

Data exchange with PowerCube
Description of PowerCube communication interfaces

Directory of Revisions
Authorized by: Roland Tschakarow
File name: Data exchange with PowerCube.doc
No. Description Revision Index Date of Change
001 1. Version 1.0 31.01.2001
002 Used C Datatypes 1.1 10.01.2002
003 Revision 1.2 30.07.2004
004 Added new functions 1.3 15.07.2007

amtec robotics GmbH Data exchange with PowerCube.doc Page 2

1 PowerCube communication interfaces
The Operating System (OS) of each PowerCube drive module fulfills several tasks:
- Real time control based on the encoder information.
- Observation of Motor current, temperature and limit switches.
- Execution of motion commands received from the host computer.
- Controlling the brake (as far as a brake has been installed).
This document describes the functions in detail. This concerns information about data
exchange between master and slave as wells as diagnostics and trouble shooting with
PowerCube.

2 Communication Devices
The PowerCubes use a serial data interface for reading and writing motion commands,
parameters and motor data.
There are three types of communication devices available (only one actve at a time)
- RS232,
- CAN bus (according to ISO/DIS 11898),
- Profibus-DP.
The PowerCube CAN-Bus interface supports two protocol types:
- CAN data protocol according to Amtec specifications
- CAN data protocol according to CANopen standard DS402 (subset, see document

"CANopen and PowerCube" for further information).

3 Data types
To establish a data connection to the PowerCube it is necessary to specify the data types
used:

Data type Description Data width Range (decimal)
char Byte 8 Bit -128 to 127
usigned char Byte, unsigned 8 Bit 0 to 255
sort Word 16 Bit -32768 to 32767
usigned short Word, unsigned 16 Bit 0 to 65535
long Double word 32 Bit -2147483848 to 2147483847
unsigned long Double word, unsigned 32 Bit 0 to 4294967295
float Floating point value 32 Bit 3.4 e-038 to 3.4 e+038

Please note the storage format of the data described in the section following.

3.1 Storage format

The PowerCubes expect data transfered in Intel format (Little-Endian resp. reverse byte
ordering). This storage method stores the least significant Byte of a number on the first
position. The hexadecimal number 0x12345678 will be stored like this:

0x12345678 0x78 0x56 0x34 0x12

This is important especially when using Motorola- or Sparc-Prozessors saving their data in
Big-Endian-Format (PLC-Programs).

4 Communication protocol
The protocol used to exchange data between master and PowerCube is unified and
independent from the bus interface used. The module receives serial data, interpretes it and
acknowledges the command. The time necessary for this transfer depends on the bus
interface and its parameters.

amtec robotics GmbH Data exchange with PowerCube.doc Page 3

A PowerCube™ command has this structure:

Identifier CommandID ParameterID resp. MotionID Data 0 ... Data 7

Command ID’s, Parameter ID’s and following data bytes are identical for all communication
interfaces (RS232, CAN, Profibus-DP). Only the Identifiers vary in dependency of the bus
interface used.

The PowerCube acknowledges all commands received (as far as not configured in another
way). The acknowledge data frame has the same structure as the command.

4.1 PowerCube™-Identifiers for CAN-Bus (Basic CAN)

This section describes the colored part of the data frame:

Identifier CommandID ParameterID resp. MotionID Data 0 ... Data 7

A CAN-Bus-Identifier according to CAN-Specification 2.0 Part A (11-bit-ID) has this structure:

CAN-Bus Identifier according to Specification 2.0 Part A
Byte 1 Byte 0

11-bit Message Identifier RTR-Flag Data Length Code
ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3 ID2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0

RTR = Remote-Transmission-Request
DLC = Data Length Code
ID = Identifier

4.1.1 Addressing single Modules
The Identifiers for addressing single PowerCubes have this structure:

CAN-Identifier for
PowerCube

ID.
10

ID.
9

ID.
8

ID.
7

ID.
6

ID.
5

ID.
4

ID.
3

ID.
2

ID.
1

ID.
0

RTR DLC
.3

DLC
.2

DLC
.1

DLC
.0

CANID_CMDACK 0 0 0 1 0 1 M M M M M 0 L L L L
CANID_CMDGET 0 0 0 1 1 0 M M M M M 0 L L L L
CANID_CMDPUT 0 0 0 1 1 1 M M M M M 0 L L L L

M = Address of PowerCube module (1 ≤ M ≤ 31)
L = Number of data bytes following

The PowerCube-Identifier for CAN-Bus can be calculated like this:
CANID_CMDACK = 0x0a0 + Module address + Number of data bytes (1 ≤ L ≤ 8)
CANID_CMDGET = 0x0c0 + Module address + Number of data bytes (L = 2)
CANID_CMDPUT = 0x0e0 + Module address + Number of data bytes (1 ≤ L ≤ 8)

4.1.2 Addressing all Modules (Broadcasting)
A special CAN-Identifier enables the user to send broadcast messages to all connected
modules:

CAN-Identifier for
PowerCube-Broadcasts

ID.
10

ID.
9

ID.
8

ID.
7

ID.
6

ID.
5

ID.
4

ID.
3

ID.
2

ID.
1

ID.
0

RTR DLC
.3

DLC
.2

DLC
.1

DLC
.0

CANID_CMDALL 0 0 1 0 0 0 0 0 0 0 0 0 L L L L

L = Number of data bytes following

The PowerCube-Broadcast-Identifier can be calculated like this:
CANID_CMDALL = 0x100 + Number of data bytes (1 ≤ L ≤ 8)

amtec robotics GmbH Data exchange with PowerCube.doc Page 4

Using the CAN-Identifier CANID_CMDALL it is possible to send the messages described in
the table below in only one command. These commands are processed with priority. The
modules do not acknowledge them.

CANID_CMDALL (0x100) Byte 0 ComandID Byte1 Param.ID Description Comment
0x00 - Reset Reset-command to all
0x01 - Home Home-Kommando to all
0x02 - Halt Halt-Kommando to all
0x07 - Watchdog-Refresh Watchdog-Refresh to all

 0x09 Baudrate Change Baudrate Changes the baud rate
 0x0e - Save position Stores the actual position
 0x0f - Synchronize Motion Releases the last motion command

Baudrate: 1 = 250 kbit/s, 2 = 500 kbit/s, 3 = 1Mbit/s.

