
Aggregate Congestion Control for Distributed
Multimedia Applications
David E. Ott, Travis Sparks, and Ketan Mayer-Patel

Department of Computer Science
University of North Carolina at Chapel Hill

{ott,sparkst,kmp}@cs.unc.edu

Abstract— We consider the problem of applying aggregate con-
gestion control to a class of distributed multimedia applications
known as Cluster-to-Cluster (C-to-C) applications. Flows in such
an application share a common intermediary path that is the
primary source of network delay and packet loss.

Using the Coordination Protocol (CP)architecture, we show
how aggregate congestion control can be achieved with the
following properties:

• Almost any rate-based, single-flow congestion control al-
gorithm may be applied to make aggregate C-to-C traffic
congestion responsive.

• C-to-C applications may use multiple flow bandwidth shares
and still exhibit correct aggregate congestion responsiveness.

• C-to-C applications may implement complex application-
specific adaptation schemes in which the behavior of indi-
vidual flows is decoupled from the behavior of the congestion
responsive aggregate flow.

Bandwidth filtered loss detection (BFLD)is presented as a
technique for making single-flow loss detection algorithms work
when aggregate traffic uses multiple flowshares. The approach
is evaluated using both ns2 simulation and an experimental
implementation in FreeBSD and Linux. Results demonstrate its
success for a wide range of network conditions.

I. I NTRODUCTION

As multimedia applications of the future become increas-
ingly diverse and sophisticated, so too will their networking
needs. Where one or two data streams was sufficient, future
applications will require many streams to handle an ever-
growing number of media types and modes of interactivity.
Where the endpoints of communication were once single
computing hosts, future endpoints will be collections of com-
munication and computing devices. Examples of such appli-
cations include distributed sensor arrays, tele-immersion [1],
computer-supported collaborative workspaces (CSCW) [2],
ubiquitous computing environments [3], and complex multi-
stream, multimedia presentations [4].

In this paper, we are interested in a class of distributed
multimedia applications that we callcluster-to-cluster (C-to-C)
applications. The hallmark of a C-to-C application is that it is
distributed over many computing and communication devices,
or endpoints, within some local environment and communi-
cates with a set of endpoints located in some remote environ-
ment. Consider, as an example, a tele-immersion application.
In such an application, tens of cameras are used to capture
video data from a number of different angles and viewpoints.

Data Path

Aggregation
Point

App.
Process

A1Endpoint

App.
Process

A2Endpoint

ANEndpoint

App.
Process

App.
Process

B1Endpoint

App.
Process

B2Endpoint

BNEndpoint

App.
Process

Cluster B

Aggregation
Point

Cluster−to−Cluster

Cluster A

Internet

Fig. 1. C-to-C application model.

These video streams (along with other sensor information
such as spatialized audio and 3D tracking information) are
sent to a remote environment where they are consumed by a
distributed set of processes which may, for example, be driving
an immersive multi-projector 3D display.

C-to-C applications exhibit a number of interesting and
important characteristics. Figure 1 illustrates the abstract C-to-
C applicaiton model and some of its identifying characteristics,
including:

• A natural aggregation point.Data communicated between
clusters will typically pass through a naturalaggregation
point (AP)as data leaves one environment on route to the
remote environment.

• A common Internet path across flows.While few flows
in a C-to-C application share the exact same end-to-
end path, all flows will share a common Internet path
between clusters. While the networkwithin a cluster can
be provisioned to support the needs of the application,
the pathbetweenclusters is shared with other Internet
flows. We call this thecluster-to-cluster data path.

• Independent, but semantically related flows of data.
An application may need to priortize its many streams
in a particular way, or divide complex media objects
into multiple streams with specific temporal or spatial
relationships. Furthermore, these relationships may be
complex and dynamic.

• Transport-level heterogeneity.UDP- or RTP-based pro-
tocols, for example, might be used for streaming media
while TCP is used to reliably transmit application control
data.

• Complex adaptation requirements.Changes in available



bandwidth require coordinated adaptation decisions that
take into account the global objectives of the application,
its current state, the nature of various flows, and relation-
ship between flows.

An important issue for C-to-C applications is that ofcon-
gestion control. While individual flows within the application
may use a variety of transport-level protocols, including those
without congestion control, it is essential thataggregate ap-
plication traffic is congestion responsive [5].

While application traffic must be responsive to network
congestion at an aggregate level, how this responsiveness is
achieved should depend entirely on the application. Thus, the
sending behavior of individual flows in response to congestion
may vary widely according to an arbitrarily complex scheme
defined by the application. For example, certain flows may
halt sending altogether, while others make media encoding
adjustments, and still others continue to send at their orig-
inal sending rate. Important only is the effectiveness of the
scheme in responding to changes in available bandwidth on
an aggregate level.

This paper addresses the problem of applying congestion
control to aggregate C-to-C application traffic. In particular,
we are interested in leveraging existing single-flow congestion
control schemes for C-to-C aggregate flows such that:

• Cluster endpoints are informed of bandwidth available to
the C-to-C application as a whole.

• Endpoints may respond to this information in application-
defined ways.

• End-to-end semantics are preserved for each individual
flow.

• Aggregate application traffic is congestion responsive.

In addition, we believe that an aggregate congestion control
scheme should supportmultiple flowshares. In other words, if
we consider a single flowshare to be the bandwidth achieved
by a single congestion-controlled flow (i.e., a single TCP
connection), then a C-to-C application that involves multiple
flows should receive multiple flowshares. Several approaches
discussed in Section II ([6], [7], [8]) apply congestion control
to aggregate flows such that the total bandwidth used is the
equivalent of a single flowshare. We believe that this unduly
restricts the bandwidth available to any given flow in a multi-
flow application.

We propose applying congestion control to aggregate C-to-
C application traffic such that an application withm flows
may receive theequivalent ofm flowshares. Furthermore,
how available bandwidth is actually divided among flows is
left entirely to the C-to-C application. For example, some
application flows may take more than a single flowshare,
while others take less. The decoupling of aggregate congestion
control from individual flow behavior is a novel feature of
our approach, and of tremendous utility to applications with
diverse objectives and networking needs.

