

Programmers guide for
PowerCube
Developing PC Programs for PowerCube Modules

Directory of Revisions
Authorized by: Roland Tschakarow
File name: Programmers guide for PowerCube.doc
No. Description Revision Date of change
001 1. Version 1.0 16.09.2002
002 Added SCHUNK FTS functions and renamed

MP55 FS functions
1.1 10.01.2003

003 Revision 1.2 30.07.2004
004 Added new functions 1.3 15.07.2007

amtec robotics GmbH Programmers guide for PowerCube.doc Page 2

1 Developing PC Programs for PowerCube Modules

This document describes how to use PowerCube specific function calls with different
compilers running on PCs. It shows the differences regarding compilers and operation
systems. The document is useful for programmers developing applications by using Amtec's
library of function calls for PowerCube.

2 System requirements
The function library for PowerCubes is available for different PC operation systems. It
therefore has operation system specific features:

Operation sytem Form Supported Compilers
MS Windows 9x/NT/2000/XP Dynamic Link Library (DLL) Visual C/C++

Visual Basic
National Instruments LabWindows CVI

SuSe Linux 6.4 Open Source GNU C/C++
QNX 4.25 Open Source Watcom C/C++ v. 10

The Windows DLL allows the use of a variety of compilers. This document includes only
information on compilers Amtec has sucessfully tested with PowerCube.

3 Hardware requirements
The hardware requirements depend on the type of communication interface used. PowerCube
modules provide 3 different types of interfaces:

PowerCube communication
interface

Hardware requirements Software requirements

CAN CAN-Interface board installed CAN-Interface driver installed
Profibus DP DP-Interface board installed DP-Interface driver installed
RS232 COM port available COM-Port driver enabled (only Linux and QNX)

The Interface boards supported by Amtec are all listed in the document "First Steps with
PowerCube". Additioonally you will find information on how to install and test the modules with
the supplied demo software.

4 Visual C/C++ and PowerCube (Windows)
To use the M5APIW32.DLL with Visual C/C++ these files are required:

File Description
M5APIW32.DLL to be stored in the same directory as the exe file or in the path.
M5APIW32.H Header file with function declarations and constants. To be used in the #include statement of all source

modules using PowerCube functions. Store it in the project directory.
M5APIW32.LIB Import library for Visual C/C++. Define as additional library module in the project settings.

The Header file M5APIW32.H holds all necessary function and constant declarations. The
data types used are the standard C data types like „int“ and „float“.

This example shows how to open COM1 and address a module with ID 7 (RS232-Interface):

...
int ret = 0;
int dev = 0;
int modId = 7;
int numOfModules = 0;

amtec robotics GmbH Programmers guide for PowerCube.doc Page 3

float pos = 1.0;
float vel = 1.0;
float acc = 1.0;
char pInitString[] = “RS232:1,9600“;
...

ret = PCube_openDevice(&dev, pInitString);
if(ret != 0)
 // Error Handling ...

numOfModules = PCube_getModuleCount(dev);
printf(“Found %d PowerCubes\n“, numOfModules);

ret = PCube_homeModule(dev, modId);
if(ret != 0)
 // Error Handling ...

do
{ ret = PCube_getModuleState(dev, modId, &state);
 if(ret != 0)
 // Error Handling ...
} while(!(state & STATEID_MOD_HOME));

ret = PCube_moveRamp(dev, modId, pos, vel, acc);
if(ret != 0)
 // Error Handling ...

ret = PCube_closeDevice(dev);
if(ret != 0)
 // Error Handling ...
...

5 NI LabWindows CVI and PowerCube (Windows)
If you are planning to develop an application using LabWindows CVI, you need these files:

File Description
M5APIW32.DLL to be stored in the same directory as the exe file or in the path.
M5APIW32.H Header file with function declarations and constants. To be used in the #include statement of all source

modules using PowerCube functions. Store it in the project directory.

CVI requires an own Import library to enable the Link to M5APIW32.DLL. Please follow these
steps:

1. Create a CVI project.
2. Open the file M5APIW32.H in the editor.
3. Create the CVI Import Library using „Options/Generate DLL Import Library“

4. Add the newly created file M5APIW32.LIB to your project: „Edit/Add files to Project...“

For a programming example please refer to the Visual C++ section.

amtec robotics GmbH Programmers guide for PowerCube.doc Page 4

6 Visual Basic and PowerCube (Windows)
These files are required to create a Visual Basic project for PowerCube:

File Description
M5APIW32.DLL to be stored in the same directory as the exe file or in the path.
M5APIW32.BAS holds function and constant declarations. Use „Project/Add module...“ to add this file to your project.

This example shows how to open a device for controlling PowerCube modules using an
InitString supplied from a Textbox named tInitString (the textbox is part of a VB form):

ret As Long
dev As Long
numOfModules As Long
modId As Long
state As Long
pos As Single
vel As Single
acc As Single

...
ret = PCube_openDevice(dev, tInitString.text)
If ret <> Then
 Rem Error handling ...
Else
 Rem Normal operation ...

numOfModules = PCube_getModuleCount(dev)

ret = PCube_homeModule(dev, modId);
If ret <> 0 Then
 Rem Error Handling ...

Do
 ret = PCube_getModuleState(dev, modId, state)
 If ret <> 0 Then
 Rem Error Handling ...
Loop While(state And STATEID_MOD_HOME <> 1)

ret = PCube_moveRamp(dev, modId, pos, vel, acc)
If ret <> 0 Then
 Rem Error Handling ...
...

ret = PCube_closeDevice(dev)
If ret <> 0 Then
 Rem Error Handling ...
...

7 GNU C/C++ und PowerCube (Linux)
To work with PowerCube and Linux Amtec ships the complete source code for integration in
your application program. This avoids any dependencies on Kernel versions or Linux
distributions kits. For CAN bus users: Please make sure you have installed the CAN Interface
driver suitable for the Linux Kernel version you are using. This driver has to be started before
running a program with PowerCube. For RS232 users: Make sure your COM port is free and
the driver is started as well.