4.1.3 Reserved CAN-Identifiers
The CAN-Identifiers 0x3E9 through 0x7E5 are reserved for a maximum of 51 I/O-Modules,
manufactured by EMS Thomas Wünsche GmbH.

The CAN-Identifiers 0x580 through 0x680 are reserved for a maximum of 127 force
measurement cells of Type MP55, manufactured by Hottinger Baldwin Messtechnik GmbH.

4.2 PowerCube™-Identifiers for Profibus-DP

This section describes the colored part of the data frame:

Identifier CommandID ParameterID resp. MotionID Data 0 ... Data 7

Addressing Profibus slaves is part of the physical layer of Profibus. Therefore no separate
Identifier is required for this purpose.
The PowerCube Module have been certified by the PNO (Profibus users organisation) and
thus are able to operate with all certified Profibus-DP Masters. At the same time they can be
combined with any third party Profibus certified device on the bus. The only requirement for
this is a correct configuration of the DP master. Please use the GSD file supplied on the
CDRom (Cube1641.gsd) in order to configure the master. A PowerCube has 8 output bytes
and 16 input bytes.

When using Profibus communication there is one important issue for error free operation:
In order to enable a module to answer a new command (e.g. Polling of module state or
position), at least one of the 8 output bytes has to change its value. This can be done easily by
incrementing the normally unused byte 7 (count starting from zero).

4.2.1 Organisation of the 16 Input Bytes
The lower 8 input bytes always incorporate the modules answer to the last command. Their
detailed description follows in the next chapters.
The upper 8 input bytes are Profibus specific and contain this information with each answer:

IN Byte 8 IN Byte 9 IN Byte 10 IN Byte 11 IN Byte 12 IN Byte 13 IN Byte 14 IN Byte 15
- Actual position in Increments (Int32 = 4 Byte) Short state (UInt16 = 2 Byte) ms (0..255)

The Profibus-DP short state is defined like this:

Value Name of Flag Flag according to full module state
0x0001 STATE_ERRORM4 STATE_ERROR
0x0004 STATE_READYTOPOS STATE_HOME_OK
0x0010 STATE_MOVING STATE_MOTION
0x0020 STATE_BRAKED STATE_BRAKEACTIVE
0x0040 STATE_CURRLIMIT STATE_CURLIMIT
0x0080 STATE_ENDMOTION STATE_RAMP_END

amtec robotics GmbH Data exchange with PowerCube.doc Page 5

Value Name of Flag Flag according to full module state
0x0100 STATE_END0 STATE_SW1
0x0200 STATE_END1 STATE_SW2
0x0400 STATE_SYNC STATE_SWR
0x1000 POSTIME_INPROGRESS_MASK STATE_INPROGRESS
0x2000 POSTIME_RECEIVED_MASK STATE_FULLBUFFER
0x8000 STATE_HALTM4 STATE_HALTED

If your application keeps tracking the upper 8 input bytes, there is no necessity to separately
poll module state and actual position. On top of this the permanently changing ms-Information
(Milliseconds) can be used for monitoring a "life sign" (watchdog).

4.3 PowerCube™-Identifier for RS232 communication

This section describes the colored part of the data frame:

Identifier CommandID ParameterID resp. MotionID Data 0 ... Data 7

The data transfer via RS232 communication unlike industrial field bus systems like CAN and
Profibus is not supported by a hardware protocol layer taking care of error free transmission.
For this reason Amtec has designed an own data protocol for secure data transfer with RS232
comunication interfaces. A data stream for RS232 has this structure:

STX TELID TELID Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7 BCC ETX
0x02 TX or RX Data BCC 0x03

BCC = Block Check Charakter (Check sum)
STX = Start of Text
STX = End of Text
TELID = Identifier

A frame is always starting with the character STX (02h) and finishes with the character ETX
(03h). If these characters occur within the data stream they will be replaced using a
combination of two characters: DLE (10h) and (80h + character to replace). The character DLE
(10h) used in this case will thus be replaced in the same manner:

- 0x02 is replaced by 0x10 0x82
- 0x03 is replaced by 0x10 0x83
- 0x10 is replaced by 0x10 0x90.

This DLE correction is used for the complete data stream (including the Identifier). The
maximum length of the data stream therefore is 24 Byte.
The Block Check Character is named BCC. This is a checksum over the complete net data
frame (without DLE correction). Using this method data integrity is secured to about 95%.

BCC = (TELID + Command + Data);
BCC = BCC + (BCC >> 8);

The 16-Bit Identifier TELID differs between commands sent to the module (TELID_SENDDAT)
and answers from the module (TELID_RECVDAT). This is the TELID structure:

 1. Byte 2. Byte
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
TELID_SENDDAT 0 0 0 0 0 1 M M M M M 0 L L L L
TELID_RECVDAT 0 0 0 0 1 0 M M M M M 0 L L L L

- M: Module address (1≤ M ≤ 31)
- L: number of bytes following (net, without DLE correction)

A command to the module will be interpreted if :
- TELID is coded as SEND,

amtec robotics GmbH Data exchange with PowerCube.doc Page 6

- the module address matches,
- the number of received net data bytes matches the coded length.

The Block Check Character BCC is not checked because of compatibility reasons.

4.4 PowerCube Command ID's

This section describes the colored part of the data frame:

Identifier CommandID ParameterID resp. MotionID Data 0 ... Data 7

The data transfered first of all states the command to be processed by the module. These
commands are available:

Command Command ID Length Meaning
Reset 0x00 1 Byte Clear error state
Home 0x01 1 Byte Start Homing procedure
Halt 0x02 1 Byte Stop immediately
RecalcPIDParam 0x09 1 Byte Recalculate the PID loop parameters
SetExtended 0x08 3-6 Byte Set parameter
GetExtended 0x0a 2 Byte Fetch parameter
SetMotion 0x0b 6-8 Byte Set Motion command
SetIStep 0x0d 7 Byte Motion command in Step mode
ResetTime 0x12 1 Byte Reset internal clock to zero

The data sent to the module will be immediately acknowledged (if not configured otherwise in
the configuration word). The data flow looks like this:

