
1

A Mechanism for TCP-Friendly Transport-level
Protocol Coordination

David E. Ott and Ketan Mayer-Patel
University of North Carolina at Chapel Hill

�ott,kmp�@cs.unc.edu

Abstract—In this paper, we identify an emerging and im-
portant application class comprised of a set of processes on
a cluster of devices communicating to a remote set of pro-
cesses on another cluster of devices across a common inter-
mediary Internet path. We call these applicationscluster-to-
cluster applications, or C-to-C applications. The networking
requirements of C-to-C applications present unique chal-
lenges. Because the application involves communication be-
tween clusters of devices, very few streams will share a com-
plete end-to-end path. At the same time, network perfor-
mance needs to be measured globally across all streams for
the application to employ interstream adaptation strategies.
These strategies are important for the application to achieve
its global objectives while at the same time realizing an ag-
gregate flow behavior that is congestion controlled and re-
sponsive. We propose a mechanism called theCoordination
Protocol (CP) to provide this ability. In particular, CP makes
fine-grained measurements of current network conditions
across all associated flows and provides transport-level pro-
tocols with aggregate available bandwidth information using
an equation-based congestion control algorithm. A proto-
type of CP is evaluated within a network simulator and is
shown to be effective.

I. I NTRODUCTION

Advances in broadband networking, the emergence of
information appliances (e.g., TiVo, PDA’s, HDTV, etc.),
and the now ubiquitous computer provide an environment
rife with possibilities for new sophisticated multimedia ap-
plications that truly incorporate multiple media streams
and interactivity. We believe many of these future Internet
applications will increasingly make use of multiple com-
munication and computing devices in a distributed fashion.
Examples of these applications include distributed sensor
arrays, tele-immersion [13], computer-supported collabo-
rative workspaces (CSCW) [7], ubiquitous computing en-
vironments [16], and complex multi-stream, multimedia
presentations [17]. In these applications, no one device
or computer produces or manages all of the data streams
transmitted. Instead, the endpoints of communication are
collections of devices. We call applications of this type
cluster-to-cluster applications, or C-to-C applications.

C-to-C applications share three important properties:

� They generate many independent, but semantically re-
lated, flows of data.
� While very few flows within the application will share
the exact same end-to-end path, all flows will share a com-
mon intermediary path between clusters.
� This shared common path is the primary contributor of
transmission delay and the source of dynamic network
conditions including loss, congestion, and jitter.

Traditional multimedia applications like streaming
video generate only a few media streams (e.g., audio and
video) which in general originate and terminate at the same
devices (e.g., media server to media client). The appli-
cations we envision go far beyond this traditional model
and include myriad flows of information of many different
types communicated between clusters of devices.

Each flow of information may play a different role
within the application and thus should be matched with a
specific transport-level protocol which provides the appro-
priate end-to-end networking behavior. Furthermore, these
flows will have complex semantic relationships which
must be exploited by the application to appropriately adapt
to changing network conditions and respond to user inter-
action.

The fundamental problem with current transport-
level protocols within the C-to-C application con-
text is their lack of coordination.

Application streams share a common intermediary path
between clusters, and yet operate in isolation from one
another. As a result, flows may compete with one an-
other when network resources become limited, instead
of cooperating to use available bandwidth in application-
controlled ways.

In this paper, we describe and evaluate a mechanism
that allows transport-level protocol coordination of sepa-
rate, but semantically related, flows of data. Our approach
is to introduce mechanisms at the first- and last-hop routers
which make measurements of current network conditions
integrated across all flows associated with a particular C-
to-C application. These measurements are then commu-
nicated to the transport-level protocols on each endpoint.
This enables a coordinated response to congestion across



2

Aggregation
Point

Cluster−to−Cluster
Data Path

Aggregation
Point

App.
Process

A1Endpoint

App.
Process

A2Endpoint

ANEndpoint

App.
Process

App.
Process

B1Endpoint

App.
Process

B2Endpoint

BNEndpoint

App.
Process

Cluster A Cluster B

Internet

Fig. 1. C-to-C application model.

all flows that reflects application-level goals and priori-
ties. We leverage recent work in equation-based conges-
tion control to ensure that the aggregate bandwidth used by
all of the flows is TCP-friendly while allowing the appli-
cation to allocate available bandwidth to individual flows
in whatever manner suits its purposes.

