Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments
Outline
Outline

Introduction
Motivations and Applications

Geometric Correction
Planar, Non-Trivial, Complex Surfaces

Radiometric Compensation
Local and Global Light Effects

Advanced Techniques
View-Dependence, Multi-Focal Projection, Light Transport

Outlook
Limitations and Future Work

these slides:
www.uni-weimar.de/medien/AR
Introduction
Evolving Evolution
Evolving Evolution

50s 60s 70s 80s 90s 2k

VR

AR

Spatial

Mobile

O. Bimber

Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments

04/01/06
Motivation: Projection
Motivation: Projection
Application: Historic Sites and Museums
Application: Historic Sites and Museums

360° Surround Projection in Castel Tower
(Running project in coop. with Bennert Group)
Application: Architectural Visualization
Application: Architectural Visualization

Bimber et al, IEEE/ACM ISMAR 2005

On-Site Architectural Visualizations
(Running project in coop. with Architecture Faculty, BUW)
Application: Pocket Projectors
Application: Pocket Projectors

Courtesy: InFocus

Courtesy: Siemens

O. Bimber

Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments

04/01/06
Principle

original image observed projection

O. Bimber Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments 04/01/06
Some Challenges
Some Challenges

color blending
Some Challenges

color blending

geometric warping
Some Challenges

- color blending
- geometric warping
- misregistration
Some Challenges

- color blending
- geometric warping
- misregistration
- regional defocus
Some Challenges

color blending
geometric warping
misregistration
regional defocus

scattering
Some Challenges

color blending geometric warping misregistration regional defocus

scattering specular reflection, refraction, sub-surface scattering, inter-reflections, dispersion, diffraction, etc.
A Multi-Projector-Camera Approach

real-time image correction
A Multi-Projector-Camera Approach
Geometric Correction
Planar Surfaces
Homography
Homography

- Homography is a mapping between two projections over a plane.
- It can map pixel coordinates from one perspective to another.
- An equation system has to be solved to determine 8 parameters of matrix A.
- It can be used directly in transformation pipeline by multiplying the following matrix after projection (without perspective division):

$$A_{4 \times 4} = \begin{bmatrix}
 a_{11} & a_{12} & 0 & a_{13} \\
 a_{21} & a_{22} & 0 & a_{23} \\
 0 & 0 & 1 & 0 \\
 a_{31} & a_{32} & 0 & 1 \\
\end{bmatrix}$$

- Ensure intact depth values with (approximately)
Multi-Projector Registration
Multi-Projector Registration

- registering multiple projectors onto a common planar surface
- map all perspective into a single target perspective via homographies
- target perspective can be camera perspective
 - automatic determination of matrix parameters via structured light
- rendering
 - render image for target perspective (if target perspective is orthogonal to plane, then it can be done with an off-axis projection of an observer!)
 - map pixels into individual projector views (i.e., multiply 4x4 version of homography matrix onto matrix stack [after projection] and ensure that depth values remain intact!)
Example: Tiled Projection Screens
Example: Tiled Projection Screens

Courtesy: Brown, et al., IEEE TVCG, 2005
Non-Trivial Surfaces
Non-Trivial Surfaces
Non-Trivial Surfaces

parametric surfaces: warping can be computed using parametric description (projectors have to be registered)
Projective Texture Mapping
Projective Texture Mapping

- given a geometric definition of the surface
 - scan or model
- determine intrinsic and extrinsic of projectors with respect to surface
 - measure projections of known 3D surface points on image plane of projector and solve equation system to determine parameters of matrix
- define virtual camera with same parameter for each projector
- render 3D model of surface, textured with images, from perspective of projectors/virtual cameras
- texture coordinates can be automatically generated from target perspective via projective texture mapping
Example: Shader Lamps
Example: Shader Lamps

Courtesy: Raskar, et al., EGRW 2001
Complex Surfaces
Complex Surfaces

O. Bimber
Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments
04/01/06
Pixel Displacement Mapping
Pixel Displacement Mapping

- registering projections to such a surface by determining their intrinsic and extrinsic is too imprecise
 - non-linear lens distortion
 - errors in measuring fiducials
- rendering of 3D surface representation from perspective of projector might be too slow
 - high geometric complexity of model
 - many triangles to render
 - project, raster, texture
- measure per-pixel mapping between projector perspectives and target perspective (e.g., camera)
- render image from target perspective and map it (look-up) into perspective of projectors (e.g., pixel-shading)
Pixel Displacement Mapping

- registering projections to such a surface by determining their intrinsic and extrinsic is too imprecise
 - non-linear lens distortion
 - errors in measuring fiducials
- rendering of 3D surface representation from perspective of projector might be too slow
 - high geometric complexity of model
 - many triangles to render
 - project, raster, texture
- measure per-pixel mapping between projector perspectives and target perspective (e.g., camera)
- render image from target perspective and map it (look-up) into perspective of projectors (e.g., pixel-shading)

Problem:
works only for static target perspective!
(but image-based rendering approaches exist)
Example: Stucco Wall
Example: Stucco Wall
Example: Fossil Cast
Example: Fossil Cast

In coop. with Senckenberg Museum
Example: Scruffy Room Corner
Example: Scruffy Room Corner

Bimber et al., IEEE Computer 2005
Radiometric Compensation
Photometric Calibration
Photometric Calibration

- regions of display surfaces that are illuminated by multiple projectors simultaneously appear brighter
- projectors can have different brightness and can cover a different color space
- result: inconsistent image (intensity and color)
- humans can perceive 2% difference in brightness and a color variation of 2nm
- variations in brightness is more critical than variation in color
- solutions: intensity blending and color space mapping
- these techniques are not explained here!
- we assume that projectors and cameras are linearized and color mapped
Compensating Local Light Effects
Compensating Local Light Effects
Single Projector
Single Projector

\[R = IFM + EM \]