The programmer can either chose a C++ class library interface or a standard ANSI-C interface
(m5apiw32). There are sample programs for both variants.

amtec robotics GmbH Programmers guide for PowerCube.doc Page 5

These files are part of the project:

Directory Description
c331 Linux driver for the CAN-Interface board C331 PCI by ESD. The driver has to be started before you begin

to use PowerCube (Attention! Mind the Kernel version). Only root is allowed to start it:
1.) su root 2.) cd c331 3.) insmod C331-2.2.14
After you finished work with PowerCube, remove the driver:
4.) rmmod c331-2.2.14

ComDef Collection of globally used Header files
include Collection of internally used Header files
lib Collection of the library modules necessary to create the executable Device driver (M5 driver)
Util Collection of additional C++ source modules for helper functions. Compile with:

1.) cd Util 2.) make –f Makefile.linux
Device Collection of C++ source modules to create the executable Device driver (M5 driver). Compile with:

1.) cd Device 2.) make –f Makefile.linux
DeviceTest C++ Test program using the Device class library. Compile with:

1.) cd DeviceTest 2.) make –f Makefile.linux
M5apiw32 ANSI-C Interface for the Device class library (like M5APIW32.DLL for Windows) . Compile with:

1.) cd M5apiw32 2.) make –f Makefile.linux
M5apiw32Test ANSI-C Test program based on the M5apiw32 Interface (ANSI-C) . Compile with:

1.) cd M5apiw32Test 2.) make –f Makefile.linux
M5apitst2 Another ANSI-C Test program based on the M5apiw32 Interface (ANSI-C) . Compile with:

1.) cd M5apitst2 2.) make –f Makefile.linux

Make sure you call the compiler in the order given by the table above. For more programming
examples please refer to the Visual C++ section.

8 Watcom C/C++ and PowerCube (QNX)
To work with PowerCube and QNX there are two interfaces available:
- C++ class library (Device).
- ANSI-C library (M5apiw32).
The library ships with the complete source code to simplify integration in your application
programs.

These files are part of the project:

Directory Description
c331 QNX driver for the CAN-Interface board C331 PCI by ESD. The driver has to be started before you begin

to use PowerCube. Only root is allowed to start it:
1.) su root 2.) cd c331 3.) c331
After you finished work with PowerCube, remove the driver by terminating the process (eg. Ctrl-C)

ComDef Collection of globally used Header files
include Collection of internally used Header files
lib Collection of the library modules necessary to create the executable Device driver (M5 driver)
Util Collection of additional C++ source modules for helper functions. Compile with:

1.) cd Util 2.) make –f Makefile.qnx
Device Collection of C++ source modules to create the executable Device driver (M5 driver). Compile with:

1.) cd Device 2.) make –f Makefile.qnx
DeviceTest C++ Test program using the Device class library. Compile with:

1.) cd DeviceTest 2.) make –f Makefile.qnx
M5apiw32 ANSI-C Interface for the Device class library (like M5APIW32.DLL for Windows) . Compile with:

1.) cd M5apiw32 2.) make –f Makefile.qnx
M5apiw32Test ANSI-C Test program based on the M5apiw32 Interface (ANSI-C) . Compile with:

1.) cd M5apiw32Test 2.) make –f Makefile.qnx
M5apitst2 Another ANSI-C Test program based on the M5apiw32 Interface (ANSI-C) . Compile with:

1.) cd M5apitst2 2.) make –f Makefile.qnx

amtec robotics GmbH Programmers guide for PowerCube.doc Page 6

Make sure you call the compiler in the order given by the table above. For more programming
examples please refer to the Visual C++ section.

9 Error Codes of Function Calls
Value Define Description
-201 ERRID_DEV_FUNCTIONNOTAVAILABLE The function called is not available.
-202 ERRID_DEV_NOINITSTRING The InitString is missing during initialization.
-203 ERRID_DEV_NODEVICENAME The device name specified in InitString is wrong or

invalid.
-204 ERRID_DEV_BADINITSTRING The InitString is incomplete or wrong.
-205 ERRID_DEV_INITERROR Initialization of the interface failed. Check hardware and

driver setup.
-206 ERRID_DEV_NOTINITIALIZED The function was called before initializing the device.
-207 ERRID_DEV_WRITEERROR Error during an attempt to write data to the interface.
-208 ERRID_DEV_READERROR Error during an attempt to read data from the interface.
-209 ERRID_DEV_WRITETIMEOUT Timeout while sending data on the bus.
-210 ERRID_DEV_READTIMEOUT Timeout while reading data from a module.
-211 ERRID_DEV_WRONGMESSAGEID The message received has an unexpected MessageID.
-212 ERRID_DEV_WRONGCOMMANDID The message received has an unexpected CommandID.
-213 ERRID_DEV_WRONGPARAMETERID The message received has an unexpected ParameterID.
-214 ERRID_DEV_EXITERROR Error occured while closing the interface.
-215 ERRID_DEV_NOMODULES No module found during initialization of the interface.
-216 ERRID_DEV_WRONGDEVICEID The given DeviceID is wrong.
-217 ERRID_DEV_NOLIBRARY A DLL file is missing to execute the function call.
-218 ERRID_DEV_ISINITIALIZED The Interface has been already initialized.
-219 ERRID_DEV_WRONGEMSMODULEID The given EMS module ID does not exist.
-220 ERRID_DEV_EMSNOTINITIALIZED The EMS module has not been initialized.
-221 ERRID_DEV_EMSMAXNUMBER The maximum number of EMS modules has been

reached.
-222 ERRID_DEV_EMSINITERROR Error initializing an EMS module.
-223 ERRID_DEV_WRONGEMSTYPE This function is intended to use with a different EMS

module type.
-224 ERRID_DEV_WRONGEMSCHANNELID The given channel ID of the EMS module does not exist.
-225 ERRID_DEV_WRONGMP55MODULEID The given MP55 module ID does not exist.
-226 ERRID_DEV_WRONGSCHUNKMODULEID The given SCHUNK module ID does not exist.

10 Observing the Module state
The module state is important for observation of all drive functions. This section describes the
module state in detail.

10.1 State flags

The module state is a result of these function calls:
- PCube_getModuleState
- PCube_getStateDioPos
- PCube_moveRampExtended
- PCube_moveVelExtended
- PCube_moveCurExtended
- PCube_moveStepExtended
- PCube_movePosExtended.

The module state should be checked by the controlling program in every communication cycle.

Flag Bit Value Meaning
STATE_HOME_OK 1 0x00000002 This flag is set after a successful homing procedure. It means that the drive has

amtec robotics GmbH Programmers guide for PowerCube.doc Page 7

Flag Bit Value Meaning
successfully found its zero position. All limitations for the operation range are valid
now. If the user sends another Home-Command the flag will be reset until the
homing procedure has been finished successfully.