The main contributions of this paper are:
� Identification of the C-to-C class of Internet applica-
tions, including a brief motivating example.
� Description of the networking challenges unique to this
application type.
� A proposal for a mechanism that provides transport-level
protocol coordination in C-to-C applications.
� Evaluation of several aspects of our mechanism using
simulation.

The rest of this paper is organized as follows: In Sec-
tion II, we present the C-to-C application model, describe a
motivating example, and discuss networking requirements
unique to this class of distributed applications. In Sec-
tion III, we review related work. We present our solu-
tion to the transport-level protocol coordination problem
in Section IV, and provide some experimental evaluation
in Section V. Section VI mentions future work, and Sec-
tion VII briefly summarizes the contents of this paper.

II. M OTIVATION

In this section, we describe in more detail the C-to-C
application model, and illustrate it with a specific example.
We then discuss the networking challenges associated with
this application type, and why there is a need for a protocol
coordination mechanism.

A. C-to-C Application Model

We model a generic C-to-C application as two sets of
processes executing on two sets of communication or com-
puting devices. Figure 1 illustrates this model.

A cluster is comprised of a set ofendpoints distributed
over a set ofendpoint hosts (computers or communication
devices) and a singleaggregation point, or AP. Each end-
point is a process that sends and/or receives data from an-

other endpoint belonging to a remote cluster. The AP func-
tions as a gateway node traversed by all cluster-to-cluster
flows. The common traversal path between aggregation
points is known as theC-to-C data path.

The AP is typically the first-hop router connecting the
cluster to the Internet and the cluster endpoints are typi-
cally on the same local area network. This configuration,
however, is not strictly required by our model or our pro-
posed mechanism. Our model is intended to capture sev-
eral important characteristics of C-to-C applications. First,
networking resources among endpoints of the same cluster
are generally well provisioned for the needs of the appli-
cation. Second, latency between endpoints of the same
cluster is small compared to latency between endpoints on
different clusters. Third, there exists a natural point within
the network topology through which all cluster-to-cluster
communication flows which can act as the AP. Finally, the
C-to-C data path between AP’s is the main source of dy-
namic network conditions such as jitter, congestion, and
delay. Our overall objective is to coordinate endpoint flows
across the C-to-C data path.

B. An Example Application

A concrete example of a C-to-C application may help
clarify the types of applications we envision. In theOffice
of the Future, conceived by Fuchs et al. [13], tens of digital
light projectors are used to make almost every surface of an
office (walls, desktops, etc.) a display surface. Similarly,
tens of video cameras are used to capture the office envi-
ronment from a number of different angles. At real-time
rates, the video streams are used as input to stereo correla-
tion algorithms to extract 3D geometry information. Au-
dio is also captured from a set of microphones. The video
streams, geometry information, and audio streams are all
transmitted to a remote Office of the Future environment.
At the remote environment, the video and audio streams
are warped using both local and remote geometry informa-
tion and stereo views are mapped to the light projectors.
Audio is spatialized and sent to a set of speakers. Users
within each Office of the Future environment wear shutter
glasses that are coordinated with the light projectors.

The result is an immersive 3D experience in which the
walls of one office environment essentially disappear to re-
veal the remote environment and provide a tele-immersive
collaborative space for the participants. Furthermore, syn-
thetic 3D models may be rendered and incorporated into
both display environments as part of the shared, collabo-
rative experience. Figure 2 is an artistic illustration of the
application. A prototype of the application is described in
[13].

The Office of the Future is a good example of a C-



3

Fig. 2. The Office of the Future.

to-C application because the endpoints of the application
are collections of devices. Two similarly equipped offices
must exchange myriad data streams. While few streams
(if any) will share a complete end-to-end communication
path, all of the data streams will span a common shared
path between the local networking environments of each
Office of the Future.

The local network environments are not likely to be the
source of congestion, loss, or other dynamic network con-
ditions because they can be provisioned to support the Of-
fice of the Future application. The shared Internet path
between two Office of the Future environments, however,
is not under local control and thus will be the source of
dynamic network conditions.