The main contributions of this paper are:

• A protocol is described that supports global measurement
of network conditions across all flows of a C-to-C appli-

cation. We call this protocol theCoordination Protocol
(CP)because these measurements enable application end-
points to make coordinated adaptation decisions.

• A method for applying rate-based, single-flow conges-
tion control algorithms to aggregate C-to-C traffic is
described and evaluated.To illustrate, we implement and
examine experimentally TFRC [9].

• This method is extended to allow aggregate congestion
control for the equivalent ofm flowshares.A new tech-
nique calledbandwidth filtered loss detection (BFLD)
is presented that allows bandwidth availability to be
calculated correctly regardless of the aggregate sending
rate.

• We describe an implementation of our architecture using
FreeBSD and Linux and evaluate its performance under
various conditions.Our results demonstrate the overall
success of our approach.

The organization of this paper is as follows. Section II dis-
cusses various approaches to managing congestion control in
flow aggregates. In Section III, we describe theCoordination
Protocol (CP)and discuss how it supports the application of
existing single-flow congestion control algorithms to the C-
to-C application context. Simulation results evaluating these
methods for a single flowshare is presented in Section IV. In
Section V, we consider how this technique can be extended
to support m flowshares. In Section VI, we describe our
implementation of the CP and present performance evaluation
results under various network conditions. Section VII summa-
rizes this paper and discusses future directions.

II. RELATED WORK

The problem of managing congestion control for flow
aggregates has been addressed by a number of other re-
searchers, most notably in the Congestion Manager (CM)
work of Balakrishnan [6]. In this section, we discuss several
such approaches and assess their applicability to the C-to-C
application context.

A. Flow Segmentation

One approach for applying congestion control to flow ag-
gregates is to multiplex a single congestion responsive flow
among individual flows sharing the same transmission path.
In the C-to-C context, this could be done using a single flow
between aggregation points, with an application- or transport-
level multiplexer/demultiplexor at each AP. This approach is
taken by [8] in their work onTCP trunkingfor connections
that traverse a common backbone path.

Another variation of this approach known asaggregated
TCP (ATCP)is presented in [7]. In this approach, multiple
connections from a set of endpoints to a common remote
endpoint are each divided into alocal subconnectionbetween
an endpoint and its portal router and a sharedremote subcon-
nection

Whether executed at the application-level or transparently
as in TCP-trunking, there are a number of problems with flow
segmentation in the C-to-C context. First, the approach reduces



aggregate application traffic to a single flowshare. We argue
in Section I that limiting aggregate C-to-C application traffic
to a single congestion responsive flow is unfairly restrictive
in circumstances where the application employs numerous
flows or is competing with numerous flows at the bottleneck
link. Second, this approach fails to inform C-to-C application
endpoints of aggregate networking performance. Without this
information, application endpoints cannot fully exploit specific
interstream adaptation schemes. Third, this approach may
result in additional network delay as application packets are
buffered at the trunk source waiting to be forwarded in a
congestion controlled manner. Finally, end-to-end transport-
level protocol semantics are not preserved for individual flows
if communication is segmented into multiple connections (e.g.,
endpoint to AP, AP to AP, AP to endpoint).

B. Congestion Manager(CM)

The congestion manager (CM)architecture, proposed by
Balakrishnan et al. in [6], provides a compelling solution
to the problem of applying congestion control to aggregate
traffic where flows share the same end-to-end path. Unlike
the above schemes, CM emphasizes application control by
informing flows of bandwidth available to them and avoiding
the buffering of flow data during the forwarding process.

While the CM architecture proposes many useful concepts
and mechanisms for managing congestion control for flow
aggregates, we believe that it is not a good match for the
C-to-C problem context as described in this paper.

First, CM’s use of a flow scheduler to apportion bandwidth
among flows is problematic. Because C-to-C applications
can have complex schemes for accommodating ad hoc flow
arrivals and departures, and for responding to changes in
available bandwidth and changes in application state, we
expect adaptation strategies to result in very dynamic rate
adjustments for individual flows. Thus, characterizing each
flow’s rate requirements is difficult to doa priori. This kind
of characterization is required with CM because individual
flow rate requirements are reconciled within a hierarchical fair-
service curve (HFSC) scheduler. The HFSC scheduler at the
core of CM also serves to police the aggregate sending rate
and ensures that the resulting traffic conforms to the calculated
congestion controlled rate. Thus, while CM is able to take a
set of individual flows that are well-characterized, and a set
of static interflow priorities, and build a hierarchical schedule
for bandwidth allocation, this approach is less suitable in the
more dynamic C-to-C context.

Furthermore, CM is designed to multiplex a single conges-
tion responsive flowshare among flows that have the same end-
to-end path. Again, as in the multiplexing approach, it may
be undesirable to constrain a C-to-C application to a single
flowshare. Our solution allows aggregate C-to-C traffic to use
multiple flowshares while remaining congestion responsive.

III. C OORDINATION PROTOCOL (CP)

In this section, we briefly describe our proposed solution,
the Coordination Protocol (CP). Our focus here will be on CP

mechanisms for aggregate congestion control. The reader is
referred to [10], [11] for a more complete presentation of CP.

A. Overview

CP is implemented between the network layer (IP) and
the transport layer (TCP, UDP, etc.). The network stacks of
each cluster endpoint and their associated AP are modified to
process CP packet headers, while all other nodes along the
C-to-C data path require no special modifications. Figure 2
illustrates the CP architecture from a stack implementation
point of view.

Using the CP header, a cluster AP identifies C-to-C applica-
tion packets and attaches network probe information to each.
The remote AP receives and processes this information. This
exchange is bi-directional. By exchanging probe information
in this manner, each AP builds a picture of current network
conditions, including round-trip time (RTT) and loss rates for
the application as a whole. This information, along with an
estimated available bandwidth value, is passed to application
endpoints using the CP header on a per-packet basis.

An AP uses aggregate measurements of RTT and loss to
drive a rate-based congestion control algorithm (e.g., TFRC
or RAP). Our design of CP allows a large class of congestion
control algorithms to be used, bringing to bear the work of
others instead of inventing new algorithms. The result of the
congestion control algorithm is an ongoing aggregate sending
rate calculation. This estimate predicts the bandwidth that
would have be used by a single flow employing the same
congestion control algorithm under similar network conditions.