- \(I \rightarrow \) projected image
- \(B \rightarrow \) black-level
- \(F \rightarrow \) projector-2-surface form factor
- \(E \rightarrow \) environment light
- \(M \rightarrow \) surface reflectance (diffuse)
Single Projector
determining parameters (textures):

\[R = IFM + EM \]

- I \(\rightarrow\) projected image
- B \(\rightarrow\) black-level
- F \(\rightarrow\) projector-2-surface form factor
- E \(\rightarrow\) environment light
- M \(\rightarrow\) surface reflectance (diffuse)
Single Projector

determining parameters (textures):

1. turn off environment light and project black flood image

\[R = I \times F + E \]

- \(R \) \rightarrow projected image
- \(I \) \rightarrow black-level
- \(F \) \rightarrow projector-2-surface form factor
- \(E \) \rightarrow environment light
- \(M \) \rightarrow surface reflectance (diffuse)
Single Projector

determining parameters (textures):
(1) turn off environment light and project black flood image
I=0,E=0 \rightarrow BFM

R=IFM+EM

- I \rightarrow \text{projected image}
- B \rightarrow \text{black-level}
- F \rightarrow \text{projector-2-surface form factor}
- E \rightarrow \text{environment light}
- M \rightarrow \text{surface reflectance (diffuse)}
Single Projector

determining parameters (textures):

1. turn off environment light and project black flood image
 \[I=0, E=0 \rightarrow BFM \]

2. turn on environment light and project black flood image

\[R=IFM+EM \]

- \(I \rightarrow \) projected image
- \(B \rightarrow \) black-level
- \(F \rightarrow \) projector-2-surface form factor
- \(E \rightarrow \) environment light
- \(M \rightarrow \) surface reflectance (diffuse)
Single Projector

determining parameters (textures):

(1) turn off environment light and project black flood image

I=0, E=0 \rightarrow BFM

(2) turn on environment light and project black flood image

I=0, E=1 \rightarrow EM (incl. BFM !)

$R = IFM + EM$

- $I \rightarrow$ projected image
- $B \rightarrow$ black-level
- $F \rightarrow$ projector-2-surface form factor
- $E \rightarrow$ environment light
- $M \rightarrow$ surface reflectance (diffuse)
Single Projector

determining parameters (textures):

1. turn off environment light and project black flood image
 \(I=0, E=0 \rightarrow BFM \)

2. turn on environment light and project black flood image
 \(I=0, E=1 \rightarrow EM \) (incl. BFM !)

3. turn off environment light and

\[R = IFM + EM \]

\(I \rightarrow \) projected image
\(B \rightarrow \) black-level
\(F \rightarrow \) projector-2-surface form factor
\(E \rightarrow \) environment light
\(M \rightarrow \) surface reflectance (diffuse)
Single Projector

determining parameters (textures):

(1) turn off environment light and project black flood image
 \(I=0, E=0 \) \(\rightarrow \) BFM

(2) turn on environment light and project black flood image
 \(I=0, E=1 \) \(\rightarrow \) EM (incl. BFM !)

(3) turn off environment light and project white flood image

\[R = IFM + EM \]

I \(\rightarrow \) projected image
B \(\rightarrow \) black-level
F \(\rightarrow \) projector-2-surface form factor
E \(\rightarrow \) environment light
M \(\rightarrow \) surface reflectance (diffuse)
Single Projector

determining parameters (textures):

1. Turn off environment light and project black flood image
 \[I=0, E=0 \rightarrow BFM \]

2. Turn on environment light and project black flood image
 \[I=0, E=1 \rightarrow EM \text{ (incl. BFM !)} \]

3. Turn off environment light and project white flood image
 \[I=1, E=0 \rightarrow FM \text{ (incl. BFM !)} \]

\[R = IFM + EM \]

- \(I \rightarrow \) projected image
- \(B \rightarrow \) black-level
- \(F \rightarrow \) projector-2-surface form factor
- \(E \rightarrow \) environment light
- \(M \rightarrow \) surface reflectance (diffuse)
Single Projector

determining parameters (textures):

1. turn off environment light and project black flood image
 \[I=0, E=0 \rightarrow BFM \]

2. turn on environment light and project black flood image
 \[I=0, E=1 \rightarrow EM \text{ (incl. BFM !)} \]

3. turn off environment light and project white flood image
 \[I=1, E=0 \rightarrow FM \text{ (incl. BFM !)} \]
 \[\rightarrow FM=FM-BFM \]

\[R=IFM+EM \]

- \(R \rightarrow \) projected image
- \(B \rightarrow \) black-level
- \(F \rightarrow \) projector-2-surface form factor
- \(E \rightarrow \) environment light
- \(M \rightarrow \) surface reflectance (diffuse)
Single Projector

determining parameters (textures):

(1) turn off environment light and project black flood image
 \[I=0, E=0 \rightarrow BFM \]

(2) turn on environment light and project black flood image
 \[I=0, E=1 \rightarrow EM \text{ (incl. BFM !)} \]

(3) turn off environment light and project white flood image
 \[I=1, E=0 \rightarrow FM \text{ (incl. BFM !)} \]
 \[\rightarrow FM=FM-BFM \]

compensation (per pixel):

\[R=IFM+EM \]

I \rightarrow \text{projected image}
B \rightarrow \text{black-level}
F \rightarrow \text{projector-2-surface form factor}
E \rightarrow \text{environment light}
M \rightarrow \text{surface reflectance (diffuse)}
Single Projector

determining parameters (textures):

(1) turn off environment light and project black flood image
 \[I=0, E=0 \rightarrow BFM \]

(2) turn on environment light and project black flood image
 \[I=0, E=1 \rightarrow EM \text{ (incl. BFM !)} \]

(3) turn off environment light and project white flood image
 \[I=1, E=0 \rightarrow FM \text{ (incl. BFM !)} \]
 \[\rightarrow FM=FM-BFM \]

compensation (per pixel):
\[I=(R-EM)/(FM) \]

