	SCOR-20SO	0.0.0.43	\checkmark					
Scorpion	SCOR-13FF	0.0.0.45	✓	Turn FRAME_RATE to OFF to put				
				SCOR-13FF into global shutter mode				
				(default mode is rolling shutter).				
Flea	ALL	0.0.0.22	\checkmark					

2.9. Absolute Value CSR Registers

Many PGR IEEE-1394 cameras implement "absolute" modes for various camera settings that report real-world values, such as Shutter times in seconds (s) and Gain values in decibels (dB). Using the absolute values contained in the following registers is easier and more efficient than applying complex conversion formulas to the information in the *Value* field of the associated Control and Status Register. In addition, these conversion formulas can change between firmware versions. PGR therefore recommends using the absolute registers to determine camera values.

2.9.1. Inquiry Registers for Absolute Value CSR Offset Address

The following set of registers indicates the locations of the absolute value CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are all relative to the initial register space, which is offset from the base address by 0xFFFF F000 0000

Offset	Name	Bit	Description
700h	ABS_CSR_HI_INQ_0	[031]	Quadlet offset for the absolute value CSR for Brightness.
704h	ABS_CSR_HI_INQ_1	[031]	Quadlet offset for the absolute value CSR for Auto Exposure.
708h	ABS_CSR_HI_INQ_2	[031]	Quadlet offset for the absolute value CSR for Sharpness.
70Ch	ABS_CSR_HI_INQ_3	[031]	Quadlet offset for the absolute value CSR for White Balance.
714h	ABS_CSR_HI_INQ_5	[031]	Quadlet offset for the absolute value CSR for Saturation.
718h	ABS_CSR_HI_INQ_6	[031]	Quadlet offset for the absolute value CSR for Gamma.
71Ch	ABS_CSR_HI_INQ_7	[031]	Quadlet offset for the absolute value CSR for Shutter.
720h	ABS_CSR_HI_INQ_8	[031]	Quadlet offset for the absolute value CSR for Gain.
730h	ABS_CSR_HI_INQ_12	[031]	Quadlet offset for the absolute value CSR for Trigger.
734h	ABS_CSR_HI_INQ_13	[031]	Quadlet offset for the absolute value CSR for Trigger Delay.
73Ch	ABS_CSR_HI_INQ_15	[031]	Quadlet offset for the absolute value CSR for Frame Rate.

This IEEE 1394-specific address space contains the 1394 standard CSR's, and to access these CSRs you need the 1394 base address (0xFFFF F000 0000) and base offset (0xFFFF F0F0 0000).

2.9.2. Units of Value for Absolute Value CSR Registers

The following tables describe the real-world units that are used for the absolute value registers. Each value is either Absolute (value is an absolute value) or Relative (value is an absolute value, but the reference is system dependent).

Feature element	Function	Unit	Unit	Reference	Value type
name			Description	point	
Brightness	Black level offset	%			Absolute
Auto Exposure	Auto Exposure	EV	exposure value	0	Relative
White_Balance	White Balance	K	kelvin		Absolute
Hue	Hue	deg	degree	0	Relative
Saturation	Saturation	%		100	Relative
Shutter	Integration time	S	seconds		Absolute
Gain	Circuit gain	dB	decibel	0	Relative
Iris	Iris	F	F number		Absolute
Focus	Focus	m	meter		Absolute

Trigger	External Trigger	times		 Absolute
Trigger_Delay	Trigger Delay	S	seconds	 Absolute
Frame_Rate	Frame rate	fps	frames per	 Absolute
			second	

2.9.3. Calculating Absolute Value Register Values

The Absolute Value CSR's store 32-bit floating-point values with IEEE/REAL*4 format.

0-7	8-15	16-23	24-31	
Floating-point value with IEEE/REAL*4 format				

Sign(S)	Exponent(exp)	Mantissa(m)
1bit	8bit	23bit

To programmatically determine the floating point equivalent of the hexadecimal *Value* for the ABS_VAL_SHUTTER register 918h:

```
// declare a union of a floating point and unsigned long
typedef union _AbsValueConversion
{
         unsigned long ulValue;
         float fValue;
} AbsValueConversion;
float fShutter;
AbsValueConversion regValue;
// read the 32-bit hex value into the unsigned long member
flycaptureGetCameraRegister(context, 0x918, & regValue.ulValue );
fShutter = regValue.fValue;
```

2.9.4. ABS_VAL_AUTO_EXPOSURE: 900h

This register provides the user with absolute value control over the auto-exposure register. This register stores a 32-bit floating-point value with IEEE/REAL*4 format. The units of this register are in exposure value (EV). In absolute mode, an EV of 1 is twice as bright as an EV of 0. 0 can be considered to be "normal exposure". In theoretical terms, this equates to a shutter of 1 second using a f1.0 aperture lens. Normal exposure is where the average intensity of the image is 18% of 1023 (18% grey). The user must write a 1 to bit 1 of the AUTO_EXPOSURE register at offset 804h in order to change the Value field of this register from being read-only.

Format:				
Offset	Name	Field	Bit	Description
900h	ABS_VAL_AUTO_EXPOSURE	Min_Value	[0-31]	Minimum auto exposure value.
904h		Max_Value	[0-31]	Maximum auto exposure value.
908h		Value	[0-31]	Current auto exposure value.

0-7	8-15	16-23	24-31	
Floating-point value with IEEE/REAL*4 format				

Sign(S)	Exponent(exp)	Mantissa(m)
1bit	8bit	23bit

	cuture in tunuomeget						
Camera	Model/Sensor	Firmware	Avail.	Notes			
Dragonfly	ALL	2.1.2.13	-	Not implemented			
Scorpion	SCOR-13SM	0.0.0.33	\checkmark				
Scorpion	SCOR-03NS	0.0.1.35	\checkmark				
Scorpion	SCOR-03SO	0.0.0.45	\checkmark				
Scorpion	SCOR-20SO	0.0.0.43	\checkmark				
Scorpion	SCOR-13FF	0.0.0.45	\checkmark				
Flea	ALL	0.0.0.22	\checkmark				

2.9.5. ABS_VAL_SHUTTER: 910h

This register provides the user with absolute value control over the shutter register. This register stores a 32-bit floating-point value with IEEE/REAL*4 format. The units of this register are in seconds (s). The user must write a 1 to bit 1 of the SHUTTER register at offset 81Ch in order to change the Value field of this register from being read-only.

Format:

Offset	Name	Field	Bit	Description
910h	ABS_VAL_SHUTTER	Min_Value	[0-31]	Minimum shutter value in seconds.
914h		Max_Value	[0-31]	Maximum shutter value in seconds.
918h		Value	[0-31]	Current shutter value in seconds.

0-7	8-15	16-23	24-31		
I	Floating-point value with IEEE/REAL*4 format				

Sign(S)	Exponent(exp)	Mantissa(m)
1bit	8bit	23bit

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	
Scorpion	ALL		\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

2.9.6. ABS_VAL_GAIN: 920h

This register provides the user with absolute value control over the gain register. This register stores a 32-bit floating-point value with IEEE/REAL*4 format. The units of this register are in decibels (dB). The user must write a 1 to bit 1 of the GAIN register at offset 820h in order to change the Value field of this register from being read-only.

]	Format:				
	Offset	Name	Field	Bit	Description
	920h	ABS_VAL_GAIN	Min_Value	[0-31]	Minimum gain value in dB.

924h	Max_Value	[0-31]	Maximum gain value in dB.
928h	Value	[0-31]	Current gain value in dB.

0-7	8-15	16-23	24-31			
Flo	Floating-point value with IEEE/REAL*4 format					

Sign(S)	Exponent(exp)	Mantissa(m)
1bit	8bit	23bit

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	✓	
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	
Scorpion	SCOR-20SO	0.0.0.43	\checkmark	
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

2.9.7. ABS_VAL_BRIGHTNESS: 930h

This register provides the user with absolute value control over the brightness register. This register stores a 32-bit floating-point value with IEEE/REAL*4 format. The units of this register are in percent (%). The user must write a 1 to bit 1 of the BRIGHTNESS register at offset 800h in order to change the Value field of this register from being read-only.

Format:				
Offset	Name	Field	Bit	Description
930h	ABS_VAL_BRIGHTNESS	Min_Value	[0-31]	Minimum brightness value in percent
934h		Max_Value	[0-31]	Maximum brightness value in percent
938h		Value	[0-31]	Current brightness value in percent

0-7	8-15	16-23	24-31		
Flo	Floating-point value with IEEE/REAL*4 format				

Sign(S)	Exponent(exp)	Mantissa(m)
1bit	8bit	23bit

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	-	Not implemented
Scorpion	SCOR-20SO	0.0.0.43	-	Not implemented
Scorpion	SCOR-13FF	0.0.0.45	-	Not implemented

Flea ALL	0.0.0.22	-	Not implemented	٦
----------	----------	---	-----------------	---

2.9.8. ABS_VAL_GAMMA: 940h

This register provides the user with absolute value control over the GAMMA register. This register stores a 32-bit floating-point value with IEEE/REAL*4 format. The units of this register are in decimal format and define the function between incoming light level and output picture level.

y = f(x)

Where y = output picture level, and x = incoming light level

The user must write a 1 to bit 1 of the GAMMA register at offset 818h in order to change the Value field of this register from being read-only.

