
Transport-level Protocol Coordination in Distributed
Multimedia Applications

David E. Ott and Ketan Mayer-Patel (Advisor)
Department of Computer Science

University of North Carolina at Chapel Hill

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Pro-
tocols—applications.

General Terms
Design, Algorithms, Performance, Experimentation.

1. INTRODUCTION
Future Internet multimedia applications will become increas-

ingly complex in their networking needs, requiring more and
more streams to handle an ever-growing number of media types
and modes of interactivity. Where the endpoints of communi-
cation were once single computing hosts, future endpoints will
be collections of communication and computing devices. Ex-
amples of such applications include distributed sensor arrays,
tele-immersion, computer-supported collaborative workspaces,
ubiquitous computing environments, and complex multi-stream,
multimedia presentations.

We are interested in a class of distributed multimedia ap-
plications called Cluster-to-Cluster (C-to-C) applications. In a
C-to-C application, a collection of computing and communica-
tion devices communicates with a remote collection of comput-
ing and communication devices. Endpoints in the same cluster
share a common gateway node known as the Aggregation Point
(AP). While few application flows share the same end-to-end
path, all flows share a common intermediary path between clus-
ters. Figure 1 illustrates this model.

C-to-C applications share several key characteristics.

• Independent, but semantically related flows of data. An
application may prioritize streams in a particular way, or
divide complex media objects into multiple streams with
specific temporal or spatial relationships.

• Transport-level heterogeneity. UDP- or RTP-based proto-
cols, for example, might be used for streaming media while
TCP is used to reliably transport control data.

• Changing network conditions along the shared data path.
While networks within a cluster can be provisioned to com-
fortably support an application’s requirements, the for-
warding path between clusters is shared with other Inter-
net flows and typically cannot be provisioned end-to-end.
Hence, it is the primary source of network latency and
packet loss.

One example of a C-to-C application is Office of the Future,
conceived by Fuchs et al.[5] In this immersive application, a set
of video cameras and microphones are used to capture an office
environment in order to construct a remote virtual environment
using various computing and display devices. Complex spatial
relationships exist between media streams, and the relative pri-
ority of these streams changes constantly as the user moves their

Copyright is held by the author/owner.
MM’03, November 2–8, 2003, Berkeley, California, USA..
ACM 1-58113-722-2/03/0011.

Aggregation
Point

Cluster−to−Cluster
Data Path

Aggregation
Point

App.
Process

A1Endpoint

App.
Process

A2Endpoint

ANEndpoint

App.
Process

App.
Process

B1Endpoint

App.
Process

B2Endpoint

BNEndpoint

App.
Process

Cluster A Cluster B

Internet

Figure 1: C-to-C application model.

region of interest. While few streams share a complete end-to-
end path, all of the data streams (and control streams) share a
common Internet path between media capture and reconstruc-
tion/display clusters.

A fundamental problem in the C-to-C application context is
that of flow coordination. Application streams share a common
intermediary path between clusters, and yet employ transport
protocols that operate in isolation from one another. As a result,
flows may compete with one another when network resources be-
come limited instead of cooperating to use available bandwidth
in application-controlled ways.

In Office of the Future, for example, media streams may com-
pete with one another for bandwidth during periods of network
congestion, unaware of inter-stream prioritization within the ap-
plication or the effect on control message transmission. As a
result, the performance of high priority streams may be unac-
ceptable. Control flows using TCP reduce their window size
in response to congestion. In the larger context of the C-to-C
application, however, it makes more sense to have low prior-
ity media streams interrupt transmission to allow control flows
more bandwidth to transmit crucial adaptation information.

In this dissertation, we argue that cluster-to-cluster applica-
tions like Office of the Future could significantly benefit from
network mechanisms that facilitate transport-level protocol co-
ordination of separate but semantically-related data flows along
a shared intermediary transmission path. Such mechanisms
could provide application endpoints with

• Network awareness. Endpoints, regardless of their transport-
level protocol, are given a consistent view of network con-
ditions, including round trip time, packet loss rates, and
bandwidth available to the application as a whole.

• Peer flow awareness. Endpoints are given information on
the number of peer flows transmitting across the shared
data path, patterns of bandwidth usage, as well as aggre-
gate bandwidth usage for the C-to-C application.

With this information, a C-to-C application can use smart
transport-layer protocols to implement a coordination scheme
uniquely suited to its needs. For example, Office of the Future
might implement a dynamic inter-stream prioritization scheme
to give media streams within a user’s changing region of interest



a larger share of available bandwidth during periods of conges-
tion, thus maintaining an acceptable frame rate and display
resolution.

2. COORDINATION PROTOCOL
Our solution to the problem of flow coordination in C-to-

C applications is called the Coordination Protocol, or CP. CP
operates between the network layer (IP) and transport layer
(TCP, UDP, etc.), making it transparent to IP routers on the
C-to-C forwarding path and preserving the semantics of end-to-
end transport-level protocols.

Application endpoints insert a CP header into each data packet
before sending the packet to an endpoint on the remote cluster.
The packet receives special handling at its local AP, and then
is forwarded toward the remote cluster. After traversing the
cluster-to-cluster data path using standard IP forwarding, the
remote AP applies special handling to the packet before forward-
ing it to the destination endpoint. Endpoints use information in
CP packet headers to make send rate adjustments that reflect
application coordination strategies.