When C-to-C endpoints receive this estimate, they respond
by modifying their sending rate in an application-defined
manner. A C-to-C application is free to employ any response
scheme it wishes in order to realize an aggregate sending
rate that reflects the bandwidth available to the application.
In addition, the application need not limit itself to a single
flowshare of bandwidth and may use up tom flowshares,
where m is application-defined. Within this aggregate rate,
applications are free to manage individual flows in any man-
ner. In particular, individual flows may not be congestion
responsive as long as application traffic as an aggregate is.
In Section V we discuss how the use of multiple flowshares
is realized in greater detail.

The benefits of this approach include:

• A fast forwarding pathsince traffic shaping and flow seg-
mentation are avoided. APs do simple accounting across
all application flows and a small number of calculations
to obtain probe results.

Network Layer

Coordination Layer

Application Layer

Aggregation
Point

Aggregation
PointEndpoint Endpoint

IP

CP

C−TCP C−UDP

C−RTP

IP*
CP

IP*
CP

IP

CP

C−TCP C−UDP

C−RTP
Transport Layer

Packet Path

Fig. 2. CP network architecture.



Bandwidth Used
No. of
Flows

Bandwidth
Available

Loss
Rate

C−to−C
App ID

Flow
ID

Protocol
ID

Round Trip Time

V Flags

Seq.
No.

Echo
Delay

Bandwidth
Available

Loss
Rate

C−to−C
App ID

Flow
ID

Protocol
ID

Timestamp

Echo Timestamp

V FlagsC−to−C
App ID

Flow
ID

Protocol
IDV Flags

Unused

Unused

Unused

From endpoint to AP: From AP to AP:

Header

From AP to endpoint:

Transport−level

Packet Data

IP Header

CP Header

RTT
Variance

Aggregate

Fig. 3. CP packet structure.

• Application endpoints are informed ofaggregate band-
width availability on a per-packet basis.

• Preserved end-to-end semanticsfor transport-level proto-
cols.

• Complete application controlover the manner in which
an aggregate congestion response is realized.

• Support formultiple flowshares.

B. Why A New Protocol Layer?

The decision to insert CP between the network and transport
layers requires some justification. First, we note that placing
CP below the transport-layer preserves the end-to-end seman-
tics of individual transport-level protocols. Second, we argue
that CP logically belongs in this position because managing
the aggregate C-to-C application traffic is conceptually above
the next-hop forwarding concerns of IP and below the end-
to-end concerns of the transport layer. Third, application-layer
handling of CP packets at the AP would affect forwarding
performance.

We point out, however, that our decision is merely one
of implementation. It is certainly possible to implement the
mechanisms we describe at the application-level. Indeed,
Section VI describes a hybrid UDP-based implementation
using CP headers nested within UDP packet data and “deep”
processing by kernel-level forwarding code at the APs.

C. CP Operation

Figure 3 shows a CP data packet. CP encapsulates transport-
level packets by prepending a 16-byte header and, in turn,
IP encapsulates CP packets. Each CP header contains an
application identifier associating the packet with a C-to-C
application, allowing the AP to identify which packets are
part of an aggregate flow. The header also contains a version
number and a flags field. The remaining contents of the CP
header vary according to the changing role played by the
header as it traverses the network path from source endpoint
to destination endpoint.

The basic operation of CP is as follows:

• As packets originate from source endpoints:
The endpoint stack places information in the CP header
identifying the C-to-C application and flow.

• As packets arrive at the local AP:
The AP processes the identification information arriving
in the CP header. Bandwidth usage statistics and other

state information associated with the C-to-C application
are updated. Part of the CP header is overwritten, allow-
ing the AP to communicate congestion probe information
to the remote AP. As the packet is forwarded to the
remote AP, the header now contains timestamps used to
measure RTT, a sequence number to detect losses, and
loss rate and available bandwidth estimates.

• As packets arrive at the remote AP:
The CP header is used to measure network delay and
loss. Again, part of the CP header is overwritten, this
time to communicate network condition information, ag-
gregate bandwidth usage, and other aggregate measures
of performance to the remote endpoint.

• As packets arrive at the destination endpoint:
The endpoint stack processes network condition infor-
mation from the CP header and makes it available to the
transport-level protocol and the application.

D. Aggregate Congestion Control

Implementing aggregate congestion control in CP involves
several mechanisms. The APs use fields in the CP header to
measure RTT and detect loss. In addition, the APs maintain
an average packet size calculation. This information is made
available to the congestion control algorithm. The algorithm
is expected to estimate the available bandwidth for a single
flowshare. The estimate is maintained by thereceiving AP.
For example, in Figure 1, the AP for Cluster B maintains an
estimate for available bandwidth from Cluster A to Cluster
B and reports this estimate back to endpoints in Cluster A
within the CP header of packets traveling back in the other
direction. In the same manner, Cluster A maintains an estimate
of available bandwidth from Cluster B to Cluster A.

To measure RTT, the AP’s use a timestamp-based mecha-
nism. An AP inserts a timestamp into each packet which is
echoed along with the delay since that timestamp was received.
When the echo is received by the original AP, a RTT sample
is constructed asRTT = current time - timestamp echo -
echo delay. The RTT sample is used to maintain a smoothed
weighted average estimate of RTT and RTT variance.

To detect loss, each AP inserts a monotonically increasing
sequence number in the CP header. At the receiving AP, losses
are detected as a gap in the sequence number space. These
losses are reported to the congestion control algorithm and a
smoothed average loss rate is maintained.



CP can employ any rate-based congestion control algorithm
that uses the current RTT, mean packet size, and individual loss
events or loss rates as basic building blocks. We illustrate this
in Section IV where our implementation of TFRC is described
in some detail.

E. Transport-level Protocols

Transport-level protocols are built on top of CP. We have
initially considered coordinated versions of TCP (C-TCP) and
UDP (C-UDP) implemented using a modified socket API.