Format:

Offset	Name	Field	Bit	Description
940h	ABS_VAL_GAMMA	Min_Value	[0-31]	Minimum gamma value
944h		Max_Value	[0-31]	Maximum gamma value
948h		Value	[0-31]	Current gamma value

0-7	8-15	16-23	24-31	
Floating-point value with IEEE/REAL*4 format				

Sign(S)	Exponent(exp)	Mantissa(m)
1bit	8bit	23bit

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	-	Not implemented
Scorpion	SCOR-20SO	0.0.0.43	-	Not implemented
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

2.9.9. ABS_VAL_TRIGGER_DELAY: 950h (v1.31)

This register provides the user with absolute value control over the TRIGGER_DELAY register. This register stores a 32-bit floating-point value with IEEE/REAL*4 format. The units of this register are in decimal format and define the delay in seconds (s) between the time of an asynchronous trigger and the start of integration.

The user must write a 1 to bit 1 of the TRIGGER_DELAY register at offset 834h in order to change the Value field of this register from being read-only.

Format:							
Offset	Name	Field	Bit	Description			
940h	ABS_VAL_TRIGGER_DELAY	Min_Value	[0-31]	Minimum delay value			
944h		Max_Value	[0-31]	Maximum delay value			
948h		Value	[0-31]	Current delay value			

0-7	8-15	16-23	24-31	
Floating-point value with IEEE/REAL*4 format				

Sign(S)	Exponent(exp)	Mantissa(m)
1bit	8bit	23bit

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	-	Not implemented
Scorpion	SCOR-20SO	0.0.0.43	-	Not implemented
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

2.10. Video Mode Control and Status Registers for Format 7

These registers provide Format_7, Mode_x information for cameras that implement Format_7 (Partial Image Size Format). Not all registers are implemented for all PGR cameras.

2.10.1. MAX_IMAGE_SIZE_INQ: A00h

This register is an inquiry register for maximum image size.

Format:

Field	Bit	Description
Hmax	[0-15]	Maximum horizontal pixel number
Vmax	[16-31]	Maximum vertical pixel number

2.10.2. UNIT_SIZE_INQ (A04h) and UNIT_POSITION_INQ (A4Ch)

This register is an inquiry register for unit size.

Hmax = Hunit * n = Hposunit*n3 (n, n3 are integers) Vmax = Vunit * m = Vposunit*m3 (m, m3 are integers)

If the read value of Hposunit is 0, Hposunit = Hunit for compatibility with DCAM Rev 1.20. If the read value of Vposunit is 0, Vposunit = Vunit for compatibility with DCAM Rev 1.20.

Format (UNIT_SIZE_INQ: A04h):

Field	Bit	Description
Hunit	[0-15]	Horizontal unit pixel number
Vunit	[16-31]	Vertical unit pixel number

Format (UNIT_POSITION_INQ: A4Ch):

Field	Bit	Description
Hposunit	[0-15]	Horizontal unit pixel number for position
		If read value of Hposunit is 0, Hposunit = Hunit for
		compatibility.
Vposunit	[16-31]	Vertical unit number for position
		If read value of Vposunit is 0, Vposunit = Vunit for
		compatibility.

2.10.3. IMAGE_POSITION (A08h) and IMAGE_SIZE (A0Ch)

These registers determine an area of required data. All the data must be as follows:

Left = Hposunit * n1 Top = Vposunit * m1 Width = Hunit * n2 Height = Vunit * m2 (n1, n2, m1, m2 are integers) Left + Width <= Hmax Top + Height <= Vmax

1	Format (INIAGE_POSITION: A08n):		
	Field	Bit	Description
	Left	[0-15]	Left position of requested image region (pixels)
	Тор	[16-31]	Top position of requested image region (pixels)

Format (IMACE DOSITION, A08h).

Format (IMAGE SIZE: A0Ch):

Field	Bit	Description
Width	[0-15]	Width of requested image region (pixels)
Height	[16-31]	Height of requested image region (pixels)

2.10.4. COLOR_CODING_ID (A10h) and COLOR_CODING_INQ (A14h)

The COLOR CODING INQ register describes available the color-coding capability of the system. Each coding scheme has its own ID number. The required color-coding scheme must be set to COLOR_CODING_ID register as the ID number.

Format (COLOR_CODING_ID: A10h):

Field	Bit	Description
Coding_ID	[0-7]	Color coding ID from COLOR_CODING_INQ register
	[8-31]	Reserved (all zero)

Format (COLOR CODING INO: A14h):

Field	Bit	Description	ID
Mono8	[0]	Y only. Y=8bits, non compressed	0
4:1:1 YUV8	[1]	4:1:1, $Y=U=V=$ 8bits, non compressed	1
4:2:2 YUV8	[2]	4:2:2, Y=U=V=8bits, non compressed	2
4:4:4 YUV8	[3]	4:4:4, Y=U=V=8bits, non compressed	3
RGB8	[4]	R=G=B=8bits, non compressed	4
Mono16	[5]	Y only, Y=16bits, non compressed	5
RGB16	[6]	R=G=B=16bits, non compressed	6
	[7-31]	Reserved (all zero)	7-31

2.10.5. PIXEL_NUMBER_INQ (A34h), TOTAL_BYTES_HI_INQ (A38h), and TOTAL BYTES LO INQ (A3Ch)

The PIXEL_NUMBER_INQ register includes the total number of pixels in the required image area. The TOTAL BYTE INO register includes the total number of bytes in the required image area.

If the Presence bit in the VALUE_SETTING register is zero, the values of these registers will be updated by writing the new value to the IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers.

If the *Presence* bit in the VALUE SETTING register is one, the values of these registers will be updated by writing one to the *Setting_1* bit in the VALUE_SETTING register. If the *ErrorFlag_1* bit is zero after the *Setting* 1 bit returns to zero, the values of these registers are valid.

Format (PIXEL_NUMBER_INQ: A34h):

Field	Bit	Description
PixelPerFrame	[0-31]	Pixel number per frame

Format (TOTAL_BYTES_HI_INQ: A38h):

Field	Bit	Description
BytesPerFrameHi	[0-31]	Higher quadlet of total bytes of image data per frame

Format (TOTAL_BYTES_LO_INQ: A3Ch):

Field	Bit	Description
BytesPerFrameLo	[0-31]	Lower quadlet of total bytes of image data per frame

2.10.6. PACKET_PARA_INQ (A40h) and BYTE_PER_PACKET (A44h)

MaxBytePerPacket describes the maximum packet size for one isochronous packet. UnitBytePerPacket is the unit for isochronous packet size. RecBytePerPacket describes the recommended packet size for one isochronous packet. If RecBytePerPacket is zero, you must ignore this field.

If the *Presence* bit in the VALUE_SETTING register is zero, values of these fields will be updated by writing the new value to the IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers with the value of the ISO_Speed register (60Ch [6..7]).

First, the ISO_Speed register must be written. Then the IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers should be updated.

If the *Presence* bit in the VALUE_SETTING register is one, the values of these fields will be updated by writing one to the *Setting_1* bit in the VALUE_SETTING register. If the *ErrorFlag_1* bit is zero after the *Setting_1* bit returns to zero, the values of these fields are valid.

The *BytePerPacket* value determines the real packet size and transmission speed for one frame image. The *BytePerPacket* value must keep the following condition.

BytePerPacket = UnitBytePerPacket * n (n is an integer) BytePerPacket <= MaxBytePerPacket

Format (PACKET_PARA_INQ: A40h):

Field	Bit	Description
UnitBytePerPacket	[0-15]	Minimum bytes per packet
MaxBytePerPacket	[16-31]	Maximum bytes per packet

Format (BYTE_PER_PACKET: A44h):

Field	Bit	Description
BytePerPacket	[0-15]	Packet size
RecBytePerPacket	[16-31]	Recommended bytes per packet. If this value is zero, must ignore this field.

2.10.7. PACKET_PER_FRAME_INQ: A48h

If *BytePerPacket* * n != *BytePerFrame* (n is an integer), you must use padding. The *PacketPerFrame* value is the number of packets per one frame. This register will be updated after *BytePerPacket* is written.

The total number of bytes of transmission data per one frame = *BytePerPacket* * *PacketPerFrame*.

The number of bytes of padding = BytePerPacket * PacketPerFrame - BytePerFrame. The receiver must ignore the above padding data in the last packet of each frame.

Format:

Field	Bit	Description
PacketPerFrame	[0-31]	Number of packets per frame

2.10.8. VALUE_SETTING: A7Ch

The purpose of the *Setting_1* bit is for updating the TOTAL_BYTES_HI_INQ, TOTAL_BYTES_LO_INQ, PACKET_PARA_INQ and BYTE_PER_PACKET registers. If one of the values in the IMAGE_POSITION, IMAGE_SIZE, COLOR_CODING_ID and ISO_Speed registers is changed, the *Setting_1* bit must be set to 1. The *ErrorFlag_1* field will be updated when the *Setting_1* bit returns to 0. If the *ErrorFlag_1* field is zero, the values of the TOTAL_BYTES_HI_INQ, TOTAL_BYTES_LO_INQ, PACKET_PARA_INQ and BYTE_PER_PACKET registers are valid.

After the *BytePerPacket* value is written, the *ErrorFlag_2* field will be updated. If the *ErrorFlag_2* field is zero, isochronous transmission can be started without any problem.

