
April 23, 2002

Parallel Computing: Overview

John Urbanic
urbanic@psc.edu

April 23, 2002

Introduction to Parallel
Computing

• Why we need parallel computing
• How such machines are built
• How we actually use these machines

April 23, 2002

New Applications

April 23, 2002

Clock Speeds

April 23, 2002

Clock Speeds

When the PSC went from a 2.7 GFlop Y-MP
to a 16 GFlop C90, the clock only got 50%
faster. The rest of the speed increase was
due to increased use of parallel techniques:

• More processors (8 16)
• Longer vector pipes (64 128)
• Parallel functional units (2)

April 23, 2002

Clock Speeds

So, we want as many processors working
together as possible. How do we do this?
There are two distinct elements:

Hardware
• vendor does this
Software
• you, at least today

April 23, 2002

Amdahl’s Law

How many processors can
we really use?

Let’s say we have a legacy
code such that is it only
feasible to convert half of
the heavily used routines
to parallel:

April 23, 2002

Amdahl’s Law

If we run this on a parallel
machine with five
processors:

Our code now takes about
60s. We have sped it up
by about 40%. Let’s say
we use a thousand
processors:

We have now sped our code
by about a factor of two.

April 23, 2002

Amdahl’s Law
This seems pretty depressing, and it does point out one limitation of converting old

codes one subroutine at a time. However, most new codes, and almost all parallel
algorithms, can be written almost entirely in parallel (usually, the “start up” or
initial input I/O code is the exception), resulting in significant practical speed ups.
This can be quantified by how well a code scales which is often measured as
efficiency.

April 23, 2002

Shared Memory
Easiest to program. There are no

real data distribution or
communication issues. Why
doesn’t everyone use this
scheme?

• Limited numbers of processors
(tens) – Only so many
processors can share the same
bus before conflicts dominate.

• Limited memory size –
Memory shares bus as well.
Accessing one part of memory
will interfere with access to
other parts.

April 23, 2002

Distributed Memory

• Number of processors only limited by physical
size (tens of meters).

• Memory only limited by the number of processors
time the maximum memory per processor (very
large). However, physical packaging usually
dictates no local disk per node and hence no
virtual memory.

• Since local and remote data have much different
access times, data distribution is very important.
We must minimize communication.

April 23, 2002

Common Distributed Memory
Machines

• CM-2
• CM-5
• T3E
• Workstation Cluster
• SP3
• TCS

April 23, 2002

Common Distributed Memory
Machines

While the CM-2 is SIMD (one instruction unit for multiple processors), all
the new machines are MIMD (multiple instructions for multiple
processors) and based on commodity processors.

SP-2 POWER2
CM-5 SPARC
T3E Alpha
Workstations Your Pick
TCS Alpha

Therefore, the single most defining characteristic of any of these machines
is probably the network.

April 23, 2002

Latency and Bandwidth
Even with the "perfect" network we have here, performance is determined by two more quantities

that, together with the topologies we'll look at, pretty much define the network: latency and
bandwidth. Latency can nicely be defined as the time required to send a message with 0 bytes
of data. This number often reflects either the overhead of packing your data into packets, or the
delays in making intervening hops across the network between two nodes that aren't next to
each other.

Bandwidth is the rate at which very large packets of information can be sent. If there was no
latency, this is the rate at which all data would be transferred. It often reflects the physical
capability of the wires and electronics connecting nodes.

April 23, 2002

Token-Ring/Ethernet with
Workstations

April 23, 2002

Complete Connectivity

April 23, 2002

Super Cluster / SP2

April 23, 2002

CM-2

April 23, 2002

Binary Tree

April 23, 2002

CM-5 Fat Tree

April 23, 2002

INTEL Paragon (2-D Mesh)

April 23, 2002

3-D Torus

T3E has Global
Addressing hardware,
and this helps to
simulate shared
memory.

Torus means that “ends”
are connected. This
means A is really
connected to B and the
cube has no real
boundary.

April 23, 2002

TCS Fat Tree

April 23, 2002

Data Parallel
Only one executable.
Do computation on arrays of data using

array operators.
Do communications using array shift

or rearrangement operators.
Good for problems with static load

balancing that are array-oriented
SIMD machines.

Variants:
FORTRAN 90
CM FORTRAN
HPF
C*
CRAFT

Strengths:
1. Scales transparently to different

size machines
2. Easy debugging, as there I sonly

one copy of coed executing in
highly synchronized fashion

Weaknesses:
1. Much wasted synchronization
2. Difficult to balance load

April 23, 2002

Data Parallel – Cont’d

Data Movement in FORTRAN 90

April 23, 2002

Data Parallel – Cont’d

Data Movement in FORTRAN 90

April 23, 2002

Data Parallel – Cont’d

When to use Data Parallel
– Very array-oriented programs

• FEA
• Fluid Dynamics
• Neural Nets
• Weather Modeling

– Very synchronized operations
• Image processing
• Math analysis

April 23, 2002

Work Sharing
Splits up tasks (as opposed to arrays

in date parallel) such as loops
amongst separate processors.

Do computation on loops that are
automatically distributed.

Do communication as a side effect of
data loop distribution. Not
important on shared memory
machines.

If you have used CRAYs before, this
of this as “advanced
multitasking.”

Good for shared memory
implementations.

Strengths:
1. Directive based, so it can be

added to existing serial codes
Weaknesses:
1. Limited flexibility
2. Efficiency dependent upon

structure of existing serial code
3. May be very poor with

distributed memory.
Variants:

CRAFT
Multitasking

April 23, 2002

Work Sharing – Cont’d

When to use Work Sharing
• Very large / complex / old existing codes:

Gaussian 90
• Already multitasked codes: Charmm
• Portability (Directive Based)
• (Not Recommended)

April 23, 2002

Load Balancing

An important consideration which can be controlled by communication is
load balancing:
Consider the case where a dataset is distributed evenly over 4 sites.
Each site will run a piece of code which uses the data as input and
attempts to find a convergence. It is possible that the data contained at
sites 0, 2, and 3 may converge much faster than the data at site 1. If
this is the case, the three sites which finished first will remain idle
while site 1 finishes. When attempting to balance the amount of work
being done at each site, one must take into account the speed of the
processing site, the communication "expense" of starting and
coordinating separate pieces of work, and the amount of work required
by various pieces of data.
There are two forms of load balancing: static and dynamic.

April 23, 2002

Load Balancing – Cont’d

Static Load Balancing
In static load balancing, the programmer must

make a decision and assign a fixed amount of
work to each processing site a priori.

Static load balancing can be used in either the
Master-Slave (Host-Node) programming model
or the "Hostless" programming model.

April 23, 2002

Load Balancing – Cont’d

Static Load Balancing yields good performance
when:

• homogeneous cluster
• each processing site has an equal amount of work
Poor performance when:
• heterogeneous cluster where some processors are

much faster (unless this is taken into account in
the program design)

• work distribution is uneven

April 23, 2002

Load Balancing – Cont’d
Dynamic Load Balancing
Dynamic load balancing can be further divided into the categories:
task-oriented

when one processing site finishes its task, it is assigned another task (this is the
most commonly used form).

data-oriented
when one processing site finishes its task before other sites, the site with the most
work gives the idle site some of its data to process (this is much more complicated
because it requires an extensive amount of bookkeeping).

Dynamic load balancing can be used only in the Master-Slave programming model.
• ideal for:
• codes where tasks are large enough to keep each processing site busy
• codes where work is uneven
• heterogeneous clusters