The Office of the Future has a number of complex
application-level adaptation strategies that we believe are
typical of C-to-C applications. One such strategy, for ex-
ample, isdynamic interstream prioritization. Since media
types are integrated into a single immersive display envi-
ronment, user interaction with any given media type may
have implications for how other media types are encoded,
transmitted, and displayed. The orientation and position
of the user’s head, for example, indicates a region of in-
terest within the office environment. Media streams that
are displayed within that region of interest should receive
a larger share of available bandwidth and be displayed at
higher resolutions and frame rates than media streams that
are outside the region of interest. When congestion occurs,
lower priority streams should react more strongly than
higher priority streams. In this way, appropriate aggre-
gate behavior is achieved and dynamic, application-level
tradeoffs are exploited.

C. Networking Requirements of C-to-C Applications

A useful metaphor for visualizing the networking re-
quirements of C-to-C applications is to view the commu-
nication between clusters as a rope with frayed ends. The
rope represents the aggregate data flow between clusters.
Each strand represents one particular flow between end-
points. At the ends of the rope, each frayed strand repre-
sents a separate path between an endpoint and its local AP.
The strands come together at the AP’s to form a single ag-
gregate object. While each strand is a separate entity, they
share a common fate and purpose when braided together.

With this metaphor in mind, we identify several impor-
tant networking requirements of C-to-C applications:

� Preserved end-to-end semantics.
The transport-level protocol (i.e., TCP, UDP, RTP, RAP,
etc.) that is used by each flow is specific to the commu-
nication requirements of the data within the flow and the
role it plays within the application. Thus, each transport-
level protocol should maintain the appropriate end-to-end
semantics and mechanisms. For example, if a data flow
contains control information that requires in-order, reliable
delivery, then the transport-level protocol used (e.g., TCP)
should provide these services on an end-to-end basis.
� Global coordinated measurements of throughput, de-
lay, and loss.
The application is interested in overall performance which
may involve complex interstream adaptation strategies in
the face of changing network conditions. Throughput, de-
lay, and loss should be measured across all flows associ-
ated with the application as an aggregate. Furthermore,
the behavior of individual transport-level protocols must
reflect both the end-to-end semantics associated with the
protocol as well as application-level adaptation strategies.
To achieve this, we need to separate the adaptive dynamic
behavior of each transport-level protocol from the mecha-
nisms used to measure current network conditions.
� TCP-friendliness.
While the C-to-C application is free to prioritize how band-
width is allocated among its streams, the total bandwidth
used needs to be responsive to congestion. The emerg-
ing gold-standard for evaluating responsiveness is TCP-
friendliness. Intuitively, a flow of data is considered TCP-
friendly if it consumes as much bandwidth as a competing
TCP flow consumes given the same network conditions.
The advantage of using TCP-friendliness as a standard by
which to measure the congestion response of a protocol
(or in our case, the aggregate behavior of a set of proto-
cols) is that it ensures “fairness” with the large majority
of Internet traffic (including HTTP) that uses TCP as an
underlying data transport protocol.



4

� Information about peer flows.
Individual streams within the C-to-C application may re-
quire knowledge about other streams of the same appli-
cation. This knowledge can be used to determine the ap-
propriate adaptive behavior given application-level knowl-
edge about interstream relationships. For example, an ap-
plication may want to establish a relationship between two
flows of data such that one flow consumes twice as much
bandwidth as the other.
� Flexibility for the application.
A C-to-C application should be free to exploit trade-offs
without constraint. That is, a coordination mechanism
should not preclude dynamic changes in bandwidth usage
among flows, or enforce any particular scheme for estab-
lishing bandwidth usage relationships between flows. The
application should be free to implement whatever adapta-
tion policy is most appropriate in whatever manner is most
appropriate.

III. R ELATED WORK

A. Application-level Framing

The ideas of this paper are firmly grounded in the con-
cept of Application Level Framing (ALF) [5]. The ALF
principle states that networking mechanisms should be co-
ordinated with application-level objectives. As explained
above, however, C-to-C applications present unique chal-
lenges because these objectives involve interstream trade-
offs for flows that do not share a complete end-to-end path.
The actions of heterogeneous protocols distributed among
a cluster of devices must be coordinated to incorporate
application-specific knowledge. In essence, we are ex-
tending the ALF concept to the idea of adapting protocol
behavior to reflect application-level semantics. This idea
is also well expressed in a position paper by Padmanab-
han [11].