Format:		
Field	Bit	Description
Presence	[0]	If this bit is one, <i>Setting_1</i> , <i>ErrorFlag_1</i> and <i>ErrorFlag_2</i>
		fields are valid. This bit is read only.
Setting_1	[1]	If writing "1" to this bit, IMAGE_POSITION,
		IMAGE_SIZE, COLOR_CODING_ID and ISO_Speed
		register value will be reflected in PIXEL_NUMBER_INQ,
		TOTAL_BYTES_HI_INQ, TOTAL_BYTES_LO_INQ,
		PACKET_PARA_INQ and BYTE_PER_PACKET registers.
		This bit is self-cleared.
	[2-7]	Reserved
ErrorFlag_1	[8]	Combination of the values of IMAGE_POSITION,
		IMAGE_SIZE, COLOR_CODING_ID and ISO_Speed
		register is not acceptable.
		0: no error, 1: error
		This flag will be updated every time when <i>Setting_1</i> bit
	503	returns to "0" from "1".
ErrorFlag_2	[9]	BytePerPacket value is not acceptable.
		0: no error, 1: error
	[10-31]	Reserved

Revised 19-Feb-04

2.11. Advanced Registers

2.11.1. ACCESS_CONTROL_REGISTERS: 1000h-100Ch

According to the DCAM specification, these registers must be configured properly before access to the advanced registers is granted. This requirement is not enforced on the camera but the registers' formats are here for completeness.

Offset	Name	Field	Bit	Description
1000h	ACCESS_CONTROL_HI	Feature_ID_Hi	[0-31]	
1004h	ACCESS_CONTROL_LO	Feature_ID_Lo	[0-15]	
			[16-19]	Reserved
		Time_Out	[20-31]	Milliseconds until
				time out (max 4.095s)
1008h-	FEATURE_ID	Company_ID	[0-23]	00B09D
100Ch		Adv_Feature_Set	[24-47]	Advanced Feature set
				unique value
				(currently 000004)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	√	These registers are supported on all PGR
				IEEE-1394 DCAM cameras

2.11.2. EXTENDED_SHUTTER: 1028h

Allows the user to access a number of different extended shutter modes. Placing the camera into extended shutter mode removes the restriction that the shutter integration time must be less than the frame rate. The actual frame rate will be the maximum of the nominal frame rate and the shutter time.

For PGR IEEE-1394 cameras that implement the FRAME_RATE register 83Ch, extended shutter times can be achieved by turning the FRAME_RATE register OFF.

DRAGONFLY ONLY: The maximum shutter values for the various modes are as follows:

Frame Rate	Maximum Shutter Value
30Hz	532 * 1/16000sec.
32Hz	500 * 1/16000sec.
Extended shutter	4000 * 1/16000sec.
50Hz	256 * 1/12800sec.
24Hz	666 * 1/16000sec.

Format:

FieldBitDescription		
	Field	

Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available
	[1-12]	Reserved
Shutter_Mode	[13-15]	0: 30Hz (default) 1: 32Hz 2: extended shutter 3: 50Hz 4: 24Hz
	[16-31]	Reserved.

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented.
Scorpion	SCOR-03NS	0.0.1.35	\checkmark	
Scorpion	SCOR-03SO	0.0.0.45	-	Not implemented. Turn FRAME_RATE
				register OFF to enable extended shutter.
Scorpion	SCOR-20SO	0.0.0.43	-	Not implemented. Turn FRAME_RATE
				register OFF to enable extended shutter.
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	
Flea	ALL	0.0.0.22	-	Not implemented. Turn FRAME_RATE
				register OFF to enable extended shutter.

2.11.3. SOFT_ASYNC_TRIGGER: 102Ch

Provides a software method for generating an asynchronous trigger event. When the camera is in Trigger_Mode_0, writing a zero to bit 31 of this register will generate an asynchronous trigger.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature.
		0: N/A, 1: Available
	[1-29]	Reserved.
Trigger	[30-31]	Write:
		0: generate trigger
		Read:
		0: camera is not ready to be triggered; integration is complete but
		camera is transferring image data
		1: camera is ready to be triggered
		2: camera is in the middle of integration

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	Does not implement Trigger field status
				mode 2 (middle of integration)
Scorpion	SCOR-13SM	0.0.0.33	\checkmark	
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	✓	Deprecated. Use
				SOFTWARE_TRIGGER: 62Ch (v1.31)
Scorpion	SCOR-20SO	0.0.0.43	\checkmark	Deprecated. Use
				SOFTWARE_TRIGGER: 62Ch (v1.31)
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	

Flea	ALL	0.0.0.22	~	Deprecated. Use
				SOFTWARE_TRIGGER: 62Ch (v1.31)

2.11.4. BAYER_TILE_MAPPING: 1040h

This 32 bit read only register specifies the sense of the cameras' Bayer tiling. Various colors are indicated by the ASCII representation of the first letter of their name.

Color	ASCII
Red (R)	52h
Green (G)	47h
Blue (B)	42h
Monochrome (Y)	59h

For example, 0x52474742 is RGGB and 0x59595959 is YYYY.

Format:

Field	Bit	Description
Bayer_Sense_A	[0-7]	ASCII representation of the first letter of the color of pixel (0,0) in
		the Bayer tile.
Bayer_Sense_B	[8-15]	ASCII representation of the first letter of the color of pixel (0,1) in
		the Bayer tile.
Bayer_Sense _C	[16-24]	ASCII representation of the first letter of the color of pixel (1,0) in
		the Bayer tile.
Bayer_Sense _D	[25-31]	ASCII representation of the first letter of the color of pixel (1,1) in
		the Bayer tile.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	

2.11.5. BAYER_TILE_GAIN: 1044h

Allows the user to specify all four Bayer tile pixel gains. The ordering matches that of the BAYER_TILE_MAPPING register (offset 1040h) and the units match those of the WHITE_BALANCE register (offset 80Ch).

Any write to this register will set the *On_Off* bit of the WHITE_BALANCE register.

Field	Bit	Description
Bayer_Gain_A	[0-7]	Gain for pixel $(0,0)$ in the Bayer tile.
Bayer_Gain_B	[8-15]	Gain for pixel (0,1) in the Bayer tile.
Bayer_Gain_C	[16-24]	Gain for pixel (1,0) in the Bayer tile.
Bayer_Gain_D	[25-31]	Gain for pixel (1,1) in the Bayer tile.

Camera Model/Sensor Firmware Avail. Notes

Dragonfly	ALL	2.1.2.13	\checkmark	The default value for all fields is 32, the
				range is 063.
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	-	Not implemented
Scorpion	SCOR-20SO	0.0.0.43	-	Not implemented
Scorpion	SCOR-13FF	0.0.0.45	-	Not implemented
Flea	ALL	0.0.0.22	-	Not implemented

2.11.6. Y16_DATA_FORMAT: 1048h

This register allows the user to specify the image data format for Y16 images: either IIDC 1394 DCAM-compliant mode (default) or PGR-specific (Intel-compatible) mode.

IIDC 1394 DCAM mode:

Description	Data F	ormat
Actual bit depth: 10bpp	0-7	8-15
Bit alignment: MSB	High Byte	Low Byte
Byte alignment: Big-endian		-

PGR-specific mode:

Description	Data F	ormat
This format is reversed from that	0-7	8-15
described in the IEEE-1394 DCAM	10XXXXXX	98765432
specification.		

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature.
		0: N/A, 1: Available
	[1-30]	Reserved.
	[31]	Value
		0: DCAM-compliant mode (default)
		1: PGR-specific mode

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	~	
Scorpion	SCOR-13SM	0.0.0.33	~	
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	✓	
Scorpion	SCOR-20SO	0.0.0.43	~	
Scorpion	SCOR-13FF	0.0.0.45	-	Not implemented
Flea	ALL	0.0.0.22	\checkmark	

2.11.7. AUTO_EXPOSURE_RANGE: 1088h

Specifies the range of allowed exposure values to be used by the automatic exposure controller when in auto mode.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-7]	Reserved
Min_Value	[8-15]	Lower bound
Max_Value	[16-31]	Upper bound

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	
Scorpion	ALL		✓	
Flea	ALL	0.0.0.22	\checkmark	

2.11.8. AUTO_SHUTTER_RANGE: 1098h

Specifies the range of allowed shutter values to be used by the automatic exposure controller.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-7]	Reserved
Min_Value	[8-15]	
Max_Value	[16-31]	

Note: The actual range used is further restricted to match the current grab mode (see Shutter register [offset 81Ch] for the list of ranges).

Note: Although 0xFFA0 is the maximum shutter setting in extended shutter mode, 0xFA0 is the maximum shutter setting for the AUTO_SHUTTER_RANGE.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	
Scorpion	ALL		\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

2.11.9. AUTO_GAIN_RANGE: 10A0h

Specifies the range of allowed gain values to be used by the automatic exposure controller.

Format:

	Field	Bit	Description
--	-------	-----	-------------

Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-5]	Reserved	
ON_OFF	[6]	Write: ON or OFF for this feature	
		Read: read a status	
		0: OFF 1: ON	
		If this bit $= 0$, other fields will be read only	
		Controls auto white balance gain boost.	
	[7]	Reserved	
Min_Value	[8-19]	Lower bound	
Max_Value	[20-31]	Upper bound	

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	
Scorpion	ALL	0.0.1.35	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

2.11.10. GPIO_CONTROL: 1100h

Provides status information about the camera's general-purpose I/O pins.