Command Send Acknowledge
Reset [0x00] len = 1 [0x00] len = 1
Home [0x01] len = 1 [0x01] len = 1
Halt [0x02] len = 1 [0x02] len = 1
RecalcPIDParam [0x09] len = 1 [0x09] len = 1
SetExtended [0x08] [paramID] [data] ... len = 3 .. 6 [0x08] [paramID] [0x64] len = 3
GetExtended [0x0a] [paramID] len = 2 [0x0a] [paramID] [data] ... len = 3 .. 6
SetMotion [0x0b] [motionID] [data] ... len = 6 .. 8 [0x0b] [motionID] [data] ... len = 3 .. 8
SetIStep [0x0d] [data] ... len = 7 [0x0d] len = 1
ResetTime [0x12] len = 1 [0x12] len = 1

When sending the command „Fetch parameter“ (GetExtended) or „Set parameter“
(SetExtended) the data byte following the CommandID specifies the parameter index. The
amount of data bytes to follow depends on the parameter type. The list of available
parameters is described in the next chapter.
The command „SetMotion“ expects the MotionID as the data byte following the CommandID.
The amount of data bytes sent with the command depends on the motion mode chosen. The
next section describes motion modes and MotionIDs in detail.

4.5 PowerCube Motion ID's

This section describes the colored part of the data frame:

Identifier CommandID ParameterID resp. MotionID Data 0 ... Data 7

Using the MotionID the user can chose one of the motion modes decribed in the table below.
Depending on the MotionID, the data bytes following are interpreted in a different way.

amtec robotics GmbH Data exchange with PowerCube.doc Page 7

Motion mode MotionID Parameters Datatype Remark Acknowledge
FRAMP_MODE 4 Target position float rad resp. m
FSTEP_MODE 6 Target position

Time
float
UInt16

rad resp. m
ms

FVEL_MODE 7 Velocity float rad/s resp. m/s.
FCUR_MODE 8 Sollstrom float A.
IRAMP_MODE 9 Target position Int32 Encoder ticks.
ISTEP_MODE 11 Target position

Time
Int32
UInt16

Encoder ticks.
ms.

IVEL_MODE 12 Velocity Int32 Encoder ticks/s.
ICUR_MODE 13 Current Int16 Digits.
FCOSLOOP* 24 Target position

Time
Float
UInt16

rad/s resp. m/s.
ms

FRAMPLOOP* 25 Target position float rad/s resp. m/s.

Motion commands with
these MotionIDs use a
simple acknowledge:

[0x0b][motionID][0x64]

FRAMP_ACK 14 Target position float rad resp. m.
FSTEP_ACK 16 Zielposition

Zeitvorgabe
float
UInt16

rad resp. m.
ms.

FVEL_ACK 17 Velocity float rad/s resp. m/s.
FCUR_ACK 18 Current float A.
IRAMP_ACK 19 Target position Int32 Encoder ticks.
ISTEP_ACK 21 Target position

Time
Int32
UInt16

Encoder ticks.
ms.

IVEL_ACK 22 Velocity Int32 Encoder ticks/s.
ICUR_ACK 23 Current Int16 Digits.

Motion commands with
these MotionIDs use an
extended acknowledge:

[0x0b][motionID]
[position][state][dio]

PowerCube-OS versions
higher than 2.5.16 resp.
3.5.13

position Actual position. Unit and data type according to the commanded values (rad

resp. m or Encoder ticks. Length 4 Byte).
state Short module state (Length 1 Byte)
dio Digital IO state (Length 1 Byte)

[*from Version v4630]

4.5.1 Short state in Acknowledge
The short module state transfered in the acknowledge of a motion command is based on the
full module state word.

Value Define Corresponding flag in long status word
0x01 SHORT_NOT_OK (STATE_ERROR) OR (NOT STATE_HOME_OK) OR (STATE_HALTED)
0x02 SHORT_SWR STATE_SWR
0x04 SHORT_SW1 STATE_SW1
0x08 SHORT_SW2 STATE_SW2
0x10 SHORT_MOTION STATE_MOTION
0x20 SHORT_RAMP_END STATE_RAMP_END
0x40 SHORT_INPROGRESS STATE_INPROGRESS
0x80 SHORT_FULLBUFFER STATE_FULLBUFFER

More details on the full module state word you can find in the section "Observing the module
state".

4.5.2 Digital IO state in Acknowledge
The last data byte of the acknowledge to a motion command contains the digital IO state. The
byte is organised like this:

Value Define Remark
0x01 INBIT0 State of input 0
0x02 INBIT1 State of input 1
0x04 INBIT2 State of input 2
0x08 INBIT3 State of input 3

amtec robotics GmbH Data exchange with PowerCube.doc Page 8

Value Define Remark
0x10 OUTBIT0 State of output 0
0x20 OUTBIT1 State of output 1
0x40 OUTBIT2 State of output 2
0x80 OUTBIT3 State of output 3

4.6 PowerCube Parameter ID's

This section describes the colored part of the data frame:

Identifier CommandID ParameterID resp. MotionID Data 0 ... Data 7

This table contains all module parameters available to the user:

Parameter ParameterID
(Dec/Hex)

Remark Data type Read Write

DefHomeOffset 0 0x00 Offset to the Home position (Default value). By means of
this parameter teh user can adjust an offset to the
physical zero position (home) of the drive.

float x

DefGearRatio 1 0x01 Gear ratio (Default value) float x
DefLinRatio 2 0x02 Transmission factor for transforming rotary in linear

motion (Default value)
float x

DefMinPos 3 0x03 Minimum drive position (Default value) float x
DefMaxPos 4 0x04 Maximum drive position (Default value) float x
DefMaxDeltaPos 5 0x05 Maximum following error (tow) for the digital servo filter