With C-UDP, the application is provided an interface to
set the C-to-C application id and flow id, and get the latest
estimated RTT, aggregate loss rate, and estimated available
bandwidth. The application is responsible for adapting its
packet send rate based on this information.

Our coordinated version of TCP (C-TCP) provides the same
end-to-end semantics as TCP (i.e., a reliable byte stream),
but relies on the underlying CP protocol to detect congestion
and suggest an appropriate sending rate. The application can
attenuate the suggested congestion-controlled rate by setting a
scale factor.

F. Exploiting CP

A C-to-C application may configure its endpoints to respond
to changes in bandwidth availability (as well as other infor-
mation in the CP header) in any way it chooses and modify
the configuration at will. For example, it need not be the case
that each endpoint responds in a uniform manner, or even
that all flows respond. An application may instead realize a
congestion-controlled aggregate send rate by backing off or
terminating some flows, but not others.

Likewise, how an application implements dynamic endpoint
configuration is left entirely up to the application itself. Some
applications may be statically configured from the onset. Oth-
ers may employ a centralized control process which interprets
changing network information and periodically sends config-
uration messages to each endpoint. Still others may employ
a decentralized approach in which endpoints independently
evaluate application and network state information and make
send rate adjustments accordingly.

IV. SINGLE FLOWSHARES

In this section, we describe our implementation of CP in
ns2 [12] and discuss simulation results for a mock C-to-C
application configured to send at an aggregate rate equivalent
to a single flowshare. Our results show that CP performs well
when compared to competing flows of the same protocol type.

A. CP-TFRC

We refer to ourns2implementation of the TFRC congestion
control algorithm in CP asCP-TFRC. (Full details of the
TFRC algorithm can be found in [13].) For CP-TFRC, a loss
rate is calculated by constructing a loss history and identifying
loss events. These events are then converted to aloss event
rate. Smoothed RTT, loss event rate, and various other values
are then used as inputs into the equation [13]:

2AP

S1

S2

Sn

AAP

1A

2A

nA

S I1I

Bottleneck Link

Fig. 4. Simulation testbed in ns2.

Parameter Value
Packet size 1 K
ACK size 40 B
Bottleneck delay 50 ms
Bottleneck bandwidth 15 Mb/sec
Bottleneck queue length 300
Bottleneck queue type RED
Simulation duration 180 sec

TABLE I

CONFIGURATION PARAMETERS.

X =
s

R
√

2bp
3 + tRTO(3

√
3bp
8 )p(1 + 32p2)

(1)

which calculates a TCP-compatible transmission rateX
(bytes/sec) wheres is the packet size (bytes),R is the round
trip time (sec),p is the loss event rate,tRTO is the TCP
retransmission timeout (sec), andb is the number of packets
acknowledged by a single TCP acknowledgement. Updates in
bandwidth availability are made at a frequency of once every
RTT. Bandwidth availability is estimated at the remote AP.
The resulting bandwidth availability value is placed in the CP
header on the reverse path, and simply forwarded by the local
AP to application endpoints.

B. Configuration

Figure 4 shows our ns-2 simulation topology. Sending
agents, labeledS1 throughSn, transmit data toAPS where
it is forwarded through a bottleneck link to remoteAPA and
ACK agentsA1 through An. For any given simulation, the
bottleneck link betweenI1 and I2 is shared by CP flows
transmitting between clusters and competing (i.e., non-CP)
TFRC flows. Table I summarizes topology parameters. Links
between ACK agentsA1 throughAn are assigned delay values
that vary in order to allow some variation in RTT for different
end-to-end flows.

Flows in our simulated C-to-C application are configured
to take an equal portion of the current bandwidth available to
the application. That is, ifn C-to-C endpoints share bandwidth
flowshareB, then each endpoint sends at a rate ofB/n. More
complex configurations are possible, and the reader is referred
to [11] for further illustrations.

C. Evaluation

Our goal in this section is to compare aggregate CP-
TFRC traffic using a single flowshare with competing TFRC
flows sharing the same C-to-C data path. Our concern is
not evaluating the properties (e.g., TCP-compatibility) of the



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of competing TFRC connections

CP-TFRC (aggregate)
TFRC (per flow)

Fig. 5. TFRC versus CP-TFRC normalized throughput as the number of
competing TFRC flows is varied.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of CP connections

CP-TFRC (aggregate)
TFRC (avg per flow)

Fig. 6. TFRC versus CP-TFRC normalized throughput as the number of
flows in the C-to-C aggregate is varied.

TFRC congestion control scheme, but rather examining how
closely C-to-C aggregate traffic conforms to TFRC bandwidth
usage patterns. The question of how well CP-TFRC performs
with respect to competing TCP flows is left to Section VI

In Figure 5, a mock C-to-C application consisting of 24
flows competes with a varying number of TFRC flows sharing
the same cluster-to-cluster data path. Throughput values have
been normalized so that a value of 1.0 represents a fair
throughput level for a single flow.

The performance of TFRC flows is presented in two ways.
First, normalized bandwidth of a single run is presented
as a series of points representing the normalized bandwidth
received by a each competing flow. These points illustrate the
range in values realized within a trial. Second, a line connects
points representing theaverage(mean) bandwidth received by
competing TFRC flows across 20 different trials of the same
configuration.

The CP-TFRC line connects points representing theaggre-
gate bandwidth received by 24 CP flows averaged over 20
trials. For each each trial, this aggregate flow competes as only
a single flowshare within the simulation. We see from this plot
that as the number of competing TFRC flows increases, C-to-C
flows receive only slightly less than their fair share.

Figure 6 shows per-flow normalized throughput when the
number of competing TFRC flows is held constant at 24, and
the number of CP flows is increased, but still sharing a single
flowshare. Again aggregate CP traffic received very close to
its fair share of available bandwidth, with normalized values

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of flow shares

TFRC (avg)
CP-TFRC

Fig. 7. Throughput for multiple flowshares (naive approach).

greater than0.8 throughout.