B. Protocol Coordination

The coordination problem presented by C-to-C applica-
tions is addressed most directly by Balakrishnan et al. in
their work on the Congestion Manager (CM) [3], [1], [2].
CM provides a framework for different transport-level pro-
tocols to share information on network conditions, specif-
ically congestion, thus allowing substantial performance
improvements. We note, however, that CM flows share
the same end-to-end path, while C-to-C flows share only a
common intermediary path. The fact that C-to-C senders
do not reside on the same host significantly limits the ex-
tensibility of the CM architecture to our problem context.
CM offers applications sharing the same macroflow a sys-
tem API and callback mechanisms for coordinating send

events. Implementing this scheme using message passing
between hosts is at best problematic.

Furthermore, CM makes use of a scheduler to appor-
tion bandwidth among flows. In [3], this is implemented
using a Hierarchical Round Robin (HRR) algorithm. We
might extend this scheme to the C-to-C context by plac-
ing the scheduler at the AP. Doing so, however, results
in several problems. First, packet buffering mechanisms
are required which, along with scheduling, add complex-
ity to the AP and hurt forwarding performance. Second,
packet buffering at the AP lessens endpoint control over
send events since endpoint packets can be queued for an
indeterminate amount of time. Balakrishnan et al. delib-
erately avoid buffering for exactly this reason, choosing
instead to implement a scheduled callback event. Finally,
scheduler configuration is problematic since C-to-C appli-
cations are complex and may continually change the man-
ner in which aggregate bandwidth is apprortioned among
flow endpoints.

In [9], Kung and Wang propose a scheme for aggregat-
ing traffic between two points within a backbone network,
and applying the TCP congestion control algorithm to the
whole bundle. The mechanism is transparent to applica-
tions and does not provide a way for a particular applica-
tion to make interstream tradeoffs.

Pradhan et al. propose a way of aggregating TCP con-
nections sharing the same traversal path in order to share
congestion control information [12]. Their scheme takes
a TCP connection and divides it into two separate (“im-
plicit”) TCP connections: a “local subconnection” and a
“remote subconnection.” This scheme, however, breaks
the end-to-end semantics of the transport protocol.

[14] describes a scheme for sharing congestion informa-
tion across TCP flows from different hosts. This work is
similar to ours in that a mechanism is introduced within the
network itself to coordinate congestion response across a
number of different flows which may not share a complete
end-to-end path. Their mechanism does not provide the
application with information about flows as an aggregate,
however, and focuses on optimizing TCP performance by
avoiding slow-start and detecting congestion as early as
possible.

Finally, Seshan et al. propose the use ofperformance
servers that act as a repository for end-to-end performance
information [15]. This information may be reported by in-
dividual clients or collected bypacket capture hosts, and
then made available to client applications using a query
mechanism. The time granularity of performance informa-
tion is coarse compared to CP, however, since it is intended
to enable smart application decisions on connection type
and destination, and not ongoing congestion responsive-



5

Transport Layer

Network Layer

Coordination Layer

Application Layer

Aggregation
Point

Aggregation
PointEndpoint Endpoint

IP

CP

C−TCP C−UDP

C−RTP

IP

CP

IP

CP

IP

CP

C−TCP C−UDP

C−RTP

Packet Path

Fig. 3. CP network architecture.

ness. In addition, their work does not associate heteroge-
neous flows belonging to the same application, or consider
the performance of flow aggregates.

C. Equation-based Congestion Control

TCP-friendly equation-based congestion control has re-
cently matured as a technique for emulating TCP behavior
without replicating TCP mechanics. In [6], [10], an analyt-
ical model for TCP behavior is derived that can be used to
estimate the appropriate TCP-friendly rate given estimates
of various channel properties. A number of important
recommendations for using their TCP-friendly equation-
based congestion control have been documented in [8].

IV. COORDINATION PROTOCOL (CP)

In this section we describe our solution to the problem
of transport-level protocol coordination in C-to-C applica-
tions.

A. The Coordination Protocol (CP)

We propose the use of a new protocol which operates
between the network layer (IP) and transport layer (TCP,
UDP, etc.) that addresses the need for transport-level coor-
dination. We call this protocol theCoordination Protocol
(CP). The coordination function provided by CP is trans-
port protocol independent. At the same time, CP is distinct
from network-layer protocols like IP that play a more fun-
damental role in routing a packet to its destination.