0: Voltage low, 1: Voltage high

Format:

Field	Bit	Description			
Presence_Inq	[0]	Presence of this feature			
		0: N/A 1: Available			
Pin_Count	[12-15]	Number of available GPIO pins			
	[16-28]	Reserved			
Value_3	[28]	Value of IO3			
Value_2	[29]	Value of IO2			
Value_1	[30]	Value of IO1			
Value_0	[31]	Value of IO0			

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	
Scorpion	ALL		\checkmark	
Flea	ALL	0.0.0.22	\checkmark	

2.11.11. GPIO_XTRA: 1104h

The GPIO_XTRA register has three main functions:

- 1. *Strobe_Start*: Controls when the strobe starts: relative to the start of integration (default) or relative to the time of an asynchronous trigger.
- 2. *Trigger_Queue*: Control how an external trigger signal that is sent during integration (between shutter open and close) is handled: queued (stored to immediately trigger the next frame) or dropped.
- 3. *Strobe_Multiplier*: This multiplier acts on three different components:

- a. Strobe delay (set in GPIO_XTRA_PIN_x register, *Mode_Specific_1* field)
- b. Strobe duration (set in GPIO_XTRA_PIN_x register, *Mode_Specific_2* field)

c. Shutter delay (set in SHUTTER_DELAY register, Shutter_Delay field)

This allows the strobe signal delay/duration and shutter delay to be extended.

DRAGONFLY ONLY: The strobe can be extended beyond the 65,535 ticks of the 49.152MHz clock allowable in the GPIO_XTRA_PIN / SHUTTER_DELAY registers, according to the following formula:

New_duration_or_delay = 16-bit_field_value * (Strobe_Multiplier + 1)

For example, to extend the length of the strobe from 1.33ms (Mode_Specific_2 = FFFFh) to 21.20ms, enter F in the Strobe_Multiplier field.

To extend the shutter delay from 1.33ms (Shutter_Delay = FFFFh) to 4.0ms, enter 2 in the Strobe_Multiplier field.

Format:

r or mat.		
Field	Bit	Description
Strobe_Start	[0]	Current Mode
		0: Strobe start is relative to start of integration
		1: Strobe start is relative to external trigger
Trigger_Queue	[1]	Current Mode
		0: Trigger sent during integration is queued
		1: Trigger sent during integration is dropped
	[2-23]	Reserved
Strobe_Multiplier	[24-31]	

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	✓	
Scorpion	SCOR-03NS	0.0.1.35	✓	<i>Trigger_Queue</i> only
Scorpion	SCOR-03SO	0.0.0.45	✓	 Strobe_Start defaults to time of trigger
				when in asynchronous trigger mode.
				 Strobe_Multiplier deprecated. Recommend
				using GPIO_XTRA_PIN_x only.
Scorpion	SCOR-20SO	0.0.0.43	\checkmark	 Strobe_Start defaults to time of trigger
				when in asynchronous trigger mode.
				 Strobe_Multiplier deprecated. Recommend
				using GPIO_XTRA_PIN_x only.
Flea	ALL	0.0.0.22	\checkmark	 Strobe_Start defaults to time of trigger
				when in asynchronous trigger mode
				 Strobe_Multiplier deprecated. Recommend
				using GPIO_XTRA_PIN_x only.

2.11.12. SHUTTER_DELAY: 1108h

This register provides control over the time delay between an external trigger and the start of integration (shutter open).

Format:

Field	Bit	Description
	[0-15]	Reserved
Shutter_Delay	[16-31]	Delay before the start of integration.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	Delay is in ticks of a 49.152MHz clock.
				To extend the duration of this delay, use
				the Strobe_Multiplier defined in the
				GPIO_XTRA register.
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Flea	ALL	0.0.0.22	\checkmark	Deprecated. Recommend using register
				834h TRIGGER_DELAY register.

2.11.13. GPIO_CTRL_PIN_0: 1110h

This register provides control over the first GPIO pin (Pin 0).

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
_		0: N/A 1: Available
	[1-11]	Reserved
Pin_Mode	[12-15]	Current Mode
		0: Input
		1: Output
		2: Asynchronous trigger
		3: Strobe
		4: Pulse width modulation (PWM)
		8: Output (DCAM Specification v1.31-compliant cameras only)
Data	[16-31]	Data field
		GPIO_MODE_0 – bit 31 contains value
		GPIO_MODE_1 – bit 31 contains value
		$GPIO_MODE_2 - 0$ on falling edge, 1 on rising edge
		GPIO_MODE_4 – uses bits [16-27] only for number of pulses;
		bits [28-31] must be zero

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	Default: GPIO_MODE_0
Scorpion	SCOR-13SM	0.0.0.33	✓	Default: GPIO_MODE_2
Scorpion	SCOR-03NS	0.0.1.35	✓	Default: GPIO_MODE_2
Scorpion	SCOR-03SO	0.0.0.45	✓	Default: GPIO_MODE_2
Scorpion	SCOR-20SO	0.0.0.43	✓	Default: GPIO_MODE_0
Scorpion	SCOR-13FF	0.0.0.45	\checkmark	Default: GPIO_MODE_2

Flea	ALL	0.0.0.22	✓	Default: GPIO_MODE_0

2.11.14. GPIO_XTRA_PIN_0: 1114h

This register contains mode specific data for the first GPIO pin (Pin 0).

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse
		GPIO_MODE_4: Low period of PWM output pulse
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse
_		GPIO_MODE_4: Low period of PWM output pulse

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	Units are ticks of a 49.152MHz clock
Scorpion	SCOR-03SO	0.0.0.45	✓	Units are 1/16th of a shutter line
Scorpion	SCOR-03NS	0.0.1.35	✓	
Flea	ALL	0.0.0.22	✓	Units are ticks of a 1.024MHz clock

2.11.15. GPIO_CTRL_PIN_1: 1120h

This register provides control over the second GPIO pin (Pin 1).

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
_		0: N/A 1: Available
	[1-11]	Reserved
Pin_Mode	[12-15]	Current Mode
		0: Input
		1: Output
		2: Asynchronous trigger
		3: Strobe
		4: Pulse width modulation (PWM)
		8: Output (DCAM Specification v1.31-compliant cameras only)
Data	[16-31]	Data field
		GPIO_MODE_0 – bit 31 contains value
		GPIO_MODE_1 – bit 31 contains value
		$GPIO_MODE_2 - 0$ on falling edge, 1 on rising edge
		GPIO_MODE_4 – uses bits [16-27] only for number of pulses;
		bits [28-31] must be zero

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	~	Default: GPIO_MODE_3
Scorpion	ALL		~	Default: GPIO_MODE_0
Flea	ALL	0.0.0.22	\checkmark	Default: GPIO_MODE_8

2.11.16. GPIO_XTRA_PIN_1: 1124h

This register contains mode specific data for the second GPIO pin (Pin 1).

Format:

1 01 mati		
Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse
		GPIO_MODE_4: Low period of PWM output pulse
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse
		GPIO_MODE_4: Low period of PWM output pulse

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	~	Units are ticks of a 49.152MHz clock
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	Units are 1/16th of a shutter line
Scorpion	SCOR-03NS	0.0.1.35	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	Units are ticks of a 1.024MHz clock

2.11.17. GPIO_CTRL_PIN_2: 1130h

This register provides control over the third GPIO pin.

Field	Bit	Description		
Presence_Inq	[0]	Presence of this feature		
		0: N/A 1: Available		
	[1-11]	Reserved		
Pin_Mode	[12-15]	Current Mode		
		0: Input		
		1: Output		
		2: Asynchronous trigger		
		3: Strobe		
		4: Pulse width modulation (PWM)		
		8: Output (DCAM Specification v1.31-compliant cameras only)		
Data	[16-31]	Data field		
		GPIO_MODE_0 – bit 31 contains value		
		GPIO_MODE_1 – bit 31 contains value		
		$GPIO_MODE_2 - 0$ on falling edge, 1 on rising edge		
		GPIO_MODE_4 – uses bits [16-27] only for number of pulses;		
		bits [28-31] must be zero		

Format:

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		\checkmark	Default: GPIO_MODE_0

2.11.18. GPIO_XTRA_PIN_2: 1134h

This register contains mode specific data for the third GPIO pin.

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse
		GPIO_MODE_4: Low period of PWM output pulse
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse
-		GPIO_MODE_4: Low period of PWM output pulse

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	~	Units are ticks of a 49.152MHz clock
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	Units are 1/16th of a shutter line
Scorpion	SCOR-03NS	0.0.1.35	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	Units are ticks of a 1.024MHz clock

2.11.19. GPIO_CTRL_PIN_3: 1140h

This register provides control over the fourth GPIO pin.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-11]	Reserved
Pin_Mode	[12-15]	Current Mode
		0: Input
		1: Output
		2: Asynchronous trigger
		3: Strobe
		4: Pulse width modulation (PWM)
		8: Output (DCAM Specification v1.31-compliant cameras only)
Data	[16-31]	Data field
		GPIO_MODE_0 – bit 31 contains value
		GPIO_MODE_1 – bit 31 contains value
		$GPIO_MODE_2 - 0$ on falling edge, 1 on rising edge
		GPIO_MODE_4 – uses bits [16-27] only for number of pulses;
		bits [28-31] must be zero

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	Must be physically implemented to
				work. See Technical Reference Manual.
				Default: GPIO_MODE_0
Scorpion	ALL		\checkmark	Default: GPIO_MODE_0
Flea	ALL	0.0.0.22	✓	Default: GPIO_MODE_8

2.11.20. GPIO_XTRA_PIN_3: 1144h

This register contains mode specific data for the fourth GPIO pin.