V. M ULTIPLE FLOWSHARES

In this section, we consider the problem of supporting
multiple flowshares. While numerous approaches for applying
aggregate congestion control using single flowshares have been
suggested as reviewed in Section II, we are unaware of any
approach that considers the multiple flowshare problem. The
reason for this is that single-flow congestion control algorithms
break when a sender fails to limit their sending rate to the
rate calculated by the algorithm. Here we use simulation to
show how this is the case for CP-TFRC. After discussing
the problem in some detail, we present a new technique,
bandwidth filtered loss detection (BFLD)and demonstrate its
effectiveness in enabling multiple flowshares.

A. Naive Approach

Our goal in this section is to allow C-to-C applications
to send the equivalent ofm flowshares in aggregate traffic,
wherem is equal to the number of flows in the application.
As mentioned in Section I, we believe that limiting a C-
to-C application to a single flowshare may unfairly limit
bandwidth for an application that would otherwise employ
multiple independent flows.

A naive approachfor realizing multiple flowshares is sim-
ply to have each C-to-C application endpoint multiply the
estimated bandwidth availability valueB by a factor ofm.
Thus, each endpoint behaves as if the bandwidth available to
the application as a whole ismB. One could justify such
an approach by arguing that probe information exchanges
between APs maintain a closed feedback loop. That is, an
increase in aggregate sending rate beyond appropriate levels
will result in increases in network delay and loss. In turn, this
will cause calculated values ofB to decrease, thus responding
to current network conditions. IdeallyB would settle on
some new value which, when multiplied bym, results in
the appropriate congestion-controlled level that would have
otherwise been achieved bym independent flows.

Figure 7 shows that this is not the case. For each simulation,
the number of CP-TFRC and competing TFRC flows is held
constant at 24. The number of flowshares used by CP-TFRC
traffic is then increased fromk = 1 to m using the naive
approach. The factork is given by thex-axis. The normalized



Rate =1/6
1 2 3 4 5 6 7 8 9

RTT

Loss Event Interval= 8−2 = 6

Loss Event
Rate =1/12

1 2 3 4 5 6 7 8 109 11 12 13 1514 1617 18 19 20 21 22

RTT

Loss Event Interval= 15−3 = 12

Single
Flowshare

Multiple
Flowshare

Loss Event

Fig. 8. Loss event rate calculation for TFRC.

fair share ratio (with 1.0 representing perfect fairness) is given
by they-axis.

In Figure 7, increases in the number of flowshares cause
the average bandwidth received by a competing TFRC flow
to drop unacceptably low. Byk = 16, TFRC flows receive
virtually no bandwidth, and beyondk = 16, growing loss rates
eventually trigger the onset of congestion collapse. Additional
simulation work with RAP [14] (not presented in this paper)
likewise shows unacceptable results, although with a some-
what different pattern of behavior suggesting that different
congestion control schemes result in different types of failure.

B. The Packet Loss Problem

In the case of CP-TFRC, recall that RTT and loss event
rates are the primary inputs to equation 1. We note that
increasing the C-to-C aggregate sending rate should have no
marked effect on RTT measurements since APs simply use
any available CP packets for the purpose of probe information
exchanges. In fact, increasing the number of available packets
should make RTT measurements even more accurate since
more packets are available for probing.

On the other hand, we note that a large increase in C-
to-C aggregate traffic has a drastic effect onloss event rate
calculations in CP-TFRC. TFRC marks the beginning of a
loss eventwhen a packet lossPi is detected. The loss event
ends when, after a period of one RTT, another packet loss
Pj is detected. Aninter-loss event intervalI is calculated
as the difference in sequence numbers between the two lost
packets (I = j−i) and, to simplify somewhat, a rateR is
calculated by taking the inverse of this value (R = 1/I). Here
we note that the effect of drastically increasing the number of
packets in the aggregate traffic flow is to increase the inter-loss
event intervalI; while the likelihood of encountering a packet
drop soon after the RTT damping period has expired increases,
the number of packet arrivals during the damping period also
increases. The result is alarger interval, or a smaller loss event
rate, and hence an inflated available bandwidth estimation.
This situation is depicted in Figure 8.

In a sense, the algorithm suffers from the problem of inap-
propriate feedback. For CP-TFRC, too many packets received
in the damping period used to calculate a loss event rate
artificially inflates the inter-loss event interval. The algorithm
has been tuned for theappropriateamount of feedback which
would be generated by a packet source that is conformant to
a single flowshare only.

Stochastically chosen to generate virtual packet events.

Flowshare
Loss Event

Rate = 1/7
1 2 4 5 6 7 8 9 10 123 11

Loss Event Interval= 10−3 = 7

RTT

Multiple
Flowshare

1 2 3 4 5 6 7 8 109 11 12 13 1514 1617 18 19 20 21 22

Virtual

Fig. 9. Virtual packet event stream construction by BFLD.

C. BFLD

Our solution to the problem of loss detection in a multiple
flowshare context is calledbandwidth filtered loss detection
(BFLD). BFLD works by sub-sampling the space of CP
packets in the network, effectively reducing the amount of loss
feedback to an appropriate level. Essentially, the congestion
control algorithm is driven by a “virtual” packet stream which
is stochastically sampled from the actual aggregate packet
stream.

BFLD makes use of two different bandwidth calculations.
First is theavailable bandwidth, or Bavail, which is calculated
by the congestion control algorithm employed at the AP. This
represents the congestion responsive sending rate for a single
flowshare. Second is thearrival bandwidth, or Barriv. The
valueBarriv is an estimate of the bandwidth currently being
generated by the C-to-C application.

From these values, asampling fractionF is calculated as
F = Bavail/Barriv. If Bavail > Barriv, then F is set to
1.0. Conceptually, this value represents the fraction of arriving
packets and detected losses to sample in order to create the
virtual packet stream that will drive the congestion control
algorithm. We refer to this virtual packet stream as thefiltered
packet event stream.

To determine whether a packet arrival or loss should be
included in the filtered packet event stream, a simple stochastic
technique is used. Whenever a packet event occurs (i.e., a
packet arrives or a packet loss is detected), a random number
r is generated in the interval0 ≤ r ≤ 1.0. If r is in the interval
0 ≤ r ≤ F then an event is generated for the virtual packet
event stream, otherwise no virtual packet event is generated.