CP works by attaching probe information to packets
transmitted from one cluster to another. As additional
probe information is returned along the reverse cluster-to-
cluster data path, a picture of current network conditions
is formed by the AP and shared among endpoints within
the local cluster. A consistent view of network conditions
across flows follows from the fact that the same informa-
tion is shared among all endpoints.

Figure 3 shows our proposed network architecture from
a stack implementation point of view. CP exists on each
endpoint device participating in the C-to-C application, as
well as on the two aggregation points (APs) on either end
of the cluster-to-cluster data path. Routers on the data path
between APs neednot be CP-enabled since they examine

only the IP header of each incoming packet in order to
route the packet in their customary manner.

The decision to insert CP between the network and
transport layer rather than handling coordination at the ap-
plication level requires some justification. Of primary im-
portance to us is the preservation of end-to-end semantics.
An alternative would be for each endpoint to send to a mul-
tiplexing agent who would send the data, along with probe
information, to a demultiplexing agent on the remote clus-
ter. By breaking the communication path into three stages,
however, the end-to-end semantics of individual transport-
level protocols have been severed. Such a scheme would
also mandate that application-level control is centralized
and integrated into the multiplexing agent.

Furthermore, we note that CP logically belongs between
the network and transport layer. While the network layer
handles the next-hop forwarding of individual packets and
the transport layer handles the end-to-end semantics of in-
dividual streams, CP is concerned with streams that share
a significant number of hops along the forwarding path but
do not share the same end-to-end path. This relaxed no-
tion of a stream bundle logically falls between the strict
end-to-end notion of the transport-level and the indepen-
dent packet notion of the network-level.

Finally, placement of CP between the network and
transport layer allows for greater efficiency. In an
application-level implementation of CP, information on
network conditions (e.g., round trip time between APs)
must pass up through an endpoint’s protocol stack to the
application layer. The information must then be passed
back down to the transport layer where sending rate ad-
justments can be made in response to the information. In
contrast, a distinct coordination layer allows for the infor-
mation to be received and passed directly to the transport
layer in a single pass as the incoming packet is processed
by each layer of its endpoint’s network stack.

While we acknowledge that implementing CP mecha-
nisms at the application layer is indeed possible, we be-
lieve there are distinct advantages to the approach we have
chosen. We emphasize, however, that the relative merits
or drawbacks of our scheme are merely implementation
issues that should not obscure the fundamental problem of
C-to-C flow coordination described in this paper.

B. CP Packet Headers

Figure 4 shows a CP data packet. CP encapsulates
transport-level packets by prepending a 16-byte header and
indicating in the protocol field which transport level proto-
col is associated with the packet. In turn, IP encapsulates
CP packets and indicates in its protocol field that CP is
being used.



6

Header
Transport−level

Packet Data

IP Header

CP Header

RTT
Variance

Aggregate
Bandwidth Used

No. of
Flows

Bandwidth
Available

Loss
Rate

C−to−C
App ID

Flow
ID

Protocol
ID

Round Trip Time

Ver Flags

Seq.
No.

Echo
Delay

Bandwidth
Available

Loss
Rate

C−to−C
App ID

Flow
ID

Protocol
ID

Timestamp

Echo Timestamp

Ver FlagsC−to−C
App ID

Flow
ID

Protocol
ID

Ver Flags

Unused

Unused

Unused

From endpoint to AP: From AP to AP: From AP to endpoint:

Fig. 4. CP packet structure.

Each CP header contains an application identifier asso-
ciating the packet with a particular C-to-C application, and
a flow identifier indicating which flow from a given end-
point host the packet belongs to. The triple(application id,
IP address, flow id) uniquely identifies each flow within
the C-to-C application, and hence the source of each CP
packet. The header also contains a version number and a
flags field.

The remaining contents of the CP header vary according
to the changing role played by the header as it traverses
the network path from source endpoint to destination end-
point. As the packet passes from the source endpoint to
its local AP, the header merely identifies the cluster appli-
cation it is associated with and its sender. As the packet
is sent from the source’s local AP to the remote AP, the
header contains probe information used to measure round
trip time, detect packet loss, and communicate current loss
rate and bandwidth availability. As the packet is forwarded
from the remote AP to its destination endpoint, the header
contains information on application bandwidth use, flow
membership, round trip time, loss rate, and bandwidth
availability.

C. Basic Operation

The basic operation of CP is as follows.