STATE_HALTED 2 0x00000004 This flag is set in conjunction with an emergency stop. It means that the cube is in a
secure state, not moving and not accepting motion commands. Only after a reset
command which resets this flag, the module will return to the normal operation
mode. An emergency stop can be caused automatically by the module in case of an
error or by the user when sending a Halt command.

STATE_SWR 6 0x00000040 This flag shows the state of the home switch. Flag set means home switch is active,
This is no error flag.

STATE_SW1 7 0x00000080 This flag shows the state of the Limit switch 1. Flag set means limit switch 1 is active.
This is no error flag.

STATE_SW2 8 0x00000100 This flag shows the state of the Limit switch 2. Flag set means limit switch 2 is active.
This is no error flag.

STATE_BRAKEACTIVE 9 0x00000200 This flag shows the state of the brake. Flag set means brake is active and servo loop
is open. This is no error flag and it is used only if a brake is installed.

STATE_CURLIMIT 10 0x00000400 This flag is a warning of the servo loop. It has reached the maximum current output.
The drive is working at its limits. This flag can be reset by the Reset command. It is
no error flag

STATE_MOTION 11 0x00000800 This flag indicates the drive is in motion. It is set and reset automatically.
STATE_RAMP_ACC 12 0x00001000 This flag indicates the drive is in acceleration when controlled by ramp motion

commands. It is automatically reset when the ramp motion profile has ended.
STATE_RAMP_STEADY 13 0x00002000 This flag indicates the drive is moving at constant speed when controlled by ramp

motion commands. It is automatically reset when the ramp motion profile has ended.
STATE_RAMP_DEC 14 0x00004000 This flag indicates the drive is in deceleration when controlled by ramp motion

commands. It is automatically reset when the ramp motion profile has ended.
STATE_RAMP_END 15 0x00008000 This flag indicates the end of a ramp motion profile. The drive is not moving.
STATE_INPROGRESS 16 0x00010000 This flag is only used in Step motion control. It indicates a Step motion command is

in progress.
STATE_FULLBUFFER 17 0x00020000 This flag is only used in Step motion control. It indicates a Step motion command

was pushed to the command stack. This happens when the module receives a Step
motion command while STATE_INPROGRESS is set. Upon completion of the
currently executed step command, the buffered one will automatically be executed.

STATE_ERROR 0 0x00000001 An error occured. The module stop immediately and does not accept motion
commands anymore. The reason for the error state can be found reading the error
flags. In many cases the error state can be reset by the user sending a Reset com-
mand. After a successful Reset the module is ready again to accept motion
commands.

STATE_POWERFAULT 3 0x00000008 This flag defines an error of the servo amplifier. This flag si set in conjuction with
STATE_ERROR. In most cases the module needs to be switched off to reset this
error. One of the flags 18 through 23 will be set to explain the cause.

STATE_TOW_ERROR 4 0x00000010 Tow error: The servo loop was not able to follow the target position within the given
limit. The maximum tow can be adjsuted using the parameter „MaxDeltaPos". Check
if the module was overloaded.

STATE_COMM_ERROR 5 0x00000020 This error flag is raised if the watchdog has been enabled only. When enabled the
watchdog must be refreshed in a given period of time by the external control. If the
external control fails to do so, the drive will follow the emergency Stopp routine and
enter an error state.

STATE_POW_VOLT_ERR 18 0x00040000 This flag is set in conjunction with STATE_POWERFAULT. It indicates a voltage
drop or an overvoltage occurred in the motor supply. This error can be reset after the
normal voltage level has been restored. Check your power supply.

STATE_POW_FET_TEMP 19 0x00080000 This flag is set in conjunction with STATE_POWERFAULT. The power transistors
have overheated and the servo loop has been disabled. Power must be switched of
to reset this error. It is due to overload or too high ambient temperature.

STATE_POW_INTEGRAL-
ERR

23 0x00800000 This flag is set in conjunction with STATE_POWERFAULT. The drive has been
overloaded and the servo loop has been disabled. Power must be switched off to
reset this error. Check your apllication and the load situations of the drive.

STATE_BEYOND_HARD 25 0x02000000 This flag indicates the module has reached the hard limit. An emergency stop has
been executed automatically. To remove the module from this position you need to
follow the procedure described in "PowerCube™ Operation System: Disorder".

STATE_BEYOND_SOFT 26 0x04000000 This flag indicates the module has reached the soft limit. An emergency stop has
been executed automatically. This flag can be reset by a Reset command.

STATE_LOGIC_VOLT 27 0x08000000 The voltage of the logic power supply has either dropped or an overvoltage occured.
The drive will be disabled. This error can be reset.

STATE_POW_WDG_TEMP 20 0x00100000 This flag is set in conjunction with STATE_POWERFAULT. The motor has overhea-

amtec robotics GmbH Programmers guide for PowerCube.doc Page 8

Flag Bit Value Meaning
ted and the servo loop has been disabled. Power must be switched of to reset this
error. It is due to overload or too high ambient temperature.

STATE_POW_SHORTCUR 21 0x00200000 This flag is set in conjunction with STATE_POWERFAULT. A short curcuit occured.
The servo loop has been disabled. The power must be switched of to reset this error.
The module has been overlaoded. If this error cannot be reset consult your service
partner.

STATE_POW_HALLERR 22 0x00400000 This flag is set in conjunction with STATE_POWERFAULT. An error occured in rea-
ding the hall effect sensors of the motor. The motor has been overheated. Power
must be switched off to reset this error.

STATE_CPU_OVERLOAD 24 0x01000000 Communication breakdown between CPU and current controller. Power must be
switched off. Please consult your service partner.

STATE_POW_SETUP_ERR 27 0x08000000 Error in initializing the current controller. Module settings disaccord with controller
configuration (5A/10A types). Power must be switched off. Please consult your
service partner. Available from version 3.5.14 through 3.5.1D.

[These flags describe an error status]
[These flags provide useful information on the module status]
[These flags are obsolete]

10.2 Digital In-/Output state (IO-state)

The IO-state is the result of these function calls:
- PCube_getDefDioData
- PCube_getDioData
The data type returned is a "long" (4 Byte).

- PCube_getStateDioPos
- PCube_moveRampExtended
- PCube_moveVelExtended
- PCube_moveCurExtended
- PCube_moveStepExtended
- PCube_movePosExtended.
These function calls return data of type "long" (4 Byte) too. Only the state of the Home and
Limit switches is not included in this word.