As a packet originates from an application endpoint, its CP
header contains a cluster ID telling the AP to associate it with
a particular C-to-C application. A flow ID likewise identifies
the packet with a particular application flow. The AP keeps a
table of bandwidth usage statistics on flows in the same C-to-
C application, also tracking the number of flows and aggregate
bandwidth usage by the C-to-C application as a whole.

Network probing works by using the CP header in each C-
to-C data packet to piggyback probe information on the shared
data path between APs. Each AP modifies the CP header from
packets originating at its local cluster to add timestamp and
sequence number information. As additional probe information
from the remote AP is returned along the reverse cluster-to-
cluster data path, the AP is able to obtain measurements of
round trip time and loss rates across all aggregate C-to-C traffic.

Using round trip time, loss rate, and packet size information,
a bandwidth availability estimate can be made at each AP us-
ing a throughput modeling equation. Our work has made use
of the TFRC [2] equation, giving a throughput estimate that
is both gradually responsive to network congestion and TCP-
compatible. In addition, we have developed techniques to ex-
tend single-flow modeling equations to multiple flowshares, thus
allowing m C-to-C application flows to receive the equivalent of
m TCP-compatible flowshares.

Peer flow and network condition information is passed to each
endpoint again using the CP header. An AP will write informa-
tion into the header before an incoming packet from the remote
cluster is forwarded to its local destination endpoint. A con-
sistent view of network conditions across flows follows from the
fact that the same information is shared among all endpoints.

Transport-level protocols at application endpoints are built
on top of CP. Using information on aggregate bandwidth avail-
ability, loss rate, round trip time, number of application flows,
etc., as well as various application configuration parameters,
the transport protocol can choose an appropriate sending rate
that reflects an application’s global coordination strategies. In-
formation on peer flows and network conditions is also made
available to the application layer directly, allowing it to modify
data encoding parameters or perform others types of adaptive
behavior.

While CP provides the essential building blocks to enable C-
to-C flow coordination, the implementation of a particular flow
coordination scheme is left to the application. This is necessarily
the case since it alone knows the nature and function of various
data flows, the semantic relationships between them, and how
best to use limited bandwidth during any given time interval.

Office of the Future, for example, may configure secondary
streaming endpoints to reduce their sending rate, or stop send-
ing altogether, in response to a drop in available bandwidth be-
low a particular threshold value. At the same time, a primary
stream endpoint may continue to send at its original rate, and a
control endpoint may increase its sending rate somewhat in or-
der to transmit essential control information telling the receive
side how to respond to the change. Despite these differences in
response behavior, the aggregate bandwidth usage drops appro-
priately to match a reduction in bandwidth availability.

3. RELATED WORK
Several approaches to congestion control for flow aggregates

have been proposed (e.g., [3], [4]). The most relevant to this
dissertation, however, is that of the Congestion Manager (CM),
proposed by Balakrishnan et al. in [1]. While the CM architec-
ture proposes many useful concepts and mechanisms for man-
aging congestion control in flow aggregates, we believe that it
is not a good match for the C-to-C problem context. First, the
CM sender module was designed to run on a single host using
a system interface that tightly couples CM flow scheduling and
application send events. Translating this interface to a message-
passing interface between multiple endpoints and a gateway host
is at best problematic. Second, CM’s use of a flow scheduler to
apportion bandwidth among flows works when flows can be well-
characterized and maintain a relatively static priority level. (A
situation more likely to occur when flows are not part of the
same application.) A C-to-C application like Office of the Fu-
ture, in contrast, changes flow priority and bandwidth usage
needs in a complex and dynamic manner. It’s not clear that a
gateway scheduling node could be continually reconfigured on
the fly for similar results.

4. CONTRIBUTIONS

• We identify an important class of Internet multimedia ap-
plications called Cluster-to-Cluster (C-to-C) applications
and describe their unique networking requirements.

• We define the flow coordination problem. This problem is
fundamental to C-to-C applications, but also of interest to
multiflow Internet applications generally.

• We propose a novel architecture, called the Coordination
Protocol (CP), that collects information on C-to-C appli-
cation flows and network conditions in order to make end-
point transport protocols network- and peer flow-aware.

• We show how CP can be used to implement application-
specific coordination schemes that solve the flow coordina-
tion problem in flexible ways. These schemes often find it
useful to decouple individual flow behavior and aggregate
congestion responsiveness, a feature of our architecture.

5. REFERENCES
[1] H. Balakrishnan, H.S. Rahul, and S. Seshan. An Integrated

Congestion Management Architecture for Internet Hosts.
Proc. of ACM SIGCOMM, Sept. 1999.

[2] M. Handley, S. Floyd, J. Padhye, and J. Widmer. RFC
3448: TCP Friendly Rate Control (TFRC): Protocol
Specification. IETF, Jan. 2003.

[3] H.T. Kung and S.Y. Wang. TCP Trunking: Design,
Implementation and Performance. Proc. of ICNP, 1999.

[4] P. Pradhan, T. Chiueh, and A. Neogi. Aggregate TCP
congestion control using multiple network probing. Proc. of
IEEE ICDCS, 2000.

[5] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and
H. Fuchs. The Office of the Future: A Unified Approach to
Image-Based Modeling and Spatially Immersive Displays.
Proc. of ACM SIGGRAPH, 1998.