(Default value)
float x

DefMaxDeltaVel 6 0x06 Maximum following error for velocity control (Default
value)

float x

DefTorqueRatio 7 0x07 Transmission factor for transforming current to torque
(Default value)

float x

DefCurRatio 8 0x08 Transmission factor for current measurement (Default
value)

float x

DefMinVel 9 0x09 Minimum velocity (Default value) float x
DefMaxVel 10 0x0a Maximum velocity (Default value) float x
DefMinAcc 11 0x0b Minimum acceleration (Default value) float x
DefMaxAcc 12 0x0c Maximum acceleration (Default value) float x
DefMinCur 13 0x0d Minimum current (Default value) float x
DefMaxCur 14 0x0e Maximum current (Default value) float x
DefHomeVel 15 0x0f Homing velocity. This value is signed and thereby

specifies the homing direction. (Default value)
float x

DefHomeAcc 16 0x10 Homing acceleration (Default value) float x
DefCubeSerial 26 0x1a Serial number of the PowerCube (Default value) UInt32 x
DefConfig 27 0x1b Config word (Default value) UInt32 x
DefPulsesPerTurn 28 0x1c Number of Encoder ticks per revolution (Default value) UInt32 x
DefCubeVersion 29 0x1d Version information (Default value) UInt16 x
DefServiceInterval 30 0x1e Service interval (Default value) UInt16 x
DefBrakeTimeOut 31 0x1f Delay for releasing the brake in ms (Default value) UInt16 x
DefAddress 32 0x20 Module bus address [1...31] (Default value) UInt8 x
DefPrimBaud 34 0x22 Primary Baud rate setting (Default value) UInt8 x
DefScndBaud 35 0x23 Secondary Baud rate setting (Default value) UInt8 x
PosCount 36 0x24 Absolute Counter value (Actual value) Int32 x
RefPosCount 37 0x25 Absolute Counter value at Homing position (Actual value) Int32 x
DioSetup 38 0x26 Digital IO word UInt 32 x x
CubeState 39 0x27 Module State word (Actual value) UInt32 x
TargetPosInc 40 0x28 Target position in Encoder ticks (Target value) UInt32 x x
TargetVelInc 41 0x29 Target velocity in Encoder ticks/s (Target value) UInt32 x x
TargetAccInc 42 0x2a Target accedleration in Encoder ticks/s² (Target value) UInt32 x x
StepInc 43 0x2b Step mode target position in Encoder ticks (Actual value) UInt32 x

amtec robotics GmbH Data exchange with PowerCube.doc Page 9

Parameter ParameterID
(Dec/Hex)

Remark Data type Read Write

HomeOffsetInc 44 0x2c Home offset in Encoder ticks (Actual value) Int32 x
RawCur 53 0x35 Commanded Current in Digits [-500...+500] (Actual value) Int16 x x
HomeToZeroInc 54 0x36 Number of Encoder ticks between home switch and

Encoder index (Actual value)
Int32 x

Config 57 0x39 Config word (Vorgabe) UInt32 x x
MoveMode 58 0x3a Motion mode (Actual value) UInt8 x
IncRatio 59 0x3b Ration of Encoder ticks and unit, rad resp. m (Actual

value)
float x

ActPos 60 0x3c Actual position in rad resp. m (Actual value) float x
ActPos_ 61 0x3d Previous position in rad resp. m (Actual value) float x
IPolPos 62 0x3e Actual interpolated position (Actual value) float x
DeltaPos 63 0x3f Actual following error (Actual value) float x
MaxDeltaPos 64 0x40 Maximum following error (Limit) float x x
ActVel 65 0x41 Actual velocity in units/s (Actual value) float x
IPolVel 66 0x42 Actual interpolated velocity in units/s (Actual value) float x
MinPos 69 0x45 Minimum position (Limit) float x x
MaxPos 70 0x46 Maximum position (Limit) float x x
MaxVel 72 0x48 Maximum velocity in units/s (Limit) float x x
MaxAcc 74 0x4a Maximum acceleration in units/s² (Limit) float x x
MaxCur 76 0x4c Maximum Current (Limit) float x x
Cur 77 0x4d Actual current (Actual value) float x x
TargetPos 78 0x4e Target position in units/s (Target value) float x
TargetVel 79 0x4f Target velocity in units/s (Target value) float x
TargetAcc 80 0x50 Target acceleration in units/s² (Target value) float x
DefC0 81 0x51 Servo loop gain C0 (Default value) Int16 x
DefDamp 82 0x52 Servo loop damping (Default value) Int16 x
DefA0 83 0x53 Servo loop parameter A0 (Default value) Int16
ActC0 84 0x54 Servo loop gain C0 (Actual value) Int16 x x
ActDamp 85 0x85 Servo loop damping (Actual value) Int16 x x
ActA0 86 0x86 Servo loop parameter A0 (Actual value) Int16 x x
DefBurnCount 87 0x87 Number of flash downloads (Default value) UInt8 x
Setup 88 0x88 Setup word (Default value) UInt32 x
HomeOffset 89 0x89 Home offset (Actual value) float x x
ActIPos 90 0x5a Actual position in in encoder ticks Int32 x
ActIMaxDeltaPos 91 0x5b Maximum allowed difference between commanded and

actual position, in encoder ticks = tow distance
Int32 x x

ActIMinPos 92 0x5c Minimum allowed Position in encoder ticks Int32 x x
ActIMaxPos 93 0x5d Maximum allowed Position in encoder ticks Int32 x x
ActIMaxVel 94 0x5e Maximum allowed speed in encoder ticks/s Int32 x x
ActIMaxAcc 95 0x5f Maximum allowed acceleration in encoder ticks/s² Int32 x x
ActIVel 96 0x60 Actual speed in encoder ticks/s Int32 x
ActIDeltaPos 97 0x61 Actual tow distance in encoder ticks Int32 x
ActFPosStateDio 98 0x62 Returns 3 Values: Actual Position, Short state, I/O-State float/UInt8 x
ActFSavedPos 99 0x63 Last upon broadcast saved position float x
ActFHomeVel 100 0x64 Actual homing speed float x
ActIHomeVel 101 0x65 Actual homing speed in encoder ticks/s Int32 x
ActSyncTime 102 0x66 Actual SYNC time UInt16 x x
ActIIPolVel 106 0x6A Actual calculated speed in encoder ticks/s Int32 x
ActRawMotorCurrent 108 0x6C Actual DC Bus Current in Digits UInt16 x
ActRawMotorSupply 109 0x6D Actual DC Bus Voltage in Digits UInt16 x
ActRawTemp 110 0x6E Actual temperature inside housing in Digits Int16 x
ActRawLogicSupply 111 0x6F Actual Logiv voltage in Digits UInt16 x
ActFMotorCurrent 112 0x70 Actual DC Bus Current in A float x
ActFMotorSupply 113 0x71 Actual DC Bus Voltage in V float x
ActFTemp 114 0x72 Actual temperature in housing in °C float x
ActFLogicSupply 115 0x73 Actual logic supply voltage in V float x

amtec robotics GmbH Data exchange with PowerCube.doc Page 10

Parameter ParameterID
(Dec/Hex)