Value Define Description
0x00000001L DIOID_MOD_INBIT0 State of Input bit 0.
0x00000002L DIOID_MOD_INBIT1 State of Input bit 1.
0x00000004L DIOID_MOD_INBIT2 State of Input bit 2.
0x00000008L DIOID_MOD_INBIT3 State of Input bit 3.
0x00000010L DIOID_MOD_OUTBIT0 State of Output bit 0.
0x00000020L DIOID_MOD_OUTBIT1 State of Output bit 1.
0x00000040L DIOID_MOD_OUTBIT2 State of Output bit 2.
0x00000080L DIOID_MOD_OUTBIT3 State of Output bit 3.
0x00000100L DIOID_MOD_INSWR State of Home switch. Valid only for PCube_getDioData.
0x00000200L DIOID_MOD_INSW1 State of Limit switch 1. Valid only for PCube_getDioData.
0x00000400L DIOID_MOD_INSW2 State of Limit switch 2. Valid only for PCube_getDioData.

11 Module configuration
The drive can be configured by the user after Power On. This concerns range of operation,
speed and acceleration as well as error behaviour.

11.1 Configuration word

The configuration word is a result of the function calls PCube_getDefConfig and
PCube_getConfig. It is a parameter of the call PCube_setConfig.

amtec robotics GmbH Programmers guide for PowerCube.doc Page 9

Value Define Description
0x00000008L CONFIGID_MOD_BRAKE_PRESENT 1 = Brake present
0x00000010L CONFIGID_MOD_BRAKE_AT_POWERON 0 = Brake will be released at Power On
0x00000020L CONFIGID_MOD_SWR_WITH_ENCODERZERO 1 = Encoder Index used for Homing
0x00000040L CONFIGID_MOD_SWR_AT_FALLING_EDGE 1 = Homing finishes on falling edge of homing switch
0x00000080L CONFIGID_MOD_CHANGE_SWR_TO_LIMIT 1 = Homing switch converts to limit switch after

Homing is finished
0x00000100L CONFIGID_MOD_SWR_ENABLED 1 = Homing switch is enabled
0x00000200L CONFIGID_MOD_SWR_LOW_ACTIVE 1 = Homing switch is low active
0x00000400L CONFIGID_MOD_SWR_USE_EXTERNAL 1 = The external homing switch will be used
0x00000800L CONFIGID_MOD_SW1_ENABLED 1 = Limit switch 1 is enabled
0x00001000L CONFIGID_MOD_SW1_LOW_ACTIVE 1 = Limit switch 1 is low active
0x00002000L CONFIGID_MOD_SW1_USE_EXTERNAL 1 = The external limit switch 1 will be used
0x00004000L CONFIGID_MOD_SW2_ENABLED 1 = Limit switch 2 is enabled
0x00008000L CONFIGID_MOD_SW2_LOW_ACTIVE 1 = Limit switch 2 is low active
0x00010000L CONFIGID_MOD_SW2_USE_EXTERNAL 1 = The external limit switch 2 will be used
0x00020000L CONFIGID_MOD_LINEAR 1 = Module is of linear type
0x00080000L CONFIGID_MOD_ALLOW_FULL_CUR 0 = The max. cur commanded with PCube_moveCur

will be limited to the nominal current.
0x00100000L CONFIGID_MOD_M3_COMPATIBLE 1 = Module is MoRSE3 compatible. This concerns

CAN communication and behaviour of
PCube_moveStep. The module does not accept
motion commands unless Homing is finished
successfully.

0x00200000L CONFIGID_MOD_LINEAR_SCREW 1 = Module is linear module with ball screw actuator.
0x00800000L CONFIGID_MOD_DISABLE_ON_HALT 1 = On error the motor is set to zero current.
0x01000000L CONFIGID_MOD_WATCHDOG_ENABLE 1 = Watchdog is enabled. The watchdog starts after

reception of the first life sign from control
(PCube_serveWatchdogAll).

0x02000000L CONFIGID_MOD_ZERO_MOVE_AFTER_HOK 1 = After Homing is finished the module
automatically moves to ist zero position

0x04000000L CONFIGID_MOD_DISABLE_ACK 1 = Messages are not acknowledged anymore. Get
commands will still be answered. Valid only for
CAN-Bus.

0x08000000L CONFIGID_MOD_SYNC_MOTION 1 = Enables synchronized Motion commands. After
sending the motion command the a special Start
Motion broadcast is expected
(PCube_startMotionAll). Valid only for CAN-Bus.

11.2 Setup word

The Setup word is a result of the function call PCube_getDefSetup.

Value Define Description
0x00000001L SETUPID_MOD_ENCODER_FEEDBACK not used
0x00000002L SETUPID_MOD_RESOLVER_FEEDBACK not used
0x00000004L SETUPID_MOD_ABSOLUTE_FEEDBACK not used
0x00000008L SETUPID_MOD_4IN_4OUT 1 = The 15pole connector is configured for 4 I/O signals.
0x00000010L SETUPID_MOD_3IN_ENCODER_IN 1 = The 15pole connector is configured for encoder input.
0x00000020L SETUPID_MOD_3IN_ENCODER_OUT 1 = The 15pole connector is configured for encoder output.
0x00000040L SETUPID_MOD_RS232 1 = The module is configured for RS232-communication.
0x00000200L SETUPID_MOD_CAN 1 = The module is configured for CAN-communication.
0x00000400L SETUPID_MOD_PROFIBUS 1 = The module is configured for Profibus-communication
0x00000800L SETUPID_MOD_USE_M3ID 1 = CAN identifiers for MoRSE3 modules are activated.
0x00001000L SETUPID_MOD_USE_M4ID 1 = CAN identifiers for MoRSE4 modules are activated.
0x00002000L SETUPID_MOD_USE_CANOPEN 1 = The module is configured for CANopen.
0x00008000L SETUPID_MOD_USE_SW2_AS_ENABLE 1 = The input for limit switch 2 is used as enable signal for

the drive.
0x00010000L SETUPID_MOD_USE_SW2_AS_BRAKE 1 = The input for limit switch 2 is used to release the

brake.

amtec robotics GmbH Programmers guide for PowerCube.doc Page 10

Value Define Description
0x00020000L SETUPID_MOD_ERROR_TO_OUT0 1 = An error is signalized on output 0.