Packets chosen by this filtering mechanism are given a
virtual packet sequence number that will be used by the
congestion control algorithm for loss detection, computing loss
rates, updating loss histories, etc. Figure 9 illustrates the effect
of this process. In this figure, we see that a subset of the
multiple flowshare packet event stream is stochastically chosen
to generate a virtual packet event stream. In this stream, we
see virtual sequence numbers assigned to these packet events.
As a result, the TFRC calculation for the loss event interval
decreases from12 to 7 remedying the problem illustrated in
Figure 8. An interesting feature of this technique is that it can
be appliedregardless of the number of flowsharesused by the
C-to-C application. This is because the factorF adjusts with
whatever the amount of bandwidth used.



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of flow shares

TFRC
CP-TFRC

Fig. 10. Throughput for multiple flowshares using BFLD.

D. Evaluation

Figure 10 shows the results of applying BFLD to the
simulations of Figure 7 in Section V-A. As before, the number
of CP-TFRC flows and competing TFRC flows are both held
constant at 24, while the number of flowshares taken by CP-
TFRC traffic as an aggregate is increased fromk = 1 to
m. The results show a dramatic improvement. Normalized
throughput for CP-TFRC flowshares is consistently close to .9
while throughput levels achieved by competing TFRC flows
are consistently close to 1.0.

VI. I MPLEMENTATION AND EVALUATION

In this section, we briefly describe our implementation of
the Coordination Protocol using FreeBSD and Linux, includ-
ing packet header placement, router modifications, application
API, endpoint traffic generation, and experimental setup. We
then go on to present results showing how BFLD performs in
an experimental network with competing TCP connections and
various levels of network delay, bottleneck bandwidth, random
loss, and background traffic loads. Overall, we find that CP
does quite well in maintaining TCP-compatibility under a wide
variety of network conditions.

A. Implementation

Our implementation of the CP architecture is a compro-
mise between the approach described in Section III and an
application-level approach. The implementation uses UDP
packets with CP packet headers nested within the first 20
bytes of application data. Using UDP allowed us to avoid the
requirement that application endpoints have modified network
stacks.

While the endpoint implementation is handled at the appli-
cation level, the AP implementation is handled at the kernel
level using a dynamically loadable kernel module written for
FreeBSD version 4.7. This module extends IP forwarding
capabilities of first and last hop routers to provide full AP
functionality. The module is configured to recognize UDP
packets from particular source-destination host pairings as CP
packets, triggering “deep processing” of the CP packet header
nested within UDP application data. All state maintained at
the AP is “soft” (i.e., created on demand and torn down by
timeout).

Fig. 11. Experimental network setup.

An application-level library provides a thin layer of in-
direction within application send and receive calls at the
endpoints. For send calls, the libary handles packetization and
inserts a CP header at the beginning of each send buffer. For
receive calls, the library first removes and processes the CP
header, then passing data to the application level. API calls
are provided that allows the application to query newtork and
flow information.

To drive the system, we constructed a test application
comprised of two endpoint clusters exchanging data as infinite
data sources. Each endpoint acts essentially as a rate-based
traffic generator, sending mock data to a remote endpoint at a
rate equal tokB whereB is the available bandwidth reported
by CP andk is a multiplicative factor and input parameter. Our
test application lacks the rich semantic relationships seen in
real-world distributed multimedia applications, but provides us
with the tools we need to verify system correctness and study
overall AP performance. Endpoint hosts include both Linux
hosts (version 2.4) and FreeBSD hosts (version 4.5).

B. Experimental Setup

Our experimental network is shown in Figure 11. CP hosts
and their local AP on each side of the network represent
two clusters that are part of the same C-to-C application and
exchange data with one another. Each endpoint sends and
receives data on a 100 Mb/s link to its local AP, a FreeBSD
router that has been CP-enabled as described above. Aggreate
C-to-C traffic leaves the AP on a 1 Gb/s uplink. At the center
of our testbed are two routers connected using two 100 Mb/s
Fast Ethernet links. This creates a bottleneck link, and by
configuring traffic from opposite directions to use separate
links, emulates the full-duplex behavior seen on wide-area
network links.

Competing TCP flows are generated by TCP hosts on
opposite sides of the network. These hosts use the well-known
utility iperf [15] to generate long-lived flows with unlimited
data. Each host is connected to its local switch using 100 Mb/s
Fast Ethernet. TCP flows share the same bottleneck link with
CP flows and thus compete with them for bandwidth.

Also sharing the bottleneck link are background flows
between traffic hosts on each end of the network. More will
be said about these flows in Section VI-G.

Finally, network monitoring during experiments is done in
two ways. First,tcpdumpis used to capture TCP/IP headers
from packets traversing the bottleneck, and then later filtered
and processed for detailed performance data. Second, a soft-



ware tool is used in conjunction withALTQ [16] extensions to
FreeBSD to monitor queue size, packet forwarding events, and
packet drop events on the outbound interface of the bottleneck
routers. The resulting log information provides packet loss
rates with great accuracy.

C. Performance metrics

Overall, our goal is to compare aggregate CP flow per-
formance to that of TCP under various network conditions
to see whether the CP architecture can successfully maintain
compatibility when the number of flowshares is scaled. Toward
this end, we make use of two comparative metrics closely
related to those described in [9].

First is normalized throughput ratiodefined as the ratio of
normalized average throughput for a single TCP flow to the
normalized average throughput for a single CP flowshare.

RTCP,CP =
FTCP

FCP
(2)

Here FTCP and FCP are normalized flowshares as defined
in Section IV-C and represent the average throughput for a
single TCP flow or CP flowshare, normalized so that 1.0 is an
ideal fair share. A value greater than 1.0 indicates that TCP
flows on an average have received more bandwidth than CP
flowshares, while for values less than 1.0 the reverse is true.

The second metric is thecoefficient of variance (C.O.V.)
ratio and is meant to compare the degree of throughput
variation seen in aggregate TCP and CP traffic:

C.O.V.TCP,CP =
C.O.V.TCP

C.O.V.CP
(3)

C.O.V. [17] is computed as the standard deviation of aggregate
throughput samples for TCP or CP divided by the mean. A
value greater than 1.0 indicates that more variance is seen
in aggregate TCP throughput samples than in CP, while for
values less than 1.0 the reverse is true.