\(R=IFM+EM \)
- \(I \rightarrow \) projected image
- \(B \rightarrow \) black-level
- \(F \rightarrow \) projector-2-surface form factor
- \(E \rightarrow \) environment light
- \(M \rightarrow \) surface reflectance (diffuse)
Color Mixing
Color Mixing

\[V = \begin{bmatrix} V_{RR} & V_{RG} & V_{RB} \\ V_{GR} & V_{GG} & V_{GB} \\ V_{BR} & V_{BG} & V_{BB} \end{bmatrix} \]

\[R = V \cdot I \]

- \(I \rightarrow \) projected image
- \(V \rightarrow \) color mixing matrix
- \(V \) \((\text{projector/camera/reflectance})\)
Color Mixing

\[
V = \begin{bmatrix}
V_{RR} & V_{RG} & V_{RB} \\
V_{GR} & V_{GG} & V_{GB} \\
V_{BR} & V_{BG} & V_{BB}
\end{bmatrix}
\]

(per pixel)

\[R = V*I\]

- \(I\) → projected image
- \(V\) → color mixing matrix
- \(V\) (projector/camera/reflectance)

Nayar et al, CVPR 2004
Color Mixing

determining color mixing matrix V:

$$V = \begin{bmatrix}
V_{RR} & V_{RG} & V_{RB} \\
V_{GR} & V_{GG} & V_{GB} \\
V_{BR} & V_{BG} & V_{BB}
\end{bmatrix}$$

V (per pixel)

red in red green in red blue in red

\Rightarrow FM (in un-normalized matrix)

$R = V \cdot I$

$I \rightarrow$ projected image
$V \rightarrow$ color mixing matrix
(projector/camera/reflectance)
Color Mixing

determining color mixing matrix V:

for un-normalized matrix: (camera and projector response must be known and linearized):

$$V = \begin{bmatrix}
V_{RR} & V_{RG} & V_{RB} \\
V_{GR} & V_{GG} & V_{GB} \\
V_{BR} & V_{BG} & V_{BB}
\end{bmatrix}$$

$R = V \cdot I$

$I \rightarrow$ projected image
$V \rightarrow$ color mixing matrix
(projector/camera/reflectance)

Nayar et al, CVPR 2004
Color Mixing

determining color mixing matrix V:

for un-normalized matrix: (camera and projector response must be known and linearized):

capture 9+ images \rightarrow least squares

$$ V = \begin{bmatrix} V_{RR} & V_{RG} & V_{RB} \\ V_{GR} & V_{GG} & V_{GB} \\ V_{BR} & V_{BG} & V_{BB} \end{bmatrix} $$

V (per pixel)

$R = V \cdot I$

I \rightarrow projected image
V \rightarrow color mixing matrix
(projector/camera/reflectance)

Nayar et al, CVPR 2004
Color Mixing

determining color mixing matrix V:

for un-normalized matrix: (camera and projector response must be known and linearized):

capture 9+ images \rightarrow least squares

for normalized matrix (camera response must be known, projector response can be unknown):

\[
V = \begin{bmatrix}
V_{RR} & V_{RG} & V_{RB} \\
V_{GR} & V_{GG} & V_{GB} \\
V_{BR} & V_{BG} & V_{BB}
\end{bmatrix}
\]

\rightarrow FM (in un-normalized matrix)

\[R = V*I\]

$I \rightarrow$ projected image

$V \rightarrow$ color mixing matrix

(projector/camera/reflectance)
Color Mixing

determining color mixing matrix V:

- **for un-normalized matrix**: (camera and projector response must be known and linearized):

 capture 9+ images \rightarrow least squares

- **for normalized matrix** (camera response must be known, projector response can be unknown):

 diagonals are 1 (unknown scaling)

\[
V = \begin{bmatrix}
V_{RR} & V_{RG} & V_{RB} \\
V_{GR} & V_{GG} & V_{GB} \\
V_{BR} & V_{BG} & V_{BB}
\end{bmatrix}
\]

\rightarrow FM (in un-normalized matrix)

\[
R = V \cdot I
\]

$I \rightarrow$ projected image

$V \rightarrow$ color mixing matrix

(projector/camera/reflectance)

Nayar et al, CVPR 2004
Color Mixing

determining color mixing matrix V:

for un-normalized matrix: (camera and projector response must be known and linearized):
- capture $9+$ images \Rightarrow least squares

for normalized matrix (camera response must be known, projector response can be unknown):
- diagonals are 1 (unknown scaling)
- off-diagonals are $V_{ij} = \Delta C_j / \Delta I_i = \Delta C_j / \Delta R_i$

\[V = \begin{bmatrix} V_{RR} & V_{RG} & V_{RB} \\ V_{GR} & V_{GG} & V_{GB} \\ V_{BR} & V_{BG} & V_{BB} \end{bmatrix} \]

\Rightarrow FM (in un-normalized matrix)

$R = V*I$

$I \rightarrow$ projected image

$V \rightarrow$ color mixing matrix

(projector/camera/reflectance)
Color Mixing

determining color mixing matrix V:

for un-normalized matrix: (camera and projector response must be known and linearized):
- capture 9+ images \rightarrow least squares

for normalized matrix (camera response must be known, projector response can be unknown):
- diagonals are 1 (unknown scaling)
- off-diagonals are $V_{ij} = \frac{\Delta C_j}{\Delta I_i} = \frac{\Delta C_j}{\Delta R_i}$ (since $V_{ii} = 1$, $\Delta I_i = \Delta C_i$)