Format:

FieldBitDescription	
---------------------	--

Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse
		GPIO_MODE_4: Low period of PWM output pulse
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse
		GPIO_MODE_4: Low period of PWM output pulse

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	\checkmark	Units are ticks of a 49.152MHz clock
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	Units are 1/16th of a shutter line
Scorpion	SCOR-03NS	0.0.1.35	\checkmark	
Flea	ALL	0.0.0.22	\checkmark	Units are ticks of a 1.024MHz clock

2.11.21. PIO_OUTPUT: 11F0h

This section describes the control and inquiry registers for the PIO_Output functionality specified in the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*.

See the section GPIO Control Using DCAM v1.31 Functionality.

Format:		
Field	Bit	Description
IO0_Status	[0]	State (voltage level) of the IO0 pin
		0: Low, 1: High
IO1_Status	[1]	State (voltage level) of the IO1 pin
		0: Low, 1: High
IO2_Status	[2]	State (voltage level) of the IO2 pin
		0: Low, 1: High
IO3_Status	[3]	State (voltage level) of the IO3 pin
		0: Low, 1: High
	[4-31]	Reserved

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	
Scorpion	SCOR-20SO	0.0.0.43	-	Not implemented
Scorpion	SCOR-13FF	0.0.0.45	-	Not implemented
Flea	ALL	0.0.0.22	\checkmark	

2.11.22. PIO_INPUT: 11F4h

This section describes the control and inquiry registers for the PIO_Input functionality specified in the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*.

See the section GPIO Control Using DCAM v1.31 Functionality.

Format:		
Field	Bit	Description

IO0_Status	[0]	State (voltage level) of the IO0 pin	
		0: Low, 1: High	
IO1_Status	[1]	State (voltage level) of the IO1 pin	
		0: Low, 1: High	
IO2_Status	[2]	State (voltage level) of the IO2 pin	
		0: Low, 1: High	
IO3_Status	[3]	State (voltage level) of the IO3 pin	
		0: Low, 1: High	
	[4-31]	Reserved	

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	✓	
Scorpion	SCOR-20SO	0.0.0.43	-	Not implemented
Scorpion	SCOR-13FF	0.0.0.45	-	Not implemented
Flea	ALL	0.0.0.22	\checkmark	

2.11.23. PIO_DIRECTION: 11F8h

If the *IOx_Mode* bit is asserted (write a '1'), this means the GPIO pin is currently configured as an output and the *Pin_Mode* of the GPIO pin (see the GPIO_CTRL_PIN_x register) is GPIO_Mode_8. Otherwise, the *Pin_Mode* will be GPIO_Mode_0 (Input). The PIO_DIRECTION register is writeable only when the current GPIO_Mode is GPIO_Mode_0 or GPIO_Mode_8.

See the section GPIO Control Using DCAM v1.31 Functionality.

Format:

Field	Bit	Description		
IO0_Mode	[0]	Current mode of GPIO Pin 0		
		0: Other, 1: Output		
IO1_Mode	[1]	Current mode of GPIO Pin 1		
		0: Other, 1: Output		
IO2_Mode	[2]	Current mode of GPIO Pin 2		
		0: Other, 1: Output		
IO3_Mode	[3]	Current mode of GPIO Pin 3		
		0: Other, 1: Output		
	[4-31]	Reserved		

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	-	Not implemented
Scorpion	SCOR-13SM	0.0.0.33	-	Not implemented
Scorpion	SCOR-03NS	0.0.1.35	-	Not implemented
Scorpion	SCOR-03SO	0.0.0.45	\checkmark	
Scorpion	SCOR-20SO	0.0.0.43	-	Not implemented
Scorpion	SCOR-13FF	0.0.0.45	-	Not implemented
Flea	ALL	0.0.0.22	\checkmark	

2.11.24. FRAME_TIME: 1240h

This register provides control over frame rate relative to the CURRENT_FRAME_RATE value.

For example, when CURRENT_FRAME_RATE = 4 (i.e. 30Hz on a lo-res Dragonfly) the camera sends 240 iso packets per image. To achieve 30Hz operation the camera waits for about 26-27 iso periods before sending the next image.

The FRAME_TIME register allows the desired frame rate to be specified, which could be considerably less than the nominal rate specified by CURRENT_FRAME_RATE. For example, with a CURRENT_FRAME_RATE of 30fps, 25fps is now possible.

The formula to determine the *Value* is:

FRAME_TIME = 800 * (Current_Frame_Rate / Desired_Frame_Rate)

Example:

To achieve 25fps while the current frame rate is 30fps:

Enter 3C0h in the Value field (last 16 bits) of 1240h to achieve 25fps.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-5]	Reserved
ON_OFF	[6]	Always ON. To turn this feature OFF, write a 0 to this bit and
		bits 20-31 (Value_Field).
	[7–19]	Reserved
Value	[20-31]	Value

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	~	
Scorpion	ALL		-	Not implemented. Use FRAME_RATE: 83Ch (v1.31).
Flea	ALL		-	Not implemented. Use FRAME_RATE: 83Ch (v1.31).

2.11.25. FRAME_SYNC_OFFSET: 1244h

Multiple cameras of the same type on the same IEEE-1394 bus are automatically synchronized to each other at the hardware level. This register allows the user to offset the synchronization of one camera relative to another camera by a defined amount of time. For example, it would be possible for camera "B" to always grab images 1ms after camera "A" grabs images; the two cameras are therefore synchronized, but the grabbing of "B" is delayed by 1ms.

This register has the same format as the FRAME_TIME register and uses the same units. The offset must be some number between 0 and 1/- where - is the current frame rate. If the FRAME_TIME *Value* does not divide evenly into 128 seconds and the offset register is not written for all applicable cameras within the same 128s ISO period, setting a FRAME_SYNC_OFFSET *Value* will not work properly.

Format:				
Field	Bit	Description		
Presence_Inq	[0]	Presence of this feature		
		0: N/A 1: Available		
	[1-5]	Reserved		
ON_OFF	[6]	Always ON. To turn this feature OFF, write a 0 to this bit and		
		bits 20-31 (Value_Field).		
	[7–19]	Reserved		
Value	[20-31]	Value		

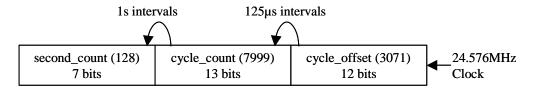
The formula to determine the FRAME_SYNC_OFFSET Value is:

FRAME_SYNC_OFFSET	= Desired_Offset_Time	
	_	(1 / Current_Frame_Rate) / FRAME_TIME_Value

Example:

To determine the *Value* required to offset the synchronization of a camera running at 30Hz by 1ms, read the FRAME_TIME register 1240h *Value* field. Assuming the *Value* is 320h:

FRAME_SYNC_OFFSET = $\frac{0.001 \text{ s}}{(1 / 30 \text{ fps}) / 320 \text{ h}}$ = 0.001s / 0.0000416s/unit = 24 = 18h


Enter 18h in the Value field of 1244h to offset that camera's synchronization by 1ms.

1 cuture mit	cuture rivuluolity.					
Camera	Model/Sensor	Firmware	Avail.	Notes		
Dragonfly	ALL	2.1.2.13	\checkmark			
Scorpion	ALL		-	Not implemented. Use TRIGGER_DELAY: 834h (v1.31) when in		
Flea	ALL		-	Not implemented		

Feature Availability:

2.11.26. FRAME_TIMESTAMP: 12F8h

This register allows the user to control whether or not the image timestamp is displayed. The timestamp is located in the first 4 pixels of the image and matches the CYCLE_TIME register format as follows:

Users using color cameras and doing Bayer color processing on the PC must extract the value from the non-color processed image in order for the data to be valid.

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-30]	Reserved	
Insert_Timestamp	[31]	Display timestamp	
		0: Off 1: On	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	~	
Scorpion	ALL		\checkmark	Data written into image pixels encompasses additional information beyond the timestamp. See the <i>Scorpion</i> <i>Technical Reference Manual</i> .
Flea	ALL	0.0.0.22	-	Not implemented

2.11.27. XMIT_FAILURE: 12FCh

This register contains a count of the number of failed frame transmissions that have occurred since the last reset. An error occurs if the camera cannot arbitrate for the bus to transmit image data and the image data FIFO overflows.

Format:

Field	Bit	Description		
Frame_Count	[0-31]	Read: Count of failed frame transmissions.		
		Write: Reset.		

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	

2.11.28. SERIAL_NUMBER: 1F20h

Specifies the unique serial number of the camera.

Format:

Field	Bit	Description
Serial_Number	[0-31]	Unique serial number of camera (read-only)

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	~	

2.11.29. BUILD_TIMESTAMP: 1F40h

Specifies the date that the current version of the firmware was built in Unix time format.

1 01 mati		
Field	Bit	Description
Build_Date	[0-31]	Date firmware was built (read-only)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	~	

2.11.30. FIRMWARE_VERSION: 1F60h

This register contains the version information for the currently loaded camera firmware. For more information on PGR software and firmware versioning standards, please see the section *Software and Firmware Version Numbering*.

Format:

Field	Bit	Description
Major	[0-7]	Major revision number
Minor	[8-15]	Minor revision number
Туре	[16-19]	Type of release 0: Alpha 1: Beta 2: Release Candidate 3: Release
Revision	[20-31]	Revision number

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	\checkmark	

2.11.31. FIRMWARE_BUILD_DATE: 1F64h

Specifies the date that the current version of the firmware was built in Unix time format.

Format:

Field	Bit	Description
Build_Date	[0-31]	Date firmware was built (read-only)

(Camera	Model/Sensor	Firmware	Avail.	Notes
	ALL	ALL	ALL	\checkmark	

2.11.32. FIRMWARE_DESCRIPTION: 1F68-1F7Ch

Null padded, big-endian string describing the currently loaded version of firmware.