Remark Data type Read Write

ActMinLogicSupply 116 0x74 Minmum allowed logic voltage in V float x x
ActMaxLogicSupply 117 0x75 Maximum allowed logic voltage in V float x x
ActMinMotorSupply 118 0x76 Minimum allowed motor voltage in V float x x
ActMaxMotorSupply 119 0x77 Maximum allowed motor voltage in V float x x
ActLogicUndershootTime 122 0x7A Maximum allowed undershoot time for logic voltage in ms UInt32 x x
ActLogicOvershootTime 123 0x7B Maximum allowed overshoot time for logic voltage in ms UInt32 x x
ActMotorUndershootTime 124 0x7C Maximum allowed undershoot time for motor voltage in

ms
UInt32 x x

ActMotorOvershootTime 125 0x7D Maximum allowed overshoot time for motor voltage in ms UInt32 x x
ActMaxTemp 132 0x84 Maximum allowed temperature inside housing float x x
ActMinTemp 133 0x85 Minimum allowed temperature inside housing float x x
ActFPosTime 161 0xA1 Returns 2 Values: Actual position and time stamp [ms] float/UInt16 x
ActFScanPosFallEdge 162 0xA2 Last upon rising edge on input SW3 saved Position float x
ActFScanPosRisgEdge 163 0xA3 Last upon falling edge on input SW3 saved Position float x

[From Version v351D]
[From Version v4634]

Default value: These parameters are stored in the modules ROM (Read Only Memory) and
are used to initialize the modules variables.

Limit: These parameters can be set for the duration of power on. After power has been cut off,
the changes are lost and have to be redone after power on.

Target: These are the target values for motion commands. They only concern target position,
velocity and acceleration.

The 32-Bit configuration words Config and Setup contain the settings for brake control,
communication, feedback and limit switches. Setup is read only, while Config can be read and
written. The section "module configuration" describes the flags of the Config word.

5 Observing the module state (ParameterID 39)
The module state can be permanently observed using the "CubeState" word. By means of the
state word the user receives error messages as well as information on the execution state of
motion commands. It is recommended to poll the state word on a regular basis. The
application controls the frequency for updating the data. The state word is an unsigned integer
value where each bit is treated as a flag. More than one flag can be set at a time:

Flag Bit Value Meaning
STATE_HOME_OK 1 0x00000002 This flag is set after a successful homing procedure. It means that the drive has

successfully found its zero position. All limitations for the operation range are valid
now. If the user sends another Home-Command the flag will be reset until the
homing procedure has been finished successfully.

STATE_HALTED 2 0x00000004 This flag is set in conjunction with an emergency stop. It means that the cube is in a
secure state, not moving and not accepting motion commands. Only after a reset
command which resets this flag, the module will return to the normal operation
mode. An emergency stop can be caused automatically by the module in case of an
error or by the user when sending a Halt command.

STATE_SWR 6 0x00000040 This flag shows the state of the home switch. Flag set means home switch is active,
This is no error flag.

STATE_SW1 7 0x00000080 This flag shows the state of the Limit switch 1. Flag set means limit switch 1 is active.
This is no error flag.

STATE_SW2 8 0x00000100 This flag shows the state of the Limit switch 2. Flag set means limit switch 2 is active.
This is no error flag.

STATE_BRAKEACTIVE 9 0x00000200 This flag shows the state of the brake. Flag set means brake is active and servo loop
is open. This is no error flag and it is used only if a brake is installed.

STATE_CURLIMIT 10 0x00000400 This flag is a warning of the servo loop. It has reached the maximum current output.
The drive is working at its limits. This flag can be reset by the Reset command. It is
no error flag

amtec robotics GmbH Data exchange with PowerCube.doc Page 11

Flag Bit Value Meaning
STATE_MOTION 11 0x00000800 This flag indicates the drive is in motion. It is set and reset automatically.
STATE_RAMP_ACC 12 0x00001000 This flag indicates the drive is in acceleration when controlled by ramp motion

commands. It is automatically reset when the ramp motion profile has ended.
STATE_RAMP_STEADY 13 0x00002000 This flag indicates the drive is moving at constant speed when controlled by ramp

motion commands. It is automatically reset when the ramp motion profile has ended.
STATE_RAMP_DEC 14 0x00004000 This flag indicates the drive is in deceleration when controlled by ramp motion

commands. It is automatically reset when the ramp motion profile has ended.
STATE_RAMP_END 15 0x00008000 This flag indicates the end of a ramp motion profile. The drive is not moving.
STATE_INPROGRESS 16 0x00010000 This flag is only used in Step motion control. It indicates a Step motion command is

in progress.
STATE_FULLBUFFER 17 0x00020000 This flag is only used in Step motion control. It indicates a Step motion command

was pushed to the command stack. This happens when the module receives a Step
motion command while STATE_INPROGRESS is set. Upon completion of the
currently executed step command, the buffered one will automatically be executed.

STATE_ERROR 0 0x00000001 An error occured. The module stop immediately and does not accept motion
commands anymore. The reason for the error state can be found reading the error
flags. In many cases the error state can be reset by the user sending a Reset com-
mand. After a successful Reset the module is ready again to accept motion
commands.

STATE_POWERFAULT 3 0x00000008 This flag defines an error of the servo amplifier. This flag si set in conjuction with
STATE_ERROR. In most cases the module needs to be switched off to reset this
error. One of the flags 18 through 23 will be set to explain the cause.

STATE_TOW_ERROR 4 0x00000010 Tow error: The servo loop was not able to follow the target position within the given
limit. The maximum tow can be adjsuted using the parameter „MaxDeltaPos". Check
if the module was overloaded.

STATE_COMM_ERROR 5 0x00000020 This error flag is raised if the watchdog has been enabled only. When enabled the
watchdog must be refreshed in a given period of time by the external control. If the
external control fails to do so, the drive will follow the emergency Stopp routine and
enter an error state.

STATE_POW_VOLT_ERR 18 0x00040000 This flag is set in conjunction with STATE_POWERFAULT. It indicates a voltage
drop or an overvoltage occurred in the motor supply. This error can be reset after the
normal voltage level has been restored. Check your power supply.