D. Delay experiments

To test CP under various network delay conditions, we made
use of thedummynet[18] traffic shaper found in FreeBSD 4.5.
Dummynetprovides support for classifying packets and divid-
ing them into flows. A pipe abstraction is then applied that
emulates link characteristics including bandwidth, propagation
delay, queue size, and packet loss rate.

For this set of experiments, we configureddummyneton
the two bottleneck routers to simulate a range of combined
propogation delays between 10 and 130 ms. Various combi-
nations of CP and TCP flows are run to explore the effects
of scaling (7-7, 14-14, 21-21, 28-28, and 35-35) and unequal
flow distributions (7-35 and 35-7) on CP performance. For
each combination, each ofm CP flows sends at the reported
bandwidth availability rate, for a total ofm flowshares of
aggregate C-to-C traffic.

Runs lasted for four minutes and begin after a 20 second
ramp-up and stabilization period. Trials using a longer ramp-
up and run interval did not show significantly different results.
Dummynetloss rates were held constant at 1%.

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

RTT (ms)

7 TCP 7 CP
14 TCP 14 CP
21 TCP 21 CP
28 TCP 28 CP
35 TCP 35 CP
7 TCP 35 CP
35 TCP 7 CP

Fig. 12. Normalized throughput ratio as delay varies.

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140

C
.O

.V
. r

at
io

RTT (ms)

7 TCP 7 CP
14 TCP 14 CP
21 TCP 21 CP
28 TCP 28 CP
35 TCP 35 CP
7 TCP 35 CP
35 TCP 7 CP

Fig. 13. C.O.V. ratio as delay varies.

Figure 12 shows normalized throughput results. In general,
values remain very close to 1.0 for all trials, with TCP
receiving slightly more bandwidth. C.O.V. ratios in Figure 13
likewise remain fairly close to 1.0 but show somewhat more
variance in TCP within the 7-35 unequal flow distribution set.

E. Bottleneck bandwidth experiments

To test CP under conditions of various bottleneck band-
widths, we again useddummyneton the bottleneck FreeBSD
routers. This time we varied the bottleneck bandwidth config-
uration from 10 to 80 Mb/s, meanwhile maintaining a constant
40 ms round trip time and 1% loss rate.

Normalized throughput results in Figure 14 are fairly close
to 1.0 and consistent across all sets, although CP received
somewhat more bandwidth in the 35-7 unequal flow distribu-
tion set–especially at the smallest bottleneck bandwidth levels.
Figure 15 shows a very balanced throughput variance for all
equal flow distributions, and a strikingly unbalanced through-
put variance for unequal flows distributions. In particular, the
7-35 set shows TCP flow throughput variation to be nearly
double that of CP. For the 35-7 set, CP shows significantly
more variation.

F. Random loss experiments

To test CP under various loss levels we once again used
the dummynettraffic shaper on bottleneck FreeBSD routers.
We varied random loss levels from 1 to 5%, meanwhile
maintaining a constant 40 ms round trip time.

Normalized throughput results in Figure 16 show a marked
drop in ratio values as loss levels are increased, indicating



0

0.5

1

1.5

2

10 20 30 40 50 60 70 80

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Bottleneck bandwidth (Mb/s)

7 TCP 7 CP
14 TCP 14 CP
21 TCP 21 CP
28 TCP 28 CP
35 TCP 35 CP
7 TCP 35 CP
35 TCP 7 CP

Fig. 14. Normalized throughput ratio as bottleneck bandwidth varies.

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80

C
.O

.V
. r

at
io

Bottleneck bandwidth (Mb/s)

7 TCP 7 CP
14 TCP 14 CP
21 TCP 21 CP
28 TCP 28 CP
35 TCP 35 CP
7 TCP 35 CP
35 TCP 7 CP

Fig. 15. C.O.V. ratio as bottleneck bandwidth varies.

that TCP is increasingly losing bandwidth to CP. This is a
known problem with TFRC that has been described in [19].
Widmer theorizes that higher packet loss rates increasingly
interfere with TCP’s ability to maintain self-clocking since
timeouts become more frequent. SACK TCP would likely
perform better than FreeBSD’s New Reno implementation but
unfortunately is not supported by FreeBSD version 4.5.

G. Traffic load experiments

While testing CP performance under various dummynet
loss conditions is instructive, a random loss model is wholly
unrealistic. In reality, losses induced by drop tail queues in
Internet routers are bursty and correlated. To better capture
this dynamic, we tested CP performance against various back-
ground traffic workloads using a Web traffic generator known
as thttp.

Thttp uses empirical distributions from [20] to emulate the
behavior of Web browsers and the traffic that browsers and
servers generate on the Internet. Distributions are sampled
to determine the number and size of HTTP requests for a
given page, the size of a response, the amount of “think time”
before a new page is requested, etc. A single instance ofthttp
may be configured to emulate the behavior of hundreds of
Web browsers and significant levels of TCP traffic with real-
world characteristics. Among these characteristics are heavy-
tailed distributions in flow ON and OFF times, and significant
long range dependence in packet arrival processes at network
routers.

We ran fourthttp servers and four clients on each set of
traffic hosts seen in Figure 11. Emulated Web traffic was given

0

0.5

1

1.5

2

0.01 0.02 0.03 0.04 0.05 0.06 0.07

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Packet loss rate

7 TCP 7 CP
14 TCP 14 CP
21 TCP 21 CP
28 TCP 28 CP
35 TCP 35 CP
7 TCP 35 CP
35 TCP 7 CP

Fig. 16. Normalized throughput ratio as random loss varies.

0

0.5

1

1.5

2

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

C
.O

.V
. r

at
io

Packet loss rate

7 TCP 7 CP
14 TCP 14 CP
21 TCP 21 CP
28 TCP 28 CP
35 TCP 35 CP
7 TCP 35 CP
35 TCP 7 CP

Fig. 17. C.O.V. ratio as random loss varies.

a 20 minute ramp-up interval and competed with TCP and
CP flows on the bottleneck link in both directions. We varied
the number of browsers emulated from 1000 to 6000 and ran
experiments focusing on 14-14 and 35-35 flow configurations.
Resulting loss rates are shown in Figure 18 as measured at
bottleneck router queues.