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	~	

3. Isochronous Packet Format

Unlike simple register reads and writes, which are handled by asynchronous communication, the camera transmits image data using a guaranteed bandwidth mechanism known as isochronous data transmission. This section details the format and bandwidth requirements of the isochronous data broadcast by the camera. The amount of isochronous bandwidth allocated to a camera must be negotiated with the isochronous resource manager node (generally the 1394 host adapter in the PC). Every video format, mode and frame rate has a different video data format.

NOTE: All Point Grey Research IEEE-1394 cameras follow these DCAM isochronous packet format specifications. To determine the formats / frame rates implemented by your camera, consult your camera's Technical Reference manual.

3.1. Isochronous Packet Format for Format_0, Format_1 and Format_2

The following table shows the format of the first quadlet (a quadlet being four bytes) in the data field of an isochronous data block.

0-7	8-15		16-23	24-31			
data_	length	tag	channel	tCode	sy		
	header_CRC						
	Video data payload						
data_CRC							

Table 1: Isochronous Data Packet Format.

data_length – the number of bytes in the data field.

tag - (tag field) shall be set to 0

channel – isochronous channel number, as programmed in the iso_channel field of the cam_sta_ctrl register

tCode – (transaction code) shall be set to the isochronous data block packet tCode.

sy – (synchronization value) shall be set to 0001h on the first isochronous data block of a frame, and shall be set to zero on all other isochronous data blocks.

Video data payload – shall contain the digital video information.

3.1.1. Isochronous Bandwidth Requirements

The amount of isochronous bandwidth required to transmit images from the camera is dependent on the format and frame rate. The following table describes the bandwidth requirements for each available format and frame rate. Each entry in the table indicates the required bandwidth in number of lines, pixels and quadlets per isochronous period. Bandwidth requirements for Format 7 are negotiated with the camera at runtime. The location of the pertinent registers can be read from offset 2E0h-2FCh.

roima									
Mode	Video Format	240fps	120fps	60fps	30fps	15fps	7.5fps	3.75fps	1.875fps
0	160x120	4H	2H	1H	1/2H	1/4H	1/8H		
	YUV(4:4:4)	640p	320p	160p	80p	80p	20		
	24bit/pixel	480q	240q	120q	60q	60q	15q		
1	320x240	8)8H	4)4H	2H	1H	1/2H	1/4H	1/8H	1/16H
	YUV(4:2:2)	2560p	1280p	650p	320p	160p	160p	40p	20p
	16bit/pixel	1280q	640q	320q	160q	80q	80q	20q	10q
2	640x480	16)16H	8)8H	4)4H	2)2H	1H	1/2H	1/4H	1/8H
	YUV(4:1:1)	10240p	5120p	2560p	1280p	640p	320p	160p	80p
	12bit/pixel	3840q	1920q	960q	480q	240q	120q	60q	30q
3	640x480	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H	1/8H
	YUV(4:2:2)	10240p	5120p	2560p	1280p	640p	320p	160p	80p
	16bit/pixel	5120q	2560q	1280q	640q	320q	160q	80q	40q
4	640x480 RGB	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H	1/8H
	24bit/pixel	10240p	5120p	2560p	1280p	640p	320p	160p	80p
		7680q	3840q	1920q	960q	480q	240q	120q	60q
5	640x480 Y (Mono)	16)16H	8)8H	4)4H	2)2H	1H	1/2H	1/4H	1/8H
	8bit/pixel	10240p	5120p	2560p	1280p	640p	320p	160p	80p
		2560q	1280q	640q	320	160q	80q	40q	20q
6	640x480 Y (Mono)	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H	1/8H
	16bit/pixel	10240p	5120p	2560p	1280p	640p	320p	160p	80p
		5120q	2560q	1280q	640q	320q	160q	80q	40q
7				Res	erved				
5	1024x768 Y					3/2H	3/4H	3/8H	3/16H
	(Mono)					1536p	768p	384p	192p
	8bit/pixel					384q**2	192q	96q	48q
7	1024x768 Y						3/4H	3/8H	3/16H
	(Mono)						768p	384p	192p
	16bit/pixel						384q**4	192q**2	96q

Format_0

Format_1

Mode	Video Format	240fps	120fps	60fps	30fps	15fps	7.5fps	3.75fps	1.875fps
0	800*600	32)20H	16)10H	8)5H	4)5/2H	2)5/4H	5/8H	5/16H	
	YUV(4:4:4)	16000p	8000p	4000p	2000p	1000p	500p	250p	
	16bit/pixel	8000q	4000q	2000q	1000q	500q	250q	125q	
1	800x600 RGB		32)10H	16)5H	8)5/2H	4)5/4H	2)5/8H		
	24bit/pixel		8000p	4000p	2000p	1000p	500p		
			600q	3000q	1500q	750q	375q		
2	800x600 Y (Mono)	16)20H	8)10H	4)5H	2)5/2H	5/4H	5/8H		
	8bit/pixel	16000p	8000p	4000p	2000p	1000p	500p		
		4000q	2000q	1000q	500q	250q	125q		
3	1024x768		32)12H	16)6H	8)3H	4)3/2H	2)3/4H	3/8H	3/16H
	YUV(4:2:2)		12288p	6144p	3072p	1536p	768p	384p	192p
	16bit/pixel		6144q	3072q	1536q	768q	384q	192q	96q
4	1024x768 RGB			32)6H	16)3H	8)3/2H	4)3/4H	2)3/8H	3/16
	24bit/pixel			6144p	3072p	1536p	768p	384p	192p
				4608q	2304q	1152q	576q	288q	144q
5	1024x768 Y	32)24H	16)12H	8)6H	4)3H	2)3/2H	3/4H	3/8H	3/16H
	(Mono)	24576p	12288p	6144p	3072p	1536p	768p	384p	192p
	8bit/pixel	6144q	3072q	1536q	768q	384q	192q	96q	48q
6	800x600 Y	32)20H	16)10H	8)5H)	4)5/2H	2)5/4H	5/8H	5/16H	
	(Mono16)	16000p	8000p	4000p	2000p	1000p	500p	250p	
	16bit/pixel	8000q	4000q	2000q	1000q	500q	250q	125q	
7	1024x768 Y		32)12H	16)6H	8)3H	4)3/2H	2)3/4H	3/8H	3/16H
	(Mono16)		12288p	6144p	3072p	1536p	768p	384p	192p
	16bit/pixel		6144q	3072q	1536q	768q	384q	192q	96q

nat_2								
Mode	Video Format	120fps	60fps	30fps	15fps	7.5fps	3.75fps	1.875fps
0	1280x960		32)8H	16)4H	8)2H	4)1H	2)1/2H	1/4H
	YUV(4:2:2)		10240p	5120p	2560p	1280p	640p	320p
	16bit/pixel		5120q	2560q	1280q	640q	320q	160q
1	1280x960 RGB		32)8H	16)4H	8)2H	4)1H	2)1/2H	1/4H
	24bit/pixel		10240p	5120p	2560p	1280p	640p	320p
	*		7680q	3840q	1920q	960q	480q	240q
2	1280x960 Y	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H
	(Mono)	20480p	10240p	5120p	2560p	1280p	640p	320p
	8bit/pixel	5120q	2560q	1280q	640q	320q	160q	80q
3	1600x1200		32)10H	16)5H	8)5/2H	4)5/4H	2)5/8H	5/16H
	YUV(4:2:2)		16000p	8000p	4000p	2000p	1000p	500p
	16bit/pixel		8000q	4000q	2000q	1000q	500q	250q
4	1600x1200 RGB			32)5H	16)5/2H	8)5/4H	4)5/8H	2)5/16H
	24bit/pixel			8000p	4000p	2000p	1000p	500p
				6000q	3000q	1500q	750q	375q
5	1600x1200 Y	32)20H	16)10H	8)5H	4)5/2H	2)5/4H	5/8H	5/16H
	(Mono)	32000p	16000p	8000p	4000p	2000p	1000p	500p
	8bit/pixel	8000q	4000q	2000q	1000q	500q	250q	125q
6	1280x960 Y		32)8H	16)4H	8)2H	4)1H	2)1/2H	1/4H
	(Mono16)		10240p	5120p	2560p	1280p	640p	320p
	16bit/pixel		5120q	2560q	1280q	640q	320q	160q
7	1600x1200 Y		32)10H	16)5H	8)5/2H	4)5/4H	2)5/8H	5/16H
	(Mono16)		16000p	8000p	4000p	2000p	1000p	500p
	16bit/pixel		8000q	4000qH	2000q	1000q	500q	250q

[--H - Lines/Packet]

[--p – Pixels/Packet]

[--q – Quadlets/Packet

2) : required S200 data rate
4) : required S400 data rate
8) : required S800 data rate
16) : required S1600 data rate

32) : required S3200 data rate

3.2. Isochronous Packet Format for Format_7 (Partial Image Size Format)

The following table shows the format of the first quadlet (a quadlet being four bytes) in the data field of an isochronous data block.

0-7	8-15	8-15 16-23		24-3	31
data_length		tag	channel	tCode	sy
header_CRC					
	Video data payload				
data_CRC					

Table 2: Isochronous Data Packet Format.

data_length – the number of bytes in the data field.

tag - (tag field) shall be set to 0

channel – isochronous channel number, as programmed in the iso_channel field of the cam_sta_ctrl register

tCode – (transaction code) shall be set to the isochronous data block packet tCode.

sy – (synchronization value) shall be set to 0001h on the first isochronous data block of a frame,

and shall be set to zero on all other isochronous data blocks.