STATE_POW_FET_TEMP 19 0x00080000 This flag is set in conjunction with STATE_POWERFAULT. The power transistors
have overheated and the servo loop has been disabled. Power must be switched of
to reset this error. It is due to overload or too high ambient temperature.

STATE_POW_INTEGRAL-
ERR

23 0x00800000 This flag is set in conjunction with STATE_POWERFAULT. The drive has been
overloaded and the servo loop has been disabled. Power must be switched off to
reset this error. Check your apllication and the load situations of the drive.

STATE_BEYOND_HARD 25 0x02000000 This flag indicates the module has reached the hard limit. An emergency stop has
been executed automatically. To remove the module from this position you need to
follow the procedure described in "PowerCube™ Operation System: Disorder".

STATE_BEYOND_SOFT 26 0x04000000 This flag indicates the module has reached the soft limit. An emergency stop has
been executed automatically. This flag can be reset by a Reset command.

STATE_LOGIC_VOLT 27 0x08000000 The voltage of the logic power supply has either dropped or an overvoltage occured.
The drive will be disabled. This error can be reset.

STATE_POW_WDG_TEMP 20 0x00100000 This flag is set in conjunction with STATE_POWERFAULT. The motor has overhea-
ted and the servo loop has been disabled. Power must be switched of to reset this
error. It is due to overload or too high ambient temperature.

STATE_POW_SHORTCUR 21 0x00200000 This flag is set in conjunction with STATE_POWERFAULT. A short curcuit occured.
The servo loop has been disabled. The power must be switched of to reset this error.
The module has been overlaoded. If this error cannot be reset consult your service
partner.

STATE_POW_HALLERR 22 0x00400000 This flag is set in conjunction with STATE_POWERFAULT. An error occured in rea-
ding the hall effect sensors of the motor. The motor has been overheated. Power
must be switched off to reset this error.

STATE_CPU_OVERLOAD 24 0x01000000 Communication breakdown between CPU and current controller. Power must be
switched off. Please consult your service partner.

STATE_POW_SETUP_ERR 27 0x08000000 Error in initializing the current controller. Module settings disaccord with controller
configuration (5A/10A types). Power must be switched off. Please consult your
service partner. Available from version 3.5.14 through 3.5.1D.

[These flags describe an error status]
[These flags provide useful information on the module status]
[These flags are obsolete]

amtec robotics GmbH Data exchange with PowerCube.doc Page 12

6 Reading and Writing Digital IO (ParameterID 38)
According to the module configuration it is possible to set and read binary signals. The
parameter DioSetup (ParameterID 38) is used for this purpose. The unsigned 4 Byte-Integer-
value has this structure:

Wert Define Remark
0x00000001 DIOID_MOD_INBIT0 State of input 0.
0x00000002 DIOID_MOD_INBIT1 State of input 1.
0x00000004 DIOID_MOD_INBIT2 State of input 2.
0x00000008 DIOID_MOD_INBIT3 State of input 3.
0x00000010 DIOID_MOD_OUTBIT0 State of output 0.
0x00000020 DIOID_MOD_OUTBIT1 State of output 1.
0x00000040 DIOID_MOD_OUTBIT2 State of output 2.
0x00000080 DIOID_MOD_OUTBIT3 State of output 3.
0x00000100 DIOID_MOD_INSWR State of Home switch (1 = active).
0x00000200 DIOID_MOD_INSW1 State of Limit switch 1 (1 = active).
0x00000400 DIOID_MOD_INSW2 State of Limit switch 2 (1 = active).

All other flags have no meaning and are 0.

7 Altering the module configuration (ParameterID 57)

7.1 Configuration flags in 32-Bit Word Setup (Read Only)

The Config word Setup (ParameterID 88) is read only and used to provide information on the
module configuration. If you wish to change the module setup please contact your service
partner.

Value Define Remark
0x00000001L SETUPID_MOD_ENCODER_FEEDBACK not used
0x00000002L SETUPID_MOD_RESOLVER_FEEDBACK not used
0x00000004L SETUPID_MOD_ABSOLUTE_FEEDBACK not used
0x00000008L SETUPID_MOD_4IN_4OUT 1 = The 15pole connector is configured for 4 I/O-Signals.
0x00000010L SETUPID_MOD_3IN_ENCODER_IN 1 = The 15pole connector is configured for Encoder input.
0x00000020L SETUPID_MOD_3IN_ENCODER_OUT 1 = The 15pole connector is configured for Encoder

output.
0x00000040L SETUPID_MOD_RS232 1 = RS232 communication is active.
0x00000200L SETUPID_MOD_CAN 1 = CAN communication is active.
0x00000400L SETUPID_MOD_PROFIBUS 1 = Profibus communication is active.
0x00000800L SETUPID_MOD_USE_M3ID 1 = CAN identifiers for MoRSE3 are active.
0x00001000L SETUPID_MOD_USE_M4ID 1 = CAN identifiers for MoRSE4 are active.
0x00002000L SETUPID_MOD_USE_CANOPEN 1 = The CANopen interface is active.
0x00008000L SETUPID_MOD_USE_SW2_AS_ENABLE 1 = Input for Limit switch 2 is used as an Enable signal.
0x00010000L SETUPID_MOD_USE_SW2_AS_BRAKE 1 = Input for Limit switch 2 is used as Release brake

signal.
0x00020000L SETUPID_MOD_ERROR_TO_OUT0 1 = An error will be signalized on output 0.

7.2 Configuration flags in 32-Bit Word Config

The Config word (ParameterID 57) can be read and written. After power on this parameter can
be altered to change the module configuration. This parameter is available from module
version 3.5.00.