$R = V \cdot I$

$I \rightarrow$ projected image
$V \rightarrow$ color mixing matrix
(projector/camera/reflectance)
Color Mixing

determining color mixing matrix V:

for un-normalized matrix: (camera and projector response must be known and linearized):

capture 9+ images \rightarrow least squares

for normalized matrix (camera response must be known, projector response can be unknown):

diagonals are 1 (unknown scaling)
off-diagonals are $V_{ij} = \Delta C_j / \Delta I_i = \Delta C_j / \Delta R_i$
(since $V_{ii} = 1$, $\Delta I_i = \Delta C_i$)
capture 6 images C (2 per color channel)

$$V = \begin{bmatrix} V_{RR} & V_{RG} & V_{RB} \\ V_{GR} & V_{GG} & V_{GB} \\ V_{BR} & V_{BG} & V_{BB} \end{bmatrix}$$

\rightarrow FM (in un-normalized matrix)

$R = V \ast I$

$I \rightarrow$ projected image
$V \rightarrow$ color mixing matrix (projector/camera/reflectance)
Color Mixing

determining color mixing matrix V:

for un-normalized matrix: (camera and projector response must be known and linearized):
- capture 9+ images \rightarrow least squares

for normalized matrix (camera response must be known, projector response can be unknown):
- diagonals are 1 (unknown scaling)
- off-diagonals are $V_{ij} = \Delta C_j / \Delta I_i = \Delta C_j / \Delta R_i$
 (since $V_{ii} = 1$, $\Delta I_i = \Delta C_i$)
- capture 6 images C (2 per color channel to determine deltas)

$$V = \begin{bmatrix}
V_{RR} & V_{RG} & V_{RB} \\
V_{GR} & V_{GG} & V_{GB} \\
V_{BR} & V_{BG} & V_{BB}
\end{bmatrix}$$

\rightarrow FM (in un-normalized matrix)

$R = V \times I$

$I \rightarrow$ projected image
$V \rightarrow$ color mixing matrix
(projector/camera/reflectance)
Color Mixing

determining color mixing matrix V:

for un-normalized matrix: (camera and projector response must be known and linearized):
- capture $9+$ images \rightarrow least squares

for normalized matrix (camera response must be known, projector response can be unknown):
- diagonals are 1 (unknown scaling)
- off-diagonals are $V_{ij} = \Delta C_j / \Delta I_i = \Delta C_j / \Delta R_i$
 (since $V_{ii} = 1$, $\Delta I_i = \Delta C_i$)
- capture 6 images \mathbf{C} (2 per color channel to determine deltas)

\[
V = \begin{bmatrix}
V_{RR} & V_{RG} & V_{RB} \\
V_{GR} & V_{GG} & V_{GB} \\
V_{BR} & V_{BG} & V_{BB}
\end{bmatrix}
\]

\rightarrow FM (in un-normalized matrix)

$R = V \ast I$

$I \rightarrow$ projected image

$V \rightarrow$ color mixing matrix

(projector/camera/reflectance)
Color Mixing

determining color mixing matrix V:

for un-normalized matrix: (camera and projector response must be known and linearized):
- capture 9+ images \rightarrow least squares

for normalized matrix (camera response must be known, projector response can be unknown):
- diagonals are 1 (unknown scaling)
- off-diagonals are $V_{ij} = \Delta C_j / \Delta I_i = \Delta C_j / \Delta R_i$
 (since $V_{ii} = 1$, $\Delta I_i = \Delta C_i$)
- capture 6 images C (2 per color channel to determine deltas)

compensation (per pixel):

$R = V \ast I$

- I \rightarrow projected image
- V \rightarrow color mixing matrix
 (projector/camera/reflectance)
Color Mixing

determining color mixing matrix V:

for un-normalized matrix: (camera and projector response must be known and linearized):
- capture 9+ images \rightarrow least squares

for normalized matrix (camera response must be known, projector response can be unknown):
- diagonals are 1 (unknown scaling)
- off-diagonals are $V_{ij} = \Delta C_j / \Delta I_i = \Delta C_j / \Delta R_i$
 (since $V_{ii} = 1$, $\Delta I_i = \Delta C_i$)
- capture 6 images C (2 per color channel to determine deltas)

compensation (per pixel):
- $I = V^{-1} * R$ (does not consider

\[R = V * I \]

$I \rightarrow$ projected image
$V \rightarrow$ color mixing matrix
(projector/camera/reflectance)
Color Mixing

determining color mixing matrix V:

- **for un-normalized matrix**: (camera and projector response must be known and linearized):
 - capture 9+ images \rightarrow least squares

- **for normalized matrix**: (camera response must be known, projector response can be unknown):
 - diagonals are 1 (unknown scaling)
 - off-diagonals are $V_{ij} = \frac{\Delta C_j}{\Delta I_i} = \frac{\Delta C_j}{\Delta R_i}$
 (since $V_{ii} = 1$, $\Delta I_i = \Delta C_i$)
 - capture 6 images C (2 per color channel to determine deltas)

compensation (per pixel):

$I = V^{-1}R$ (does not consider environment light!)

$R = V*I$

I \rightarrow projected image
V \rightarrow color mixing matrix
(projector/camera/reflectance)
Dynamic Adaptation
Dynamic Adaptation

\[R_t = \frac{M_t}{M_0} \cdot (E_t \cdot M_0 + V_0 \cdot I_t) \]

- \(t \rightarrow \) time index
- \(I_t \rightarrow \) projected image at \(t \)
- \(V_0 \rightarrow \) un-normalized color mixing matrix at \(t=0 \) (const.)
- \(M_t \rightarrow \) material at \(t \)
- \(M_0 \rightarrow \) material at \(t=0 \)
- \(E_t \rightarrow \) environment light at \(t=0 \)
Dynamic Adaptation

determining color mixing matrix V_0:

$$R_t = \frac{M_t}{M_0} (E_t M_0 + V_0 I_t)$$

t → time index
I_t → projected image at t
V_0 → un-normalized color mixing matrix at $t=0$ (const.)
M_t → material at t
M_0 → material at $t=0$
E_t → environment light at $t=0$
Dynamic Adaptation

determining color mixing matrix V_0: similar as before: $V_{ij} = \Delta C_j / \Delta I_i$

\[
R_t = M_t / M_0 \cdot (E_t \cdot M_0 + V_0 \cdot I_t)
\]