Video data payload – shall contain the digital video information.

4. General Purpose Input / Output

This section describes the general purpose input/output (GPIO) functionality implemented on PGR IEEE-1394 cameras equipped with GPIO pins (see individual camera *Technical Reference Manual* for GPIO pin information).

Historically, PGR IEEE-1394 cameras that have implemented GPIO functionality (e.g. Dragonfly) have done so using the advanced GPIO_CTRL_PIN_x and GPIO_XTRA_PIN_x registers (1100h to 1144h) in conjunction with the GPIO Modes outlined below. However, with the addition of similar GPIO functionality to the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*, many PGR camera models are currently changing to also support the newly-defined trigger, parallel input/output (PIO), serial input/output (SIO) and strobe functionality outlined in version 1.31 of the DCAM. Therefore, while all PGR cameras support the PGR-specific GPIO modes, some cameras will also support the DCAM v1.31-specific input/output modes.

NOTE: To determine whether your camera model supports the new DCAM v1.31 trigger functionality:

- 1. Check the "Feature Availability" table for the relevant feature; or
- 2. Query the camera's Opt_Function_Inq register 40Ch.

4.1. PGR-Specific GPIO Modes

The following modes are PGR-specific GPIO modes used exclusively with the GPIO_CTRL_PIN_x registers. All PGR IEEE-1394 digital cameras that are equipped with GPIO connectors currently support these GPIO registers and modes, with the exception of GPIO_Mode_8, which applies specifically to cameras that implement the DCAM v1.31-compliant input/output modes.

4.1.1. GPIO_Mode_0: Input

When a GPIO pin is put into *GPIO_Mode_0* and external wiring is attached to the pin, the associated GPIO_CTRL_PIN_x register's *Data* field will reflect the voltage level of the wiring. For example, a voltage of 0V would be reflected as a '0' in Bit 31, and a voltage of +3.3V would be reflected as a '1'.

4.1.2. **GPIO_Mode_1: Output**

A GPIO pin in *GPIO_Mode_1* will output a defined voltage signal, either high or low. If Bit 31 of the GPIO_CTRL_PIN_x register's *Data* field is '0', the pin will output 0V. If Bit 31 is set to '1', the pin will output +3.3V. Toggling this bit will therefore cause a rising or falling edge transition, which can be used to manually trigger external circuitry. Please note *GPIO_Mode_3* is the mode to use for automatic (continuous) triggering.

WARNING: Do <u>not</u> connect power to a pin configured as an output (effectively connecting two outputs to each other). Doing so can cause damage to camera electronics.

4.1.3. GPIO_Mode_2: Asynchronous (External) Trigger

When a GPIO pin is put into *GPIO_Mode_2*, and an external TRIGGER_MODE enabled (which disables isochronous data transmission), the camera can be asynchronously triggered to grab an image by sending a voltage transition to the pin. Writing a '0' to Bit 31 of the GPIO_CTRL_PIN_x register will cause the camera to be triggered when it detects a falling edge; a '1' is used for a rising edge.

4.1.4. GPIO_Mode_3: Strobe

A GPIO pin in *GPIO_Mode_3* will output a voltage pulse of fixed delay and duration, according to the 32-bit value of the associated GPIO_XTRA_PIN_x register. The *Strobe_Start* and *Strobe_Multiplier* fields in the GPIO_XTRA register can be used to change the strobe behaviour.

4.1.5. **GPIO_Mode_4:** Pulse Width Modulation (PWM)

A GPIO pin in *GPIO_Mode_4* will output a specified number of pulses with programmable high and low duration. The start of these pulses is defined by the user by writing the GPIO_CTRL_PIN_x and/or GPIO_XTRA_PIN_x register that is controlling the PWM. The pulse is independent of integration or external trigger. There is only one real PWM signal source (i.e. two or more pins cannot simultaneously output different PWM's), but the pulse can appear on any of the GPIO pins. These values must be less than 8000h. The units of time will vary between cameras.

4.1.6. **GPIO_Mode_8:** Output (DCAM Specification v1.31)

A GPIO pin in *GPIO_MODE_8* is currently configured as an output using the DCAM v1.31 functionality. See the section, *GPIO Control Using DCAM v1.31 Functionality*.

4.2. **GPIO Control Using DCAM v1.31 Functionality**

Version 1.31 of the *IIDC 1394-based Digital Camera (DCAM) Specification* includes a new set of "Optional Function CSR" registers, which define a mechanism for controlling parallel input/output, strobe and serial port operations. These Optional Functions CSRs are implemented in some PGR IEEE-1394 cameras. For cameras that implement this functionality, PGR recommends using these new registers instead of the GPIO registers 1100h to 1144h.

4.2.1. Parallel Input / Output (PIO) Registers 11F0h – 11F8h

A GPIO pin can be in one of two states: output/strobe or input/trigger. The behaviour of each GPIO pin is controlled using the following registers:

PIO_DIRECTION: 11F8h

This register is used for configuring pins to be either inputs or outputs, and is used in conjunction with the PIO_OUTPUT and PIO_INPUT registers.

PIO_OUTPUT: 11F0h

This register is used for configuring the input values for individual pins.

PIO_INPUT: 11F4h

This register is used for configuring the output values for individual pins.

TRIGGER_MODE: 830h

This register is used for configuring which pin will be the external trigger source.

Configuring PIO for External Trigger

To configure a GPIO pin to be a trigger, set the bit for the relevant pin in the PIO_DIRECTION: 11F8h register to '0', then set the bit for the relevant pin in the TRIGGER_MODE: 830h register *Trigger_Source* field.

NOTE: Only one GPIO pin can be configured as a trigger source using this method. To have multiple pins acting as a trigger sources, use the GPIO_MODE_2 method via the GPIO_CTRL_PIN_x registers.

Configuring PIO for Strobe Output

To configure a GPIO pin to output a strobe pulse, set the bit for the relevant pin in the PIO_DIRECTION: 11F8h register to '1', then set the duration and delay using the related STROBE_x_CNT register.

4.2.2. Strobe Signal Output Registers

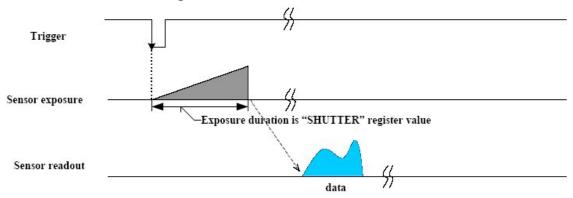
This section describes the control and inquiry registers for the Strobe Signal functionality specified in the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*.

0: Not Available, 1: Available

Offset	Name	Field	Bit	Description	
1300h	Strobe_CTRL_Inq	Strobe_0_Inq	[0]	Presence of strobe 0 signal	
		Strobe_1_Inq	[1]	Presence of strobe 1 signal	
		Strobe_2_Inq	[2]	Presence of strobe 2 signal	
		Strobe_3_Inq	[3]	Presence of strobe 3 signal	
		-	[4-31]	Reserved	
1304h – 13FCh		F	Reserved		
1400h	Strobe_0_Inq	Presence_Inq	[0]	Presence of this feature	
				0: N/A 1: Available	
			[1-3]	Reserved	
		ReadOut_Inq	[4]	Ability to read the value of this feature	
		On_Off_Inq	[5]	Ability to switch feature ON and OFF	
		Polarity_Inq	[6]	Ability to change signal polarity	
			[7]	Reserved	
		Min_Value	[8-19]	Minimum value for this feature contro	
		Max_Value	[20-31]	Maximum value for this feature control	
1404h	Strobe_1_Inq	S	ame definition	n as Strobe_0_Inq	
1408h	Strobe_2_Inq	S	ame definition	as Strobe_0_Inq	
140Ch	Strobe_3_Inq	Same definition as Strobe_0_Ing			
1410h - 14FCh		F	Reserved	•	
1500h	Strobe_0_Cnt	Presence_Inq	[0]	Presence of this feature	
				0: N/A 1: Available	
			[1-5]	Reserved	
		On_Off_Inq	[6]	Read: read a status	
				0: OFF, 1: ON	
				If this bit $= 0$, other fields will be read	
				only	
				(Note that this field is read only).	
		Signal_Polarity	[7]	Select signal polarity	
				If Polarity_Inq is "1":	
				- Write to change strobe output polarit	
				- Read to get strobe output polarity	
				If Polarity_Inq is "0":	
				- Read only	
				0: Low active output	
				1: High active output	
		Delay_Value	[8-19]	Delay after start of exposure until the strobe signal asserts	
		Duration_Value	[20-31]	Duration of the strobe signal	
				A value of 0 means de-assert at the end	
				of exposure, if required.	
1504h	Strobe_1_Cnt			as Strobe_0_Cnt	
1508h	Strobe_2_Cnt	S	ame definitior	as Strobe_0_Cnt	
150Ch	Strobe_3_Cnt	S	ame definitior	as Strobe_0_Cnt	
1510h-		Reserved			
15FFh					

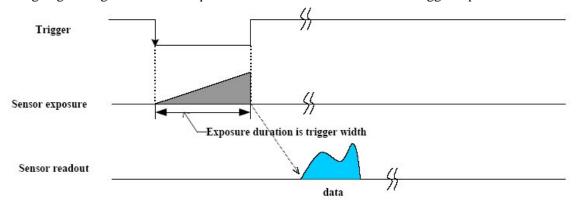
Format:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.13	-	
Scorpion	SCOR-03NS	0.0.1.35	\checkmark	

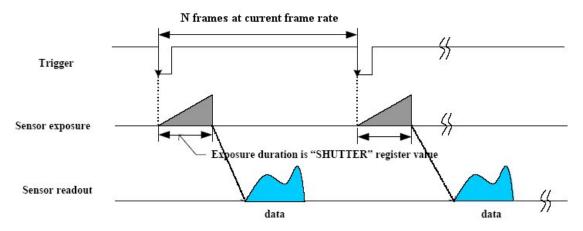

Flea	ALL	0.0.0.22	✓	Delay and Duration values are in ticks of a
				1.024MHz clock, so every 1,024,000 ticks =
				approx. 1 second.