12 System Configuration using the Ini file
The function call PCube_configFromFile enables the user to configure the complete system
just by using one function call. This concerns in detail:
- Opening the communication interface
- Setting debug and logging options
- Configuration of module parameters:

- Home Offset (to be specified in [m] resp. [rad])
- Home Geschwindigkeit (to be specified in [m/s] resp. [rad/s])
- PID loop coefficient C0
- PID loop coefficient Damp
- PID loop coefficient A0
- minimum Position (to be specified in [m] resp. [rad])
- maximum Position (to be specified in [m] resp. [rad])
- maximum tow distance (to be specified in [m] resp. [rad])
- maximum Speed (to be specified in [m/s] resp. [rad/s])
- maximale Acceleration (to be specified in [m/s²] resp. [rad/s²])
- maximum current (to be specified in [A])

This is an example of an Ini file:

Section Entries Description
DeviceNumber = 1 Number of the device (interfaces))) to be opened
DeviceStart = 0 ID of the first device to be opened (Offset)
ModuleNumber = 1 Number of PowerCube modules to configure
ModuleStart = 0 ID of the first PowerCube module to be configured (Offset)
Debug = 1 enables Error logging
DebugLevel = 0 specifies the debug level

[PROCESS]

DebugFile = 0 enables logging to a file
DeviceName = CAN0 A name identifiing the Device (CAN interface) [DEVICE_00]
InitString = ESD:0,250 InitString of the ESD CAN interface (Name:port,baudrate)
DeviceName = CAN0 Name of the device to use
ModuleId = 12 physical address of the PowerCube module to configure
HomeOffset = 0.1 Home Offset of the PowerCube Module in [m] resp. [rad]
HomeVel = 0.1 Home velocity of the PowerCube Module in [m/s] resp. [rad/s]
C0 = 32 PID loop coefficient C0 of the PowerCube Module
Damp = 3 PID loop coefficient Damp of the PowerCube Module
A0 = 1 PID loop coefficient A0 of the PowerCube Module
MinPos = -1.0 minimum Position of the PowerCube Module in [m] resp. [rad]
MaxPos = 1.0 maximum Position of the PowerCube Module in [m] resp. [rad]
MaxDeltaPos = 0.01 maximum tow distance of the PowerCube Module in [m] resp. [rad]
MaxVel = 1 maximum speed of the PowerCube Module in [m/s] resp. [rad/s]
MaxAcc = 1 maximum acceleration of the PowerCube Module in [m/s^2] resp. [rad/s^2]

[MODULE_00]

MaxCur = 5 maximum current of the PowerCube Module in [A]

If only one of the settings specified in the Ini file fails, the function will stop immediatly and
return an error.

13 Function reference
This reference includes all function calls available in the M5APIW32 application programming
interface.

Opening and closing the
communication Interface

Function Description

amtec robotics GmbH Programmers guide for PowerCube.doc Page 11

Opening and closing the
communication Interface

Function Description

PCube_openDevice Opens the interface by specifiing an InitString. Result is a valid deviceID.
See document "First steps" for further information on the InitString.

PCube_closeDevice Closes the interface by specifiing the deviceID.

Administrative functions Function Description
PCube_getModuleIdMap Retrieves the number of PowerCube modules found on the bus. At the

same time this function maps the physical addresses of the modules to
logical IDs. The physical addresses are strored in an ascending order in
the array specified.

PCube_updateModuleIdMap Redoes the mapping.
PCube_getModuleCount Retrieves the number of modules connected to the bus.
PCube_getModuleType Retrieves the module type by specifiing deviceID and a moduleID.

Rotary drives: TYPEID_MOD_ROTARY = 0x0F
Linear drives: TYPEID_MOD_LINEAR = 0xF0

PCube_getModuleVersion Retrieves the version of the operating system of the module by specifiing
deviceID and a moduleID. The result has to be interpreted as a
hexadecimal number.

PCube_getModuleSerialNo Retrieves the serial number of a module by specifiing deviceID and a
moduleID.

PCube_getDllVersion Retrieves the version of the running DLL.
PCube_configFromFile Configures the complete system to the specifications in a Ini file. The file

name is a parameter for the call. See section "System configuration using
an Ini file".

PCube_serveWatchdogAll Refreshs the watchdog in all conected modules if these are enabled.
Valid only for CAN bus.

PCube_getDefSetup Retrieves the default module setup by specifiing deviceID and a
moduleID. Result is a setup word, separatly described in the section
"Module configuration“.

PCube_getDefBaudRate Retrieves the default Baudrate of the module (useful only for CAN- and
RS232 modules). Result is a value between 0..5.
CAN: 0=50 1=250 2=500 4=1000 kbit/s
RS232: 0=1200 1=2400 2=4800 3=9600 4=19200 5=38400 bit/s

PCube_setBaudRateAll Broadcast command to change the baudrate of all connected modules
(only CAN bus). All modules conected immediately change their baudrate
to the new value. Only a valid baudrate will be accepted. Valid only for
CAN-Bus.

PCube_getDefGearRatio Retrieves the default gear ratio.
PCube_getDefLinearRatio Retrieves the default factor for conversion of rotary to linear motion.
PCube_getDefCurRatio Retrieves the default factor for conversion of current digits to A.
PCube_getDefBrakeTimeOut Retrieves the default delay between end of motion and release of the

brake.

PCube_getDefIncPerTurn Retrieves the default value for the number of increments per motor
rotation.

Retrieve position Function Description

PCube_getPos Retrieves the actual module position by specifiing deviceID and a
moduleID. Result is the position in rad (rotary) or m (linear modules).

PCube_getPosInc Retrieves the actual module position by specifiing deviceID and a
moduleID. Result is the position in increments.

PCube_getPosCountInc Retrieves the current counter value by specifiing deviceID and a
moduleID. Result is the current counter value in increments (position
without any offsets).

Retrieve speed Function Description

PCube_getVel Retrieves the current speed by specifiing deviceID and moduleID. Result
is the real speed in rad/s (rotary) or m/s (linear modules).

PCube_getVelInc Retrieves the current speed by specifiing deviceID and moduleID. Result
is the real speed in increments/s.

PCube_getIPolVel Retrieves the current interpolated speed by specifiing deviceID and
moduleID. Result is the interpolated speed in rad/s (rotary) or m/s (linear
modules).

amtec robotics GmbH Programmers guide for PowerCube.doc Page 12

Retrieve current Function Description

PCube_getCur Retrieves the actual current information by specifiing deviceID an a
moduleID. Result is the actual current in A.

PCube_getCurInc Retrieves the actual current information by specifiing deviceID an a
moduleID. Result is the actual current in Digits.

Retrieve tow distance Function Description

PCube_getDeltaPos Retrieves the actual tow distance by specifiing deviceID and a moduleID.
Result is the actual tow distance in rad (rotary) or m (linear modules).