Figure 19 shows normalized throughput ratios for both
experiment sets. Results look much improved overdummynet
random loss trials shown in Figure 16. TCP flows average
slightly more bandwidith than CP flowshares at low load levels
for the 35-35 set, while the reverse is true for the 14-14 set.
C.O.V. ratio results in Figure 20 show very similar levels
of throughput variation in TCP and CP, with only a slight
difference at the lowest load levels.

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1000 2000 3000 4000 5000 6000

P
ac

ke
t l

os
s 

ra
te

Number of browsers

14 TCP 14 CP
35 TCP 35 CP

Fig. 18. Loss rates generated by background web traffic.



0

0.5

1

1.5

2

1000 2000 3000 4000 5000 6000

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Number of browsers

14 TCP 14 CP
35 TCP 35 CP

Fig. 19. Normalized throughput ratio as competing load varies.

0

0.5

1

1.5

2

1000 2000 3000 4000 5000 6000

C
.O

.V
. r

at
io

Number of browsers

14 TCP 14 CP
35 TCP 35 CP

Fig. 20. C.O.V. ratio as competing load varies.

VII. SUMMARY AND FUTURE WORK

In this paper, we have discussed the need for aggregate
congestion control for a class of distributed multimedia ap-
plications call cluster-to-cluster (C-to-C) applications. The
Coordination Protocol (CP) was presented as a framework
that makes possible the application of rate-based, single-flow
congestion control schemes to this context. It does this by
providing network probe mechanisms which measure RTT
and packet loss for aggregate application traffic traversing the
shared intermediary path. Using this information, CP estimates
an available bandwidth for a single flowshare and informs
application endpoints of this value.

We have shown how this framework can be extended to
supportmultiple flowshares. In particular, we show that:

• Single flow congestion control algorithms do not scale
naively to support multiple flowshares.

• Bandwidth filtered loss detection (BFLD)is a technique
for stochastically sampling a packet arrival event stream
to provide single flow congestion control algorithms with
an appropriate amount of loss feedback.

• Using BFLD, aggregate C-to-C traffic can effectively
realize multiple flowshares.

After demonstrating that CP performs reasonably well when
compared to TFRC usingns2 simulation, we go on to eval-
uate the performance of an actual CP implementation using
FreeBSD and Linux under a wide variety of network condi-
tions. Our results show the overall success of our approach.

Finally, an issue we have considered for future work is the
use of wireless endpoints within a C-to-C application cluster.
In this case, the assumption that endpoint-to-AP communica-
tion takes place with little loss or delay is not true. One idea
is to design application endpoints and/or transport-level pro-
tocols that can use the CP framework to discriminate between
local (i.e., wireless) andAP-to-APsources of delay and loss.
This can be done by comparing end-to-end measurements of
network conditions with reported CP measurements and using
discrepancies as an indication of conditions on the wireless
portion of the path.

REFERENCES

[1] Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin, and
Henry Fuchs, “The office of the future: A unified approach to image-
based modeling and spatially immersive displays,”Proceedings of ACM
SIGRAPH, 1998.

[2] J. Grudin, “Computer-supported cooperative work: its history and
participation.,” Computer, vol. 27, no. 4, pp. 19–26, 1994.

[3] M. Weiser, “Some computer science problems in ubiquitous comput-
ing.,” Communications of the ACM, vol. 36, no. 7, pp. 75–84, July
1993.

[4] T.-P. Yu, D. Wu, K. Mayer-Patel, and L.A. Rowe, “DC: A live webcast
control system,”Proc. of SPIE Multimedia Computing and Networking,
2001.

[5] Sally Floyd and Kevin R. Fall, “Promoting the use of end-to-end con-
gestion control in the internet,”IEEE/ACM Transactions on Networking,
vol. 7, no. 4, pp. 458–472, 1999.

[6] Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan Seshan, “An
integrated congestion management architecture for internet hosts,”Pro-
ceedings of ACM SIGCOMM, September 1999.

[7] P. Pradhan, T. Chiueh, and A. Neogi, “Aggregate TCP congestion control
using multiple network probing.,”Proc. of IEEE ICDCS 2000, 2000.

[8] H.T. Kung and S.Y. Wang, “TCP trunking: Design, implementation and
performance.,”Proc. of ICNP ’99, November 1999.

[9] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,”Proceedings of ACM
SIGCOMM, pp. 43–56, 2000.

[10] D. Ott and K. Mayer-Patel, “Transport-level protocol coordination
in cluster-to-cluster applications,”Proceedings of the Interactive Dis-
tributed Multimedia Systems Workshop (IDMS), 2001.

[11] D. Ott and K. Mayer-Patel, “A mechanism for TCP-friendly transport-
level protocol coordination,” inUSENIX 2002, June 2002.

[12] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances
in network simulation,”IEEE Computer, vol. 33, no. 5, pp. 59–67, May
2000.

[13] M. Handley, S. Floyd, J. Padhye, and J. Widmer,RFC 3448: TCP
Friendly Rate Control (TFRC): Protocol Specification, Internet Engi-
neering Task Force, January 2003.

[14] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end rate-based
congestion control mechanism for realtime streams in the internet,”Proc.
of IEEE INFOCOM, March 1999.

[15] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, ,”
http://dast.nlanr.net/Projects/Iperf/.

[16] C. Kenjiro, “A framework for alternate queueing: Towards traffic
management by pc-unix based routers,” inUSENIX 1998, June 1998,
pp. 247–258.

[17] R. Jain,The Art of Computer Systems Performance Analysis, John Wiley
and Sons, 1991.

[18] Luigi Rizzo, ,” http://info.iet.unipi.it/ luigi/ipdummynet/.
[19] Jorg Widmer, Equation-Based Congestion Control, Ph.D. thesis,

University of Mannheim : Dept of Mathematics and Computer Science,
February 2000.

[20] F.D. Smith, F. Hernandez Campos, K. Jeffay, and D. Ott, “What TCP/IP
protocol headers can tell us about the web,” inACM SIGMETRICS, June
2001, pp. 245–256.