- t → time index
- I_t → projected image at t
- V_0 → un-normalized color mixing matrix at $t=0$ (const.)
- M_t → material at t
- M_0 → material at $t=0$
- E_t → environment light at $t=0$

Fujii et al, CVPR 2005
Dynamic Adaptation

determining color mixing matrix \(V_0 \):

similar as before: \(V_{ij} = \Delta C_j / \Delta I_i \)

(un-normalized!)

\[
R_t = \frac{M_t}{M_0} (E_t * M_0 + V_0 * I_t)
\]

- \(t \) \rightarrow time index
- \(I_t \) \rightarrow projected image at \(t \)
- \(V_0 \) \rightarrow un-normalized color mixing matrix at \(t=0 \) (const.)
- \(M_t \) \rightarrow material at \(t \)
- \(M_0 \) \rightarrow material at \(t=0 \)
- \(E_t \) \rightarrow environment light at \(t=0 \)
Dynamic Adaptation

determining color mixing matrix V_0:
similar as before: $V_{ij} = \Delta C_j / \Delta I_i$
(un-normalized!)

determine reflected environment

$$R_t = M_t / M_0 \cdot (E_t \cdot M_0 + V_0 \cdot I_t)$$

t → time index
I_t → projected image at t
V_0 → un-normalized color mixing
matrix at $t=0$ (const.)
M_t → material at t
M_0 → material at $t=0$
E_t → environment light at $t=0$

Fujii et al, CVPR 2005
Dynamic Adaptation

determining color mixing matrix V_0:

similar as before: $V_{ij} = \frac{\Delta C_j}{\Delta I_i}$

(un-normalized!)

determine reflected environment light $E_0 * M_0$ at $t=0$:

$$R_t = \frac{M_t}{M_0} * (E_t * M_0 + V_0 * I_t)$$

where:

- R_t \rightarrow \text{time index}
- I_t \rightarrow \text{projected image at t}
- V_0 \rightarrow \text{un-normalized color mixing matrix at $t=0$ (const.)}
- M_t \rightarrow \text{material at t}
- M_0 \rightarrow \text{material at $t=0$}
- E_t \rightarrow \text{environment light at $t=0$}
Dynamic Adaptation

determining color mixing matrix V_0:
 similar as before: $V_{ij} = \frac{\Delta C_j}{\Delta I_i}$
 (un-normalized!)

determine reflected environment light $E_0^*M_0$ at $t=0$:
 $E_0^*M_0 = C - V_0^*I$ (project

$R_t = M_t/M_0^*(E_t^*M_0 + V_0^*I_t)$
 $t \rightarrow$ time index
 $I_t \rightarrow$ projected image at t
 $V_0 \rightarrow$ un-normalized color mixing matrix at $t=0$ (const.)
 $M_t \rightarrow$ material at t
 $M_0 \rightarrow$ material at $t=0$
 $E_t \rightarrow$ environment light at $t=0$
Dynamic Adaptation

determining color mixing matrix V_0:

similar as before: $V_{ij} = \Delta C_j / \Delta I_i$

(un-normalized!)

determine reflected environment light $E_0 * M_0$ at $t=0$:

$E_0 * M_0 = C - V_0 * I$ (project arbitrary I and capture C)

$R_t = M_t / M_0 * (E_t * M_0 + V_0 * I_t)$

t → time index

I_t → projected image at t

V_0 → un-normalized color mixing matrix at $t=0$ (const.)

M_t → material at t

M_0 → material at $t=0$

E_t → environment light at $t=0$
Dynamic Adaptation

determining color mixing matrix \(V_0 \):

similar as before: \(V_{ij} = \Delta C_j / \Delta I_i \)
(un-normalized!)

determine reflected environment light \(E_0 \cdot M_0 \) at \(t=0 \):

\[
E_0 \cdot M_0 = C - V_0 \cdot I
\]
(project arbitrary \(I \) and capture \(C \))

compensation (per pixel at \(t \)):

\[
R_t = \frac{M_t}{M_0} \cdot (E_t \cdot M_0 + V_0 \cdot I_t)
\]

\(t \) → time index
\(I_t \) → projected image at \(t \)
\(V_0 \) → un-normalized color mixing matrix at \(t=0 \) (const.)
\(M_t \) → material at \(t \)
\(M_0 \) → material at \(t=0 \)
\(E_t \) → environment light at \(t=0 \)
Dynamic Adaptation

determining color mixing matrix V_0:
similar as before: $V_{ij} = \Delta C_j / \Delta I_i$
(un-normalized!)

determine reflected environment light $E_0 * M_0$ at $t=0$:

$$E_0 * M_0 = C - V_0 * I$$
(project arbitrary I and capture C)

compensation (per pixel at t):

$$I_t = V_0^{-1} * (R * M_0 / M_{t-1} - E_{t-1} * M_0)$$

$$R_t = M_t / M_0 * (E_t * M_0 + V_0 * I_t)$$

t → time index
I_t → projected image at t
V_0 → un-normalized color mixing matrix at $t=0$ (const.)
M_t → material at t
M_0 → material at $t=0$
E_t → environment light at $t=0$
Dynamic Adaptation

determining color mixing matrix V_0:

similar as before: $V_{ij} = \Delta C_j / \Delta I_i$

(un-normalized!)

determine reflected environment light $E_0 * M_0$ at $t=0$:

$E_0 * M_0 = C - V_0 * I$ (project arbitrary I and capture C)

compensation (per pixel at t):