PCube_getDeltaPosInc Retrieves the actual tow distance by specifiing deviceID and a moduleID.
Result is the actual tow distance in increments.

Retrieve module state Function Description

PCube_getModuleState Retrieves the actual module state by specifiing deviceID and a moduleID.
Result is the module status word, separately described in section „Module
state“.

PCube_getStateDioPos Retrieves a combined information on module state, position and digital IO
state. Result is the module state (section Module state), the actual
position in rad resp. m and the state of the digital I/Os.

Retrieve position
synchronously

Function Description

PCube_savePosAll This broadcast command forces all connected modules to save their
current position at the same time. The deviceID is a necessary parameter.
For CAN-Bus only.

PCube_getSavePos Retrieves the position value saved during the call PCube_savePosAll by
specifiing deviceID and a moduleID. Result is the saved with
PCube_savePosAll position in rad resp. m. For CAN-Bus only.

Configuration Function Description

PCube_getDefConfig Retrieves the default module configuration by specifiing deviceID and a
moduleID. Result is the configuration word, separately described in
section „Module configuration“.

PCube_getConfig Retrieves the actual module configuration by specifiing deviceID and a
moduleID. Result is the configuration word as saved to the module with
the last call of PCube_setConfig. After Power on this value is identical to
the default value.

PCube_setConfig Sets the actual module configuration by specifiing deviceID, a moduleID
and a new configuration word.

Digitale I/O Function Description

PCube_getDefDioData Retrieves the default state of the digital IOs by specifiing deviceID and a
moduleID. Result is the IO state described in section "Module state".

PCube_getDioData Retrieves the actual state of the digital IOs by specifiing deviceID and a
moduleID. Result is the actual IO state

PCube_setDioData Sets the actual IO state (only outputs) by specifiing deviceID, a moduleID
and a valid IO state word.

PID loop coefficients Function Description

PCube_getDefA0 Retrieves the default value of the PID loop coefficient A0.
PCube_getA0 Retrieves the actual value of the PID loop coefficient A0. After Power on

this value is identical to the default.
PCube_setA0 Sets the actual value of the PID loop coefficient A0 (range 1..12)
PCube_getDefC0 Retrieves the default value of the PID loop coefficient C0.
PCube_getC0 Retrieves the actual value of the PID loop coefficient C0. After Power on

this value is identical to the default.
PCube_setC0 Sets the actual value of the PID loop coefficient C0 (range 12..64, even

values only)
PCube_getDefDamp Retrieves the default value of the PID loop coefficient "Damping".
PCube_getDamp Retrieves the actual value of the PID loop coefficient "Damping". After

Power on this value is identisch to the default.

PCube_setDamp Sets the actual value of the PID loop coefficient "Damping" (range 1..4)

amtec robotics GmbH Programmers guide for PowerCube.doc Page 13

PID loop coefficients Function Description
PCube_getDefA0 Retrieves the default value of the PID loop coefficient A0.

 PCube_recalcPIDParams Call to update the PID loop and to make the new coefficients valid. This
function must be called after A0, C0 or Damp have been altered.

Position offset Function Description

PCube_getDefHomeOffset Retrieves the default Home offset by specifiing deviceID and a moduleID.
Result is the default home offset in rad resp. m. The home offset is the
position value in home position.

PCube_getHomeOffset Retrieves the actual Home offset by specifiing deviceID and a moduleID.
Result is the actual home offset in rad resp. m. After Power on this value
is identical to the default.

PCube_getHomeOffsetInc Retrieves the actual Home offset by specifiing deviceID and a moduleID.
Result is the actual home offset in Increments.

PCube_setHomeOffset Sets the actual Home offset by specifiing deviceID, a moduleID and the
new value in rad resp. m.

PCube_setHomeOffsetInc Sets the actual Home offset by specifiing deviceID, a moduleID and the
new value in Increments.

Homing speed Function Description

PCube_getDefHomeVel Retrieves the default Homing speed by specifiing deviceID and a
moduleID. Result is the default Homing speed in rad/s resp. m/s. This
speed is used during the homing procedure.

PCube_getHomeVel Retrieves the actual Homing speed by specifiing deviceID and a
moduleID. Result is the Homing speed in rad/s resp. m/s. After Power on
this value is identical to the default.

PCube_getHomeVelInc Retrieves the actual Homing speed by specifiing deviceID and a
moduleID. Result is the Homing speed in Increments/s.

PCube_setHomeVel Sets the actual Homing speed by specifiing deviceID, a moduleID and the
new value in rad/s resp. m/s.

PCube_setHomeVelInc Sets the actual Homing speed by specifiing deviceID, a moduleID and the
new value in Increments/s.

Operation range: Minimum
position

Function Description

PCube_getDefMinPos Retrieves the default minimum position by specifiing deviceID and a
moduleID. Result is the minimum position in rad resp. m. This parameter
is used as a limit for the operation range. Values less than this will be
limited to the given minimum.

PCube_getMinPos Retrieves the actual minimum position by specifiing deviceID and a
moduleID. Result is the minimum position in rad resp. m. After Power on
this value is identical to the default.

PCube_getMinPosInc Retrieves the actual minimum position by specifiing deviceID and a
moduleID. Result is the minimum position in increments.

PCube_setMinPos Sets the actual minimum position by specifiing deviceID, a moduleID and
the new value in rad resp. m.

PCube_setMinPosInc Sets the actual minimum position by specifiing deviceID, a moduleID and
the new value in Increments.

Operation range: Maximum
position

Function Description

PCube_getDefMaxPos Retrieves the default maximum position by specifiing deviceID and a
moduleID. Result is the maximum position in rad resp. m. This parameter
is used as a limit for the operation range. Values greater than this will be
limited to the given maximum.

PCube_getMaxPos Retrieves the actual maximum position by specifiing deviceID and a
moduleID. Result is the maximum position in rad resp. m. After Power on
this value is identical to the default.

PCube_getMaxPosInc Retrieves the actual maximum position by specifiing deviceID and a
moduleID. Result is the maximum position in increments.

PCube_setMaxPos Sets the actual maximum position by specifiing deviceID, a moduleID and
the new value in rad resp. m.

PCube_setMaxPosInc Sets the actual maximum position by specifiing deviceID, a moduleID and
the new value in Increments.

amtec robotics GmbH Programmers guide for PowerCube.doc Page 14

Maximum speed Function Description

PCube_getDefMaxVel Retrieves the default maximum speed by speciffiing deviceID and a
moduleID. Result is the maximum speed in rad/s resp. m/s. This
parameter is used as a limit. Values greater than this will be limited to the
maximum.