Value Define Remark

amtec robotics GmbH Data exchange with PowerCube.doc Page 13

Value Define Remark
0x00000008L CONFIGID_MOD_BRAKE_PRESENT 1 = Brake is present
0x00000010L CONFIGID_MOD_BRAKE_AT_POWERON 0 = Brake is released on power on
0x00000020L CONFIGID_MOD_SWR_WITH_ENCODERZERO 1 = Encoderindex signal is used in homing

procedure
0x00000040L CONFIGID_MOD_SWR_AT_FALLING_EDGE 1 = Homing on falling edge of limit switch
0x00000080L CONFIGID_MOD_CHANGE_SWR_TO_LIMIT 1 = Home switch is limit switch (except during

Homing)
0x00000100L CONFIGID_MOD_SWR_ENABLED 1 = Home switch is enabled
0x00000200L CONFIGID_MOD_SWR_LOW_ACTIVE 1 = Home switch is low active
0x00000400L CONFIGID_MOD_SWR_USE_EXTERNAL 1 = External home switch is used
0x00000800L CONFIGID_MOD_SW1_ENABLED 1 = Limit switch 1 is enabled
0x00001000L CONFIGID_MOD_SW1_LOW_ACTIVE 1 = Limit switch 1 is low active
0x00002000L CONFIGID_MOD_SW1_USE_EXTERNAL 1 = External limit switch 1 is used
0x00004000L CONFIGID_MOD_SW2_ENABLED 1 = Limit switch 2 is enabled
0x00008000L CONFIGID_MOD_SW2_LOW_ACTIVE 1 = Limit switch 2 is low active
0x00010000L CONFIGID_MOD_SW2_USE_EXTERNAL 1 = External Limit switch 2 is used
0x00020000L CONFIGID_MOD_LINEAR 1 = Module is a linear type
0x00080000L CONFIGID_MOD_ALLOW_FULL_CUR 0 = Commanded current (PCube_moveCur) is

limited to nominal current.
0x00100000L CONFIGID_MOD_M3_COMPATIBLE 1 = Module is M3 compatible. This concerns CAN

communication and behaviour at
PCube_moveStep. Module does not accept
motion commands unless successfully homed.

0x00200000L CONFIGID_MOD_LINEAR_SCREW 1 = Module is linear, driven by ball screw.
0x00800000L CONFIGID_MOD_DISABLE_ON_HALT 1 = Motor power disabled In case of error
0x01000000L CONFIGID_MOD_WATCHDOG_ENABLE 1 = Watchdog is enabled. Activated automatically by

the first "life sign" of the host control.
0x02000000L CONFIGID_MOD_ZERO_MOVE_AFTER_HOK 1 = After Homing the module moves to zero
0x04000000L CONFIGID_MOD_DISABLE_ACK 1 = All acknowledge messages are disabled. All Get

commands will still be acknowledged. Valid only
for CAN-Bus.

0x08000000L CONFIGID_MOD_SYNC_MOTION 1 = Sychronized motion commands enabled. After
sending a motion command the drive expects
the broadcast PCube_startMotionAll to start
motion. Valid only for CAN-Bus.

8 Examples for CAN-Bus communication
A few examples follow to introduce CAN-Bus communication. These commands are sent to
the module (the module address used is 17):
- Home.
- Reset.
- Ramp motion profile command with short and extended acknowledge).
- Retrieve position.
- Retrieve module state.

Home CAN-ID DLC Byte 0
ComandID

Byte 1
Param.ID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x0F1 1 0x01 - - - - - - -
Ack 0x0B1 1 0x01 - - - - - - -

Reset CAN-ID DLC Byte 0

ComandID
Byte 1
Param.ID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x0F1 1 0x00 - - - - - - -
Ack 0x0B1 1 0x00 - - - - - - -

Set Ramp motion
acceleration

CAN-ID DLC Byte 0
ComandID

Byte 1
Param.ID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x0F1 6 0x08 0x50 acc (float) - -

amtec robotics GmbH Data exchange with PowerCube.doc Page 14

Set Ramp motion
acceleration

CAN-ID DLC Byte 0
ComandID

Byte 1
Param.ID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Ack 0x0B1 3 0x08 0x50 0x64 - - - - -

Set Ramp motion velocity CAN-ID DLC Byte 0
ComandID

Byte 1
Param.ID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x0F1 6 0x08 0x4f vel (float) - -
Ack 0x0B1 3 0x08 0x4f 0x64 - - - - -

Ramp motion command CAN-ID DLC Byte 0

ComandID
Byte 1
Param.ID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x0F1 6 0x0b 0x04 pos (float) - -
Ack (einfach) 0x0B1 3 0x0b 0x04 0x64 - - - - -

Retrieve module state CAN-ID DLC Byte 0

ComandID
Byte 1
Param.ID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x0D1 2 0x0a 0x27 - - - - - -
Ack 0x0B1 6 0x0a 0x27 state (UInt32) - -

Retrieve module position CAN-ID DLC Byte 0

ComandID
Byte 1
Param.ID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x0D1 2 0x0a 0x3c - - - - - -
Ack 0x0B1 6 0x0a 0x3c pos (float) - -

When using the extended acknowledge to motion commands the module will answer the
command by sending actual position, module state and digital IO state. Motion command and
acknowledge according to the above example would look like this:

Ramp motion command
with ext. Acknowledge

CAN-ID DLC Byte 0
ComandID

Byte 1
Param.ID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x0f1 6 0x0b 0x0e pos (float) - -
Ack (extended) 0x0f1 8 0x0b 0x0e actPos (float) State DIO

9 Examples for RS232 communication
A few examples follow to introduce RS232 communication. These commands are sent to the
module (the module address used is 17):
- Home.
- Reset.
- Ramp motion profile command.

Home STX TEL-ID TEL-ID CmdID Par-ID B2 B3 B4 B5 B6 B7 BCC ETX
Send 0x02 0x06 0x21 0x01 - - - - - - - 0x28 0x03
Ack 0x02 0x0a 0x21 0x01 - - - - - - - 0x2c 0x03

Reset STX TEL-ID TEL-ID CmdID Par-ID B2 B3 B4 B5 B6 B7 BCC ETX
Send 0x02 0x06 0x21 0x00 - - - - - - - 0x27 0x03
Ack 0x02 0x0a 0x21 0x00 - - - - - - - 0x2b 0x03

Set Ramp motion
acceleration

STX TEL-ID TEL-ID CmdID Par-ID B2 B3 B4 B5 B6 B7 BCC ETX

Send 0x02 0x06 0x26 0x08 0x50 0x00 0x00 0x00 0x3f - - 0xc3 0x03
Ack 0x02 0x0a 0x26 0x08 0x50 0x64 - - - - - 0xec 0x03