$I_t = V_0^{-1} * (R * M_0 / M_{t-1} - E_{t-1} * M_0)$

$\rightarrow E_{t-1} * M_0 \text{ approx. } E_0 * M_0$

$R_t = M_t / M_0 * (E_t * M_0 + V_0 * I_t)$

t \rightarrow time index
$l_t \rightarrow$ projected image at t
$V_0 \rightarrow$ un-normalized color mixing matrix at $t=0$ (const.)
$M_t \rightarrow$ material at t
$M_0 \rightarrow$ material at $t=0$
$E_t \rightarrow$ environment light at $t=0$
Dynamic Adaptation

determining color mixing matrix V_0:
similar as before: $V_{ij} = \Delta C_j / \Delta I_i$
(un-normalized!)

determine reflected environment light $E_0 * M_0$ at $t=0$:

$$E_0 * M_0 = C - V_0 * I$$ (project arbitrary I and capture C)

compensation (per pixel at t):

$$I_t = V_0^{-1} (R * M_0 / M_{t-1} - E_{t-1} * M_0)$$

$E_{t-1} * M_0$ approx. $E_0 * M_0$

$M_0 / M_{t-1} = C_0 / C_{t-1}$

$$R_t = M_t / M_0 * (E_t * M_0 + V_0 * I_t)$$

t → time index

I_t → projected image at t

V_0 → un-normalized color mixing matrix at $t=0$ (const.)

M_t → material at t

M_0 → material at $t=0$

E_t → environment light at $t=0$
Limited Dynamic Range and Brightness
Limited Dynamic Range and Brightness
Limited Dynamic Range and Brightness
Multiple Projectors
Multiple Projectors

\[R = EM + I_1 F_1 M + I_2 F_2 M + \ldots + I_N F_N M \]
Multiple Projectors

strategy: balance intensity load

\[R = EM + I_1F_1M + I_2F_2M + \ldots + I_NF_NM \]
Multiple Projectors

strategy: balance intensity load

- assume: total intensity is equally balanced among multiple low-capacity units

\[I_i = I_1 = I_2 = \ldots = I_N \]

\[R = EM + I_1 F_1 M + I_2 F_2 M + \ldots + I_N F_N M \]
Multiple Projectors

strategy: balance intensity load

- assume: total intensity is equally balanced among multiple low-capacity units

\[I_i = I_1 = I_2 = ... = I_N \]

\[R = EM + I_1 F_1 M + I_2 F_2 M + ... + I_N F_N M \]

\[EM + I(F_1 + F_2 + ... + F_N)M \]
Multiple Projectors

strategy: balance intensity load

- assume: total intensity is equally balanced among multiple low-capacity units

\[I_i = I_1 = I_2 = \ldots = I_N \]

\[R = EM + I_1F_1M + I_2F_2M + \ldots + I_NF_NM \]

\[\Rightarrow EM + I(F_1 + F_2 + \ldots + F_N)M \]
Multiple Projectors

strategy: balance intensity load

- assume: total intensity is equally balanced among multiple low-capacity units
 \[I_i = I_1 = I_2 = \ldots = I_N \]

- this is equivalent to the assumption that a single high capacity projector produces the total intensity arriving on the surface virtually

\[R = EM + I_1 F_1 M + I_2 F_2 M + \ldots + I_N F_N M \]
Multiple Projectors

strategy: balance intensity load

- assume: total intensity is equally balanced among multiple low-capacity units
 \[I_i = I_1 = I_2 = \ldots = I_N \]

- this is equivalent to the assumption that a single high capacity projector produces the total intensity arriving on the surface virtually
 \[R = EM + I_i(F_1M + F_2M + \ldots + F_NM) \]
 \[\Rightarrow EM + I(F_1 + F_2 + \ldots + F_N)M \]
Multiple Projectors

strategy: balance intensity load

- assume: total intensity is equally balanced among multiple low-capacity units
 \[I_i = I_1 = I_2 = \ldots = I_N \]

- this is equivalent to the assumption that a single high capacity projector produces the total intensity arriving on the surface virtually

\[R = EM + I_i(F_1M + F_2M + \ldots + F_NM) \Rightarrow EM + I(F_1 + F_2 + \ldots + F_N)M \]

compensation (per pixel):
Multiple Projectors

strategy: balance intensity load

- assume: total intensity is equally balanced among multiple low-capacity units

\[I_i = I_1 = I_2 = \ldots = I_N \]

- this is equivalent to the assumption that a single high capacity projector produces the total intensity arriving on the surface virtually

\[
R = EM + I_i(F_1M + F_2M + \ldots + F_NM) \\
\rightarrow EM + I(F_1 + F_2 + \ldots F_N)M
\]

compensation (per pixel):

\[I_i = (R-EM)/(F_1M + F_2M + \ldots + F_NM) \]

remember: \(F_iM = F_iM-B_iF_iM \) !

or \(BFM = B_1F_1M + \ldots + B_iF_iM \)

Bimber et al, IEEE Computer 2005
Considering Human Visual Perception
Considering Human Visual Perception

threshold map (Ramasubramanian et al. Siggraph’99)

- computes for every pixel of an image R the amount of luminance difference that is imperceptible
- considers contrast, luminance and spatial frequency in local neighborhood

adaptation of un-compensated (original) image R:

- compute and apply a single (global) scaling factor $R' = R^\alpha$ that minimizes the perceived error (Wang, et al. 2005, only monochrome, not real-time, single projector)
- coming soon: color, real-time, global and local adaptation, potentially multiple projectors
Example: Curtain
Example: Curtain

Bimber et al, IEEE Computer 2005
Example: Fossil
Example: Fossil

In coop. with Senckenberg Museum
Example: Natural Stone Wall
Example: Natural Stone Wall

Bimber et al, IEEE Computer 2005
In coop. with Bennert Group
Example: Wallpaper
Example: Wallpaper