� As packets originate from source endpoints.
The CP header is included in the application packet indi-
cating the source of the packet and the cluster application
it is associated with.
� As packets arrive at the local AP.
CP will process the identification information arriving in
the CP header, and note the packet’s size and arrival time.
Part of the CP header will then be overwritten, allowing
the AP to communicate congestion probe information to
the remote AP.
� As packets arrive at the remote AP.
The CP header is processed and used to detect network
conditions. Again, part of the CP header is overwritten to
communicate network condition information, along with

information on cluster application size and bandwidth us-
age, to the remote remote endpoint.
� As packets arrive at the destination endpoint.
CP processes network condition information from the CP
header and passes it on to the transport-level protocol and
the application.

D. State Maintained by an AP

An AP maintains a table of active cluster applications,
each entry of which exists as soft state. When a packet ar-
rives with an unknown cluster identifier in its CP header, a
new entry will be created in the table and CP probe mech-
anisms will become active for that application. Similarly,
if no CP packet has been seen for a particular cluster iden-
tifier �, then the entry will time out and be removed from
the application table. Use of soft state in this manner is
both flexible and lightweight in that it avoids the need for
explicit configuration and ongoing administration.

For each cluster application, the AP monitors the num-
ber of participating flows, and the number and size of pack-
ets received during a given interval. Weighted averages are
calculated to dampen the effect of packet bursts. The in-
formation is passed back to local cluster endpoints using
the CP header whenever a packet arrives from the remote
AP on route to a local endpoint. If no such packet ar-
rives within a specified time period, then areport packet
is created and “pushed” to each endpoint informing them
of cluster application membership and bandwidth usage,
as well as current network conditions.

An AP also maintains probe state, including a current
packet sequence number, estimated round trip time and
mean deviation, a loss history and estimated loss rate, and
a bandwidth availability calculation. Use of these mecha-
nisms is described below.

E. Detecting Network Delay and Loss

A primary function of CP is to measure network de-
lay and detect packet loss along the cluster-to-cluster data
path. Figure 5, Table I, and Table II together illustrate how



7

720

460

400

280

60

20

A

B

C

D

E

F

AP1 AP2

1325

1260

1020

950

900
870

620
AP

1 
Sy

st
em

 C
lo

ck
 V

al
ue

s AP2 System
 C

lock Values

Fig. 5. Timeline of AP packet exchanges.

Packet Sequence
Number

Time-
stamp

Time-
stamp
Echo

Echo
Delay

B 14 900 60 30
C 15 950 60 80
D 16 1020 60 150
F 17 1325 460 65

TABLE I
INFORMATION IN CP HEADER FOR PACKETS TRAVELING

FROM AP1 TO AP2 IN FIGURE 5.

information in the CP header is used to make these mea-
surements.

Each packet passing from one AP to another has several
numbers inserted into its CP header. The first is a sequence
number that increases monotonically for every packet sent.
A remote AP may use this number to observe gaps (and
reorderings) in the aggregate flow of cluster application
packets that it receives. In this way, it can detect losses and
infer congestion. In our example, AP2 detects the loss of
packet C when the sequence number received skips from
14 (packet A) to 16 (packet D).

In addition, a timestamp is sent along with the se-
quence number indicating the time at which the AP sent
the packet. The remote AP will then echo the timestamp
of the last sequence number received by placing the value
in the CP header of the next packet traveling on the reverse
path back to the sending AP. Along with this timestamp, a
delay value will also be given indicating the length of time
between the arrival of the sequence number at the AP and
the time the AP transmitted the echo.

Packet Sequence
Number

Time-
stamp

Time-
stamp
Echo

Echo
Delay

A 76 60 620 40
E 77 460 1020 60

TABLE II
INFORMATION IN CP HEADER FOR PACKETS TRAVELING

FROM AP2 TO AP1 IN FIGURE 5.

By noting the time when a packet is received (��������),
the AP can calculate the round trip time as��������� �
������ � �	���
. In our example, AP2 receives packet B
at time 280. The CP header contains the timestamp echo
60 and an echo delay value of 30. Thus, the round trip time
is calculated as���� ��� �� � �	�. A weighted average
of these round trip time calculations is used to dampen the
effects of burstiness.

Note that because sequence numbers in the CP header
do not have any transport-level function, CP can use what-
ever C-to-C application packet is being transmitted next to
carry this information. Since the packets of multiple flows
are available for this purpose, this mechanism can be used
for fine-grained detection of network conditions along the
cluster-to-cluster data path.