PCube_getMaxVel Retrieves the actual maximum speed by specifiing deviceID and a
moduleID. Result is the maximum speed in rad/s resp. m/s. After Power
on this value is identical to the default.

PCube_getMaxVelInc Retrieves the actual maximum speed by specifiing deviceID and a
moduleID. Result is the maximum speed in Increments/s.

PCube_setMaxVel Sets the maximum speed by specifiing deviceID, a moduleID and the new
value in rad/s resp. m/s.

PCube_setMaxVelInc Sets the maximum speed by specifiing deviceID, a moduleID and the new
value in Increments/s.

Maximum acceleration Function Description

PCube_getDefMaxAcc Retrieves the default maximum acceleration by speciffiing deviceID and a
moduleID. Result is the maximum acceleration in rad/s² resp. m/s². This
parameter is used as a limit. Values greater than this will be limited to the
maximum.

PCube_getMaxAcc Retrieves the actual maximum acceleration by specifiing deviceID and a
moduleID. Result is the maximum acceleration in rad/s² resp. m/s². After
Power on this value is identical to the default.

PCube_getMaxAccInc Retrieves the actual maximum acceleration by specifiing deviceID and a
moduleID. Result is the maximum acceleration in Increments/s².

PCube_setMaxAcc Sets the maximum speed by specifiing deviceID, a moduleID and the new
value in rad/s² resp. m/s².

PCube_setMaxAccInc Sets the maximum speed by specifiing deviceID, a moduleID and the new
value in Increments/s².

Maximum current Function Description

PCube_getDefMaxCur Retrieves the default maximum current by specifiing deviceID and a
moduleID. Result is the maximum current in A. This value is a limit for the
maximum motor current used during operation.

PCube_getMaxCur Retrieves the actual maximum current by specifiing deviceID and a
moduleID. Result is the maximum current in A. After Power on this value
is identical to the default.

PCube_setMaxCur Sets the actual maximum current by specifiing deviceID, a moduleID the
new maximum in A.

Maximum tow distance Function Description

PCube_getDefMaxDeltaPos Retrieves the default maximum tow distance by specifiing deviceID and a
moduleID. Result is the default maximum tow distance in rad resp. m.
This is a limiting value for the maximum tow distance allowed. If the drive
overshoots this value during operation an error will be generated and the
motor stops.

PCube_getMaxDeltaPos Retrieves the actual maximum tow distance by specifiing deviceID and a
moduleID. Result is the actual maximum tow distance in rad resp. m. After
Power on this value is identical to the default.

PCube_getMaxDeltaPosInc Retrieves the actual maximum tow distance by specifiing deviceID and a
moduleID. Result is the actual maximum tow distance in increments.

PCube_setMaxDeltaPos Sets the actual maximum tow distance by specifiing deviceID, a moduleID
and the new maximum in rad resp. m.

PCube_setMaxDeltaPosInc Sets the actual maximum tow distance by specifiing deviceID, a moduleID
and the new maximum in Increments.

Target ramp motion speed Function Description
 PCube_setRampVel Sets the target speed for a ramp motion profile by specifiing deviceID, a

moduleID and the new value in rad/s resp. m/s. This value will be used for
all ramp motion commands started with PCube_movePos,
PCube_movePosInc or PCube_movePosExtended. In order to do so a
target acceleration greater than zero must have been set using
PCube_setRampAcc or PCube_setRampAccInc.

amtec robotics GmbH Programmers guide for PowerCube.doc Page 15

Target ramp motion speed Function Description
PCube_setRampVel Sets the target speed for a ramp motion profile by specifiing deviceID, a

moduleID and the new value in rad/s resp. m/s. This value will be used for
all ramp motion commands started with PCube_movePos,
PCube_movePosInc or PCube_movePosExtended. In order to do so a
target acceleration greater than zero must have been set using
PCube_setRampAcc or PCube_setRampAccInc.

 PCube_setRampVelInc Sets the target speed for ramp motion profiles by specifiing deviceID, a
moduleID and the new value in Increments/s.

Target ramp motion
acceleration

Function Description

PCube_setRampAcc Sets the target acceleration for a ramp motion profile by specifiing
deviceID, a moduleID and the new value in rad/s² resp. m/s². This value
will be used for all ramp motion commands started with PCube_movePos,
PCube_movePosInc or PCube_movePosExtended. In order to do so a
target speed greater than zero must have been set using
PCube_setRampVel oder PCube_setRampVelInc.

PCube_setRampAccInc Sets the target acceleration for ramp motion profiles by specifiing
deviceID, a moduleID and the new value in Increments/s².

Homing Function Description

PCube_homeModule Starts a Homing procedure of the module specified by deviceID and
moduleID.

PCube_homeAll Starts a Homing procedure of all modules connected to the bus. For CAN-
Bus only.

Quick stop Function Description

PCube_haltModule Issues a Quick stop of the module specified by deviceID and moduleID.
PCube_haltAll Issues a Quick stop of all modules connected to the bus. For CAN-Bus

only.

Softstop Funktion Bemerkung
PCube_softStopModule Issues a Soft stop of the module specified by deviceID and moduleID.
PCube_softStopAll Issues a Soft stop of all modules connected to the bus. For CAN-Bus

only.

Reset of module state Function Description

PCube_resetModule Issues a Reset of the module specified by deviceID and moduleID. A
Reset can clear error flags in the module state. If an error is permanent,
Reset is ignored.

PCube_resetAll Issues a Reset of all modules connected to the bus. For CAN-Bus only.

Ramp motion with
specification of Target
position

Function Description

PCube_movePos Starts a ramp motion profile of the module specified by deviceID and
moduleID. The target position is given in rad resp. m. Prior to this call
target speed and acceleration must be set using Funktionen
PCube_setRampVel and PCube_setRampAcc resp.
PCube_setRampVelInc and PCube_setRampAccInc.

PCube_movePosInc Starts a ramp motion profile of the module specified by deviceID and
moduleID. The target position is given in increments.

PCube_movePosExtended Starts a ramp motion profile of the module specified by deviceID and
moduleID. The target position is given in rad resp. m. Results of this call
are State, actual position and Digital IO state (like
PCube_getStatePosDio).