Bimber et al, IEEE Computer 2005
Compensating Global Light Effects
Compensating Global Light Effects
Compensating Diffuse Scattering
Compensating Diffuse Scattering

Bimber et al, IEEE/ACM ISMAR 2005
Compensating Diffuse Scattering

Bimber et al, IEEE/ACM ISMAR 2005

Bimber et al, IEEE VR, 2006
Compensating Diffuse Scattering

Bimber et al, IEEE/ACM ISMAR 2005

Bimber et al, IEEE VR, 2006

O. Bimber

Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments

04/01/06
Compensating Diffuse Scattering

Bimber et al, IEEE/ACM ISMAR 2005

Bimber et al, IEEE VR, 2006

details:
IEEE VR talk on Wednesday morning (8:30am), session on tracking and projection displays
see demo!
Advanced Techniques
View-Dependence
Non-Complex Surfaces
Non-Complex Surfaces

- view-dependent geometry correction can be computed if geometry is known
- for example:
 - planar/multi-plane: off-axis projection
 - parametric: warping via parametric description
 - scanned/modelled: projective texture mapping
Example: Life-Sized Projector-Based Dioramas
Example: Life-Sized Projector-Based Dioramas

Courtesy: Low, et al., 2001
Complex Surfaces
Complex Surfaces

- if geometry is unknown image-based rendering helps
- sample geometric and radiometric parameters from multiple (source) camera (perspective)
- for novel (destination) camera
 - compute weighted penalties:
 \[p_j = \alpha a_j + (1 - \alpha) b_j \]
 - select k best perspectives (lowest penalties) and normalize them:
 \[w_j = \left(1 - \frac{p_j}{\max_{p_k} p_k} \right) \frac{1}{p_j} \]
 - interpolate new parameter textures \((P_{i2C_j}, F_{ijM}, E_{ijM})\) and direction vector for destination perspective to render new IP:
 \[t_d = \sum_{j}^{k} w_j t_j \]
 - lookups in \(F_{ijM}, E_{ijM}\)... interpola...nted \(P_{i2C_j}\)
 - lookups in IP with interpolated \(P_{i2C_j}\)
Example: Tracking and Stereo
Example: Tracking and Stereo

Bimber et al, IEEE/ACM ISMAR 2005
Depth and Occlusion
Depth and Occlusion

Bimber et al, IEEE/ACM ISMAR 2005
Example: Stereo on Wallpaper
Example: Stereo on Wallpaper

Bimber et al, IEEE/ACM
ISMAR 2005
Advanced Techniques
Multi-Focal Projection
Multi-Projector-Camera Technique that Increases Focal Depth
Determining Defocus
Determining Defocus

- structured light projection of grid point samples (2-dimensional phase shift)
 - **pre-correction**: geometric and radiometric correction (corrected grid points must be observed in camera)
 \[I_{x,y} = \frac{(R_{x,y} - EM_{x,y})}{FM_{x,y}} \]
 - **post-correction**:
 \[R'_{x',y'} = fI_{x,y} FM_{x',y'} + EM_{x',y'} \]
 \[fI_{x,y} = \frac{(R'_{x',y'} - EM_{x',y'})}{FM_{x',y'}} \]
 \[f = \frac{fI_{x,y}}{I} \]
- the normalized intensity spread texture \(f \) serves as basis to estimate focus measures (e.g., via FFT/DCT, intensity loss, point spread, etc.)
Example: Different Configurations
Example: Different Configurations

Bimber et al, IEEE TVCG 2006
Example: Shifting Focal Plane
Example: Shifting Focal Plane

Bimber et al, IEEE TVCG 2006
Image Composition
Image Composition

- using the focus values of each projector’s pixels \((\Phi_{i,x,y}) \), compose an image with minimal total defocus
 - **exclusive composition**: surface point is covered by a single projector pixel (the one with highest \(\Phi_{i,x,y} \))

 \[
 I_i = \frac{w_i (R - EM)}{\sum_j w_j FM_j} \\
 w_{i,x,y} = \frac{\Phi_{i,x,y}}{\sum_j \Phi_{j,x,y}}
 \]

- **weighted composition**: compute normalized weight and multiply it with \(FM \) and \(I \)

\[
I_i = w_i (R - EM) / FM_i, \quad w_i = \begin{cases}
1 & \Phi_{i,x,y} \geq \Phi_{j,x,y} \\
0 & \text{else}
\end{cases}
\]
Example: Room Corner
Example: Room Corner

Bimber et al, IEEE TVCG 2006
Example: Cylindrical Surface
Example: Cylindrical Surface

Bimber et al, IEEE TVCG 2006
Example: Large Focal Depth
Example: Large Focal Depth

Bimber et al, IEEE TVCG 2006
Advanced Techniques
Light Transport
Acquisition
Acquisition

single camera & projector capture 4D slice of 8D reflectance field

$c = Tp$

$T = \begin{bmatrix} \end{bmatrix}$
Acquisition

single camera & projector capture 4D slice of 8D reflectance field

\[
c = T_p
\]

\[
T = \begin{bmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{bmatrix}
\]

\[
mn
\]
Acquisition

single camera & projector capture 4D slice of 8D reflectance field

\[T = \begin{bmatrix} c \\ \vdots \\ c \end{bmatrix} \]

where \(c = Tp \)
Acquisition

The acquisition process involves a single camera and projector capturing a 4D slice of an 8D reflectance field.

\[c = T_p \]

\[T = \begin{bmatrix} \text{element} & \text{element} & \ldots & \text{element} \\ \text{element} & \text{element} & \ldots & \text{element} \\ \vdots & \vdots & \ddots & \vdots \\ \text{element} & \text{element} & \ldots & \text{element} \end{bmatrix} \]

\[\text{mn} \]
Acquisition

single camera & projector capture 4D slice of 8D reflectance field

\[c = Tp \]

\[T = \begin{bmatrix} \vdots \end{bmatrix} \]

\[mn \times 1 \]

\[pq \times 1 \]