We also observe that there is no one-to-one correspon-
dence between timestamps sent and timestamps echoed
between APs. It may be the case that more than one
packet is received by a remote AP before a packet trav-
eling along the opposite path is available to echo the most
current timestamp. The AP simply makes use of available
packets in a best effort manner. In Figure 5 this can be
seen as AP2 receives both packets B and D before packet
E is available to send on the return path. Likewise, an AP
may echo the same timestamp more than once if no new
CP packet arrives with a new timestamp. In our example,
this occurs when AP1 sends packets B, C, and D with a
timestamp echo value of 60 which it received from packet
A.

F. Calculating Loss Rate and Bandwidth Availability

Calculation of loss rate and bandwidth availability make
use of equation-based congestion control methods de-
scribed in Floyd et al. in their work on TCP-friendly rate
control (TFRC) [8].

Loss rate, a central input parameter into the bandwidth
availability equation, is calculated using aloss history and
loss events rather than individual packet losses. By using
a loss event rate rather than a simple lost packet rate, we
provide a more stable handling of lost packet bursts. The



8

reader is referred to [6] for more details.
Calculation of available bandwidth makes use of the

equation:

� �
�

�
�

���
�


 �����
�

���
�
���� 
 �����

(1)

where� is the transmit rate (bytes/sec),� is the packet
size (bytes),� is the round trip time (sec),� is the loss
event rate on the interval [0,1.0],��� is the TCP retrans-
mission timeout (sec), and� is the number of packets ac-
knowledged by a single TCP acknowledgement.

The resulting quantity, which we refer to as current
bandwidth availability, is calculated at the remote AP, and
then passed using the CP header to each endpoint in the
cluster. Similarly, the event loss rate is also passed on to
endpoints to inform them of current network conditions.

We emphasize here that the use of the above equation
to calculate bandwidth availability for the cluster applica-
tion makes theaggregate data flow from one AP to another
TCP-compatible.

G. Transport-level Protocols

Transport-level protocols at the endpoints are built on
top of CP in the same manner that TCP is built on top
of IP. CP provides these transport-level protocols with a
consistent view of network conditions, including aggre-
gate bandwidth availability, loss rate, and round trip delay
measurements. In addition, it informs endpoints of the ag-
gregate bandwidth usage and the current number of flows
in the cluster application. A transport-level protocol will
in turn use this information, along with various configura-
tion parameters, to determine a data transmission rate and
related send characteristics.

In Figure 3, we show several possible transport-level
protocols (C-TCP, C-UDP, and C-RTP) which are meant
to represent coordinated counterparts to existing protocols.
A coordinated version of UDP (C-UDP) simply makes
the above information available directly to the applica-
tion which may modify its sending rate according to an
application-specific rule or bandwidth sharing scheme.

A coordinated version of TCP (C-TCP) may consider
acknowledgements only as an indicator of successful
transfer. The burden of round trip delay determination and
congestion detection can be relegated entirely to CP. Send
rate adjustments at the transport level are the combined re-
sult of configuration information given by the application
(e.g., a maximum sending rate), and information on cur-
rent network conditions as provided by CP.

While C-UDP and C-TCP represent adaptations of fa-
miliar transport-level protocols, we believe that other co-

ordinated transport-level protocols are possible. Such pro-
tocols will make use of CP information and application se-
mantics to adjust sending rates to meet application-specific
objectives.

H. Application-level Programming Interface

Endpoint implementations of CP provide a modified
socket interface to the application layer. With this inter-
face, the application is able to associate its data flow with
a particular cluster application and interact more directly
with CP-related mechanisms in two ways.

First, the application may use the interface to communi-
cate configuration information to the transport-level. For
example, an application may wish to restrict the transport-
level sending rate to no more than some maximum value.
Or, an application may instruct the transport layer to send
at only some fraction of the available bandwidth given var-
ious conditions. Such configuration is made possible by a
set of system calls which allow applications to pass func-
tions to the transport layer which operate on reported CP
values in order to calculate an instantaneous sending rate.

The application may also use the interface to access
CP information directly. Thus, a system call is provided
which allows the application to query, for example, avail-
able bandwidth, round trip time, and the current loss rate.
Obtaining this information directly is of particular impor-
tance when the application itself controls its own send rate
(e.g., C-UDP) rather than relegating such control to the
transport-level protocol (e.g., C-TCP).