Set Ramp motion velocity STX TEL-ID TEL-ID CmdID Par-ID B2 B3 B4 B5 B6 B7 BCC ETX
Send 0x02 0x06 0x26 0x08 0x4f 0x0a 0xd7 0xa3 0x3d - - 0x46 0x03
Ack 0x02 0x0a 0x26 0x08 0x4f 0x64 - - - - - 0xeb 0x03

Ramp motion command STX TEL-ID TEL-ID CmdID Par-ID B2 B3 B4 B5 B6 B7 BCC ETX

amtec robotics GmbH Data exchange with PowerCube.doc Page 15

Ramp motion command STX TEL-ID TEL-ID CmdID Par-ID B2 B3 B4 B5 B6 B7 BCC ETX
Send 0x02 0x06 0x26 0x0b 0x04 0x00 0x00 0x40 0x3f - - 0xba 0x03
Ack 0x02 0x0a 0x26 0x0b 0x04 0x64 - - - - - 0xa3 0x03

This example shows how the TELID is calculated (based on a SetExtended command):

Example Send (TELID_SENDDAT, Module address = 17)

Command SetExtended 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0
 TELID Byte1 = 0x06 TELID Byte2 = 0x26

Example Receive (TELID_RECVDAT, Module address = 17)

Command SetExtended 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0
 TELID Byte1 = 0x0a TELID Byte2 = 0x26

The command Halt (CommandID: 0x02) shows how the DLE correction is done:

Send w/o correction: STX TELID TELID CMD BCC ETX
 0x02 0x06 0x21 0x02 0x29 0x03

Senden w/ correction: STX TELID TELID CMD (w/ DLE) BCC ETX
 0x02 0x06 0x21 0x10 0x82 0x29 0x03

10 Examples for Profibus-DP communication
A few examples follow to introduce RS232 communication. These commands are sent to the
module:
- Home.
- Reset.
- Ramp motion profile command.

Home Byte 0
CmdID

Byte 1
ParID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x01 - - - - - - X
Ack 0x01 - - - - - - - Byte 8-15

Reset Byte 0

CmdID
Byte 1
ParID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x00 - - - - - - X
Ack 0x00 - - - - - - - Byte 8-15

Set Ramp motion
acceleration

Byte 0
CmdID

Byte 1
ParID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x08 0x50 acc (float) - X
Ack 0x08 0x50 0x64 - - - - - Byte 8-15

Set Ramp motion velocity Byte 0

CmdID
Byte 1
ParID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x08 0x4f vel (float) - X
Ack 0x08 0x4f 0x64 - - - - - Byte 8-15

Ramp motion command Byte 0

CmdID
Byte 1
ParID

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Send 0x0b 0x04 pos (float) - X
Ack 0x0b 0x04 0x64 - - - - - Byte 8-15

amtec robotics GmbH Data exchange with PowerCube.doc Page 16

X: When sending data to the module the value in 7 has to change with every command sent,
e. g. an incremental counter. The reason is that only the first of all identical messages received
by the module will be interpreted (e.g. retrieving module state)!

Byte 8-15: When using Profibus-DP communication the command passed to the module has a
length of 8 Byte while the module always acknowledges 16 Byte to the Master:

Byte 8 Byte 9 Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15

- Actual position in Encoder ticks
(Int32 = 4 Byte)

Short state
(UInt16 = 2 Byte)

time [ms]
(0..255)

11 PowerCube Operation
For a trouble free operation of the PowerCube a few rules should be mentioned. They are
especially useful for commanding motion and system supervision. The type of host control
depends on the application it is ought to run. You should consider these questions when
plannig your application:
- Realtime operation and time critical sections in the process
- Daisy chaining several drices in a kinematic structure
- Security problems in operation
In every case the master control for PowerCube can be optimized for the specific application.
Here is some information on this topic.

12 Normal operation
After power on the PowerCube™ is immediately ready for operation. The returned position is
the default home offset. The drive can execute motion commands.
The modules are mechatronical systems with grease lubricated mechanical parts. Maximum
acceleration and speed are available only after a complete warm up of the module.
Typically the first motion command after power on is a homing procedure. This is necessary to
fix the coordinate system of the module. Maximum and minmum position of the module are
adjusted in this coordinate system. This means that a module, once it is homed regularly, will
only accept target positions within its normal range of operation. Please take care of this:
- Run motion commands only after a successful homing,
- If a homing is not possible, run the module only at slow speed. This enables you to stop

the module in case before an emergency situation occures,
- Always move the the module back to its home position before power down.
- The status word CubeState shows the flag STATE_HOME_OK after a successful homing

procedure.
Commands sent to the PowerCube™ are checked by the cubes operation system. This
means:
- Automatic limitation of target position, velocity, acceleration and current when runnig

motion commands. The targets are limited to the preadjusted maximum values (see
PowerCube Parameter ID’s ": Targets).

- Limitation of commanded values. This concerns all values that can be changed while the
cube is online (see PowerCube Parameter ID’s": Commands)

13 Using the Modules Watchdog
Every module connected must have the Watchdog enabled in the Config word (Flag
CONFIG_WATCHDOG_ENABLE). Send the command CANID_CMDPUT (0x0e0 + Modul-ID)
+ CommandID 0x07 to each module in order to sitch the watchdog to the online state. Sending
this command again will switch the watchdog to the offline state.
In an interval smaller than 50 ms send this broadcast command to refresh the watchdog:

CANID_CMDALL (0x100) + CommandID 0x07

If the watchdog refresh command has not been received within the given interval, all modules
will stop and the flags STATE_COMM_ERROR and STATE_HALTED are raised.

amtec robotics GmbH Data exchange with PowerCube.doc Page 17

To restart operation you can either:
- switch the watchdog offline in each module and send a Reset command or
- restart sending cyclic Refresh commands and broadcast a Reset to all modules

connected

14 Trouble shooting
All commands sent to the module are checked by the operation system. This means:
Errors that occur while operation will be displayed as flags in the modules state. There is a
difference between resetable and nonresetable errors. Once a nonresetable error occures the
power must be switched off.
These errors are not resetable:
- Temperature problems. Caused by overload or too high ambient temperature. Check your

application.
- Short in the servo amplifier, problems with hall effect sensors. Total overload. Consult

your service partner.
These errors can be reset by command:
- following error (tow).
- running over soft or hard limits of the operation range.
- error in data exchange (communication).
- voltage drop in power supply.