O. Bimber
Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments
04/01/06
Acquisition

single camera & projector capture 4D slice of 8D reflectance field

\[c = Tp \]

\[T = \begin{bmatrix} \text{pq} \\ \text{mn} \end{bmatrix} \]
Acquisition

single camera & projector capture 4D slice of 8D reflectance field

\[c = Tp \]

\[T = \begin{bmatrix} \text{mn} \\ \text{pq} \end{bmatrix} \]
Acquisition

\[T = \begin{bmatrix}
 t_{00} & \cdots & t_{0pq} \\
 \vdots & \ddots & \vdots \\
 t_{mn0} & \cdots & t_{mnpq}
\end{bmatrix} \]

\(c = Tp \)

Camera image illuminated from single projector pixel.
Dual Photography

\[c = Tp \]
\[c' = T^T p' \]

\[T = \begin{bmatrix} \text{pq} & \text{mn} \end{bmatrix} \]
\[T^T = \begin{bmatrix} \text{mn} & \text{pq} \end{bmatrix} \]
Dual Photography
Dual Photography

floodlight camera image
Dual Photography

Projected structured light

Floodlight camera image
Dual Photography

dual image

more information on dual photography:
Sen, et al., Siggraph’05

floodlight camera image

projected structured light
Form-Factors from Light Transport Matrix
Form-Factors from Light Transport Matrix

experimental setup
Form-Factors from Light Transport Matrix

\[M_e = \frac{d^2}{\cos \alpha} L_e \]

Experimental setup

O. Bimber

Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments

04/01/06
Form-Factors from Light Transport Matrix

$M_e = \frac{d^2}{\cos \alpha} L_e$

Experimental setup

Measured 16x16 form-factor matrix (computed from light transport matrix)
Global Radiometric Compensation
Global Radiometric Compensation

- traditional radiometric compensation requires direct projector-camera pixel correspondence
- include arbitrary global illumination effects using T
- apply inverse light transport $T^{-1}C = P$
- since T is huge, decompose it into clusters and solve in real-time on GPU

$$C = \begin{bmatrix} c_{10} \\ c_{11} \\ c_{12} \\ c_{13} \\ c_{14} \end{bmatrix} = \begin{bmatrix} t_{10}^4 \\ t_{11}^4 \\ t_{12}^4 \\ t_{13}^4 \\ t_{14}^4 \end{bmatrix} \begin{bmatrix} p_4 \\ p_3 \end{bmatrix}$$

$$T^{-1} = \begin{bmatrix} t_{10}^4 & t_{11}^4 & t_{12}^4 & t_{13}^4 & t_{14}^4 \end{bmatrix}^{-1}$$

$$C = \begin{bmatrix} c_{10} \\ c_{11} \\ c_{12} \\ c_{13} \\ c_{14} \end{bmatrix} = \begin{bmatrix} p_4 \\ p_3 \end{bmatrix}$$
Outlook
O. Bimber

Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments

04/01/06
O. Bimber

Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments

04/01/06

geometric warping

complex non-trivial planar
Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments

- Geometric warping
- Radiometric compensation
- Dynamic adaptation
- Multiple projectors
- Perception
- Global effects

\[V = \begin{bmatrix} V_{RR} & V_{RG} & V_{RB} \\ V_{GR} & V_{GG} & V_{GB} \\ V_{BR} & V_{BG} & V_{BB} \end{bmatrix} \]
O. Bimber

Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments

04/01/06

radiometric compensation

global effects

view-dependence

geometric warping

complex

non-trivial

planar

single projector

color mixing

dynamic adaptation

multiple projectors

perception

V = \begin{bmatrix} V_{RR} & V_{RG} & V_{RB} \\ V_{GR} & V_{GG} & V_{GB} \\ V_{BR} & V_{BG} & V_{BB} \end{bmatrix}
O. Bimber Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments

Radiometric compensation

Geometric warping

Multi-focal projection

View-dependence

Single projector

Color mixing

Dynamic adaptation

Multiple projectors

Perception

Global effects

Planar

Complex

Non-trivial
O. Bimber
Multi-Projector Techniques for Real-Time Visualizations in Everyday Environments

04/01/06

geometric warping

complex non-trivial planar

radiometric compensation

light transport

multi-focal projection

global parameters dual image global rad. comp.

view-dependence

planar non-trivial complex
Limitations
Limitations

- technological limitations of projectors:
 - brightness, resolution, focal depth
Limitations

- technological limitations of projectors:
 - brightness, resolution, focal depth → can be solved by using multiple projectors (or wait for better ones)
 - black-level and dynamic range
Limitations

- technological limitations of projectors:
 - brightness, resolution, focal depth → can be solved by using multiple projectors (or wait for better ones)
 - black-level and dynamic range → wait for HDR light-valve or laser projectors
 - size, cost, portability → wait for (good enough) pocket projectors
Limitations

- technological limitations of projectors:
 - brightness, resolution, focal depth → can be solved by using multiple projectors (or wait for better ones)
 - black-level and dynamic range → wait for HDR light-valve or laser projectors
 - size, cost, portability → wait for (good enough) pocket projectors

- technological limitations of cameras:
Future Work
Future Work

- **new techniques:**
 - consider human visual perception
 - spent computational power only on overcoming limitations that can actually be perceived
 - consider global effects
 - inter-reflections, scattering, etc.
Selected Papers on Geometric Correction
Selected Papers on Geometric Correction

Selected Papers on Radiometric Compensation
Selected Papers on Radiometric Compensation

O. Bimber

Selected Papers Other and Related Techniques
Selected Papers Other and Related Techniques

Thank you!
www.uni.weimar.de/medien/AR
Thank you!

www.uni.weimar.de/medien/AR

This project is supported by the Deutsche Forschungsgemeinschaft (DFG) under contract number PE 1183/1-1.