Ramp motion with
specification of position,
speed and acceleration

Function Description

 PCube_moveRamp Starts a ramp motion profile of the module specified by deviceID and
moduleID. The target position is given in rad resp. m, target speed in
rad/s resp. m/s and target acceleration in rad/s² resp. m/s².

amtec robotics GmbH Programmers guide for PowerCube.doc Page 16

Ramp motion with
specification of position,
speed and acceleration

Function Description

PCube_moveRamp Starts a ramp motion profile of the module specified by deviceID and
moduleID. The target position is given in rad resp. m, target speed in
rad/s resp. m/s and target acceleration in rad/s² resp. m/s².

PCube_moveRampInc Starts a ramp motion profile of the module specified by deviceID and
moduleID. The target position is given in Increments, target speed in
Increments/s and target acceleration in Increments/s².

PCube_moveRampExtended Starts a ramp motion profile of the module specified by deviceID and
moduleID. The target position is given in rad resp. m, target speed in
rad/s resp. m/s and target acceleration in rad/s² resp. m/s². Results of this
call are State, actual position and Digital IO state (like
PCube_getStatePosDio).

Constant speed motion Function Description

PCube_moveVel Starts a constant speed motion. Target speed is specified in rad/s resp.
m/s.

PCube_moveVelInc Starts a constant speed motion. Target speed is specified in
Increments/s.

PCube_moveVelExtended Starts a constant speed motion. Target speed is specified in rad/s resp.
m/s. Results of this call are State, actual position and Digital IO state (like
PCube_getStatePosDio).

Constant current motion Function Description

PCube_moveCur Starts a constant current motion. The target currrent is specified in A.
PCube_moveCurInc Starts a constant current motion. The target currrent is specified in Digits.

PCube_moveCurExtended Starts a constant current motion. The target currrent is specified in A.
Results of this call are State, actual position and Digital IO state (like
PCube_getStatePosDio).

Motion with specification of
target position and time

Function Description

PCube_moveStep Starts motion to the target position specified in rad resp. m. Target time
for the ride is specified in ms.

PCube_moveStepInc Starts motion to the target position specified in increments. Target time for
the ride is specified in ms.

PCube_moveStepExtended Starts motion to the target position specified in rad resp. m. Target time
for the ride is specified in ms. Results of this call are State, actual position
and Digital IO state (like PCube_getStatePosDio).

Synchronized Start of all
drives with new targets

Function Description

 PCube_startMotionAll If the configuration of all connected modules has been altered (see
module configuration) a synchronous motion command can be issued. By
sending PCube_startMotionAll all connected modules start their motion
command at exactly the same time. For CAN-Bus only.

Function Description Description

PCube_initEMS_IO Initializes an EMS module on the bus specified by deviceID, Type and
Serial number. Result of this call is a valid moduleID for the chosen EMS
module. For CAN-Bus only.

PCube_getDataEMS_DIO Retrieves data from the EMS module specified by deviceID and
moduleID. Result is the state of the channel specified by channelID. The
moduleID must have been requested prior to this using
PCube_initEMS_IO. For CAN-Bus only. For Digital EMS IO-Moduls only.

PCube_getDataEMS_AIO Retrieves data from the EMS module specified by deviceID and
moduleID. Result is the value of the channel specified by channelID. The
moduleID must have been requested prior to this using
PCube_initEMS_IO. For CAN-Bus only. For Analog EMS IO-Moduls only.

PCube_setDataEMS_DIO Sets data on the EMS module specified by deviceID and moduleID. The
state given is transferred to the channel chosen with channelID. For CAN-
Bus only. For Digital EMS IO-Moduls only.

amtec robotics GmbH Programmers guide for PowerCube.doc Page 17

Function Description Description
PCube_initEMS_IO Initializes an EMS module on the bus specified by deviceID, Type and

Serial number. Result of this call is a valid moduleID for the chosen EMS
module. For CAN-Bus only.

 PCube_setDataEMS_AIO Sets data on the EMS module specified by deviceID and moduleID. The
value given is transferred to the channel chosen with channelID. For
CAN-Bus only. For Analog EMS IO-Moduls only.

Retrieve data from DLR
Force torque sensor

Function Description

PCube_initDLR_FTS Initializes the Force Ttorque sensor on the bus by specifiing the deviceID.
For CAN-Bus only. Only one Sensor per device (bus) is allowed.

PCube_getDataDLR_FTS Retrieves data from the Force Torque sensor. Results are 3 force values
(X,Y,Z) and 3 torque values (X,Y,Z) as well as the sensor state. For CAN-
Bus only.

Retrieve data from SCHUNK
Force torque sensor

Function Description

PCube_getDataSCHUNK_FT
C

Retrieves data from the Force Torque sensor. Results are 3 force values
(X,Y,Z) and 3 torque values (X,Y,Z) or 3 translation values (X,Y,Z) and 3
rotation values (X,Y,Z) as well as the sensor state. For CAN-Bus only.

PCube_setNullSCHUNK_FT
C

Nulls the Force Torque sensor. Results is the sensor state. For CAN-Bus
only.

Retrieve data from MP55,
produced by HBM

Function Description

PCube_getDataMP55_IO Retrieves the actual measurement data from a MP55 specified by
deviceID and moduleID. For CAN-Bus only.

PCube_setTaraMP55_IO Tares the MP55 specified by deviceID and moduleID. For CAN-Bus only.

Time functions Function Description
PCube_getPosTime Retrieves the actual position with a time stamp. Time is measured in

Milliseconds and counts from 0 to 65536 ms (ca. 65s).
PCube_resetTime Resets the internal clock to zero.

PCube_resetTimeAll Resets the clock of all bus connected drives to zero. For CAN-Bus only.

Set Position Function Description

PCube_setPos Sets a new position value in rad rsp. m. Works only when drive is not in
motion!

PCube_setPosInc Sets a new position value in encoder ticks. Works only when drive is not
in motion!

Functions for Scanners Function Description

PCube_getScannerPosFallEd
ge

Retrieves the position saved upon trigger occurence „Falling edge on
input SW3“. Returns the last position saved at trigger time in rad rsp. m.

PCube_getScannerPosRisgE
dge

Retrieves the position saved upon trigger occurence „Rising edge on
input SW3“. Returns the last position saved at trigger time in rad rsp. m.

PCube_moveCosLoop Starts an automatic continous Loop between actual and target position.
Spee dis a result of the given period time for one complete sweep. The
speed follows a sine profile.

PCube_moveRampLoop Starts an automatic continous Loop between actual and target position.
Speed and acceleration need to be configured up front. The speed follows
a trapezoidal profile.