5. Trigger Modes

This section describes the internal and external trigger modes available. These modes and their interaction with the GPIO pins can be configured and controlled via the TRIGGER_MODE register at 830h and the GPIO registers at 1100h-1144h.


5.1.1. Trigger_Mode_0 – Standard External Trigger Mode

Trigger_Mode_0 is best described as the standard external trigger mode. When the camera is put into Trigger_Mode_0, the camera starts integration of the incoming light from external trigger input falling/rising edge. The SHUTTER register describes integration time. No parameter is required. The camera can be triggered in this mode using the GPIO pins as external trigger or SOFT_ASYNC_TRIGGER register 102Ch.


5.1.2. Trigger_Mode_1 – Bulb Shutter Mode

Also known as Bulb Shutter mode, Trigger_Mode_1 is an IIDC 1394 DCAM-compliant trigger mode, in which the camera starts integration of the incoming light from external trigger input falling edge. Integration time is equal to low state time of the external trigger input.

5.1.3. Trigger_Mode_3 – Skip Frames Mode

Trigger_Mode_3 allows the user to put the camera into a mode where the camera only transmits one out of N specified images. This is an internal trigger mode that requires no external interaction. Where N is the parameter set in bits [20-31] of the TRIGGER_MODE register (offset 830h), the camera will issue a trigger internally at a cycle time that is N times greater than the current frame rate. Again, the SHUTTER register describes integration time. Note that this is different from the IIDC specification that states the cycle time will be N times greater than the fastest frame rate.

5.1.4. Trigger Modes

The *Scorpion* implements the IIDC 1394-based Digital Camera (DCAM) Specification Version 1.31 Trigger_Mode functionality.

6. Technical Support Resources

Point Grey Research Inc. endeavours to provide the highest level of technical support possible to our customers. Most support resources can be accessed through the Product Support section of our website: <u>http://www.ptgrey.com/support</u>.

6.1. Creating a Customer Login Account

The first step in accessing our technical support resources is to obtain a Customer Login Account. This requires a valid name, e-mail address, and camera serial number. To apply for a Customer Login Account go to: <u>http://www.ptgrey.com/support/downloads/user_request.html</u>.

6.2. Knowledge Base

Our on-line knowledge base contains answers to some of the most common support questions. It has information about all PGR products and was developed to help customers resolve product issues. It is constantly updated, expanded, and refined to ensure that our customers have access to the latest information. To access the knowledge base, go to: <u>http://www.ptgrey.com/support/kb/</u>.

6.3. **Product Downloads**

Customers with a Customer Login Account can access the latest software and firmware for their cameras from our downloads site at <u>http://www.ptgrey.com/support/downloads</u>. We encourage our customers to keep their software and firmware up-to-date by downloading and installing the latest versions. These versions include the latest bug fixes and feature enhancements.

6.4. Contacting Technical Support

Before contacting Technical Support, have you:

- 1. Read the product documentation and user manual?
- 2. Searched the Knowledge Base?
- 3. Downloaded and installed the latest version of software and/or firmware?

If you have done all the above and still can't find an answer to your question, contact our Technical Support team using our on-line web form: <u>http://www.ptgrey.com/support/contact/</u>. This will create a ticket in our Request Tracker support system, and a Technical Support representative will contact you by e-mail within one (1) business day.

7. Contacting Point Grey Research Inc.

For any questions, concerns or comments please contact us via the following methods:

Email:

For all general questions about Point Grey Research or our products contact info@ptgrey.com.

For all specific questions about our products or for quotes or product pricing contact sales@ptgrey.com.

For technical support (existing customers only) please consult the *Technical Support Resources* section of this manual.

Telephone:

(604) 730-9937

Fax:

(604) 732-8231

Mail:

Point Grey Research, Inc. 305-1847 W. Broadway Vancouver, BC V6J 1Y6 CANADA

Or, visit our webpage <u>http://www.ptgrey.com</u> for detailed product information and support.

8. Appendix A

8.1. Software and Firmware Version Numbering Scheme

8.1.1. Overview

All PGR software and firmware follow a standardized version-naming scheme that allows users to quickly and easily determine the latest software versions. All software and firmware version numbers consist of 4 numbers separated by periods e.g. firmware version 2.0.0.20. This follows the general pattern of:

MajorRevision.MinorRevision.TypeOfRelease.BuildNumber

where Type of Release is always '0' for an Alpha version, '1' for Beta, '2' for Release Candidate, and '3' for Release. All future firmware and software versions posted on our download site will follow this scheme. To determine the latest version of a particular family of software, look first at Major Revision, then Minor Revision and finally Build Number. The Build Number does not increase indefinitely, but instead resets after each increase of either the Minor or Major Revision Number.

Example:

Version 2.0.1.24 is a later version than 2.0.0.23, and is also Beta class software. However, version 2.1.0.1 is a later version than 2.0.1.24, as this product has undergone a minor revision.

Version 1.4.0.18 is a later version than 1.3.3.5, even though it is Alpha class software.

8.1.2. Alpha

Software that meets the PGR Alpha standard is not required to satisfy a large percentage of the full software release process. This classification has been instituted for quick bug fixes and new functionality. As such, a user of an Alpha release has very few guarantees outside from the software version number being correct. As a general rule, Alpha releases will not be made public. Upon request, they can and will be emailed to knowledgeable users.

8.1.3. Beta

The requirements for a piece of software to meet the Beta standard are substantially stricter than those of the Alpha standard. A release that meets the Beta requirements will be functionally complete. It will have been tested internally and by Alpha users, source code documentation will be complete and memory leaks and other similar problems will be solved. These releases will be made public. They will be posted to the web pages in a category separate from Release Candidates and Releases. Again, software that meets the Beta standard is designed for knowledgeable users.

8.1.4. Release Candidate

The only difference between software that meets the Release Candidate standard and software that meets the Release standard will be the amount of testing and the delivery mechanism. Release Candidates will be fully supported and posted to the web pages but not burned to CDs - they will be designed for use by new users.

8.1.5. Release

Software will only meet the Release standard when it is burned to CD and shipped with new camera systems. Similar to Release Candidate users, users of Release software can expect fully functional libraries, examples and installation scripts.

9. Index

1

1394 base address offset	34
1394.b capability, determining	13
16-bit per pixel (mono) data format	See Y16
image data format	

Α

asynchronous trigger mode	66
auto exposure	
absolute value	35
algorithm overview	24
auto exposure range	48
auto gain range	48
auto shutter range	48
limitations	24
states	24

В

Base address	6
Base address offset	6
Bayer tile gain	46
Bayer tile mapping	46
black-level intensity control	See brightness control
brightness	
absolute value	37
brightness control	23
bulb shutter trigger mode	See Trigger_Mode_1

С

17
17
18
17

D

DCAM	See IIDC 1394-based Digital Ca	amera
(DCAM)	Specification	
delay betwe	een external trigger and shutter	51

Ε

extended shutter maximum shutter values	44
external trigger mode See asynchronous trig	aer
	yei
mode	
externally trigger camera	
using DCAM v1.31 PIO and strobe modes	65
using PGR-specific GPIO modes	65
	00

F

failed frame transmission count feature availability table	59 5
firmware version numbering scheme	73
focus	30, 33
frame rate control	
custom frame rates	57
via frame time	57

G

gain absolute value control of A/D converter gain states gamma absolute value general purpose I/O control	29 36 29 29 27 38 49
general purpose I/O control	49
strobe multiplier	49
strobe start control	49
trigger queue behaviour	49

Н

```
hue
```

Ι

IIDC 1394-based Digital Camera (DC	CAM)
Specification	4
image timestamp mechanism	58
integration time	See shutter
iris	30
isochronous channel and speed	18

27

isochronous data bandwidth requirements	62
isochronous data packet format	62, 64
isochronous data transmission	62

Μ

mode control of CSR registers	22
multiple camera automatic synchronization	
offset synchronization	57

Ρ

parallel	input/output (DCAM v1.31)	65
PIO	See parallel input/output (DCAN	/l v1.31)
pulse w	vidth modulation (PWM) mode	66

R

reset camera to default sett	ings 7
S	
saturation SCOR-13FF	27
global shutter mode	33, 36, 37
sharpness	25
shutter	27
absolute value	36
relation to frame rate	28
skip frames trigger mode	See Trigger_Mode_3
software asynchronous trigg	ger 45

standard external trigger mode	See
Trigger_Mode_0	
strobe (DCAM v1.31)	65

T

technical support resources	
contacting a support representative	71
creating a Customer Login Account	71
knowledge base	71
on the Internet	71
trigger modes	65, 69
trigger polarity	31
Trigger_Mode_0	69
Trigger_Mode_1	69
Trigger_Mode_3	70

V

22

W

white balance	
controlling relative Bayer Tile gain	25
controlling using Bayer Tile Gain register	25

Y

Y16 image data format

47