I. Endpoint Coordination

While a goal of C-to-C applications is to maintain con-
gestion responsiveness on an aggregate level, how this
goal is realized is left entirely to the application. The ap-
proach of CP is to avoid the use of traffic shaping or packet
scheduling mechanisms at the AP, but instead to provide
application endpoints with bandwidth availability “hints”
and other information about changing network conditions.
An application may then apportion bandwidth among end-
points by configuring them to respond to these hints in
ways which meet the objectives of the application as a
whole.

For example, a C-to-C application may configure sec-
ondary streaming endpoints to reduce their sending rate,
or stop sending altogether, in response to a drop in avail-
able bandwidth below a particular threshold value. At the
same time, a primary stream endpoint may continue to
send at its original rate, and a control endpoint may in-
crease its sending rate somewhat in order to transmit im-
portant commands telling the receive side how to respond
to the change. Despite these differences in response be-



9

2I

1I

SAP

S1

S2

Sn

1T

2T

AAP

1A

2A

nA

1ms, 10Mb/s

1ms, 10Mb/s4ms, 10Mb/s

4ms, 10Mb/s

Fig. 6. Simulation testbed in ns2.

havior, the aggregate bandwidth usage drops appropriately
to match the bandwidth availability hint given.

CP provides a C-to-C application with the mechanisms
needed to make coordinated adaptation decisions which
reflect the current state of the network and the application’s
objectives. We believe it unnecessary to provide additional
mechanisms which enforce bandwidth usage among end-
points since each belongs to the same application and thus
shares the same objectives. In addition, endpoint config-
uration may be complex and change dynamically making
the implementation of an enforcement scheme inherently
problematic.

V. EVALUATION

In this section, we evaluate the behavior of CP using the
network simulatorns-2 [4]. We focus here on our imple-
mentation of C-TCP, the coordinated counterpart to TCP.

C-TCP, like TCP, implements reliability through the use
of acknowledgement packets, timeouts, and retransmis-
sion. Unlike window-based TCP, however, C-TCP is a
rate-based implementation which adjusts its instantaneous
send rate based on bandwidth availability information sup-
plied by CP, and configuration information supplied by the
application. Our implementation of C-TCP draws heavily
from TFRC [8], except that loss and send rate calculations
are handled by APs communicating over the C-to-C data
path, and TCP-compatibility, as defined in [6], is achieved
on an aggregate and not per-flow level.

A. Network Topology

Our simulation topology is pictured in Figure 6. A clus-
ter of sending agents is labeled�� through��, with its
local aggregation point labeled	
� . A remote cluster of
ACK (acknowledgement) agents is labeled	� through	�,
with its aggregation point labeled	
�. �� and�� are in-
termediary nodes used to create a congested link, and��
and�� are used for traffic generation.

Propagation delay on links	
�-��, ��-��, and��-	
�
is configured to be 4 msec, while it is only 1 msec on links
��-	
� and	�-	
�. The link capacity for all links is 10

Congestion
Period

TCP flow 0

TCP flow 2
TCP flow 1

0

1

2

3

4

5

6

7

8

9

10

5 10 15 20 25
Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 7. TCP flows competing for bandwidth during congestion.

Mb/s, except for links��-�� and��-�� where link capac-
ity is 100 Mb/s. This allows traffic generators to increase
traffic over link��-�� to any desired level.

Trace data is collected as it is transmitted from	
�
to �� since this allows us to observe sending rates before
additional traffic on the link��-�� causes queuing delays,
drops, or jitter not reflective of cluster endpoint sending
rates.

TCP and C-TCP flows in this section use an infinitely
large data source and send at the maximum rate allowed by
their respective algorithms. Congestion periods are created
by configuring�� and�� to generate constant bitrate traffic
across the link��-��. In particular, a CBR agent sending at
a constant 7.5-9.0 Mb/s from�� to �� competes with data
traffic from��-�� over link ��-��.

B. Behavior of Uncoordinated TCP Flows

To better see the problem addressed by CP, we first ex-
amine how several TCP connections behave without coor-
dination. In Figure 7, we see the throughput plot of three
TCP connections as network congestion occurs between
time 8.0 and 13.0 seconds. Flow 0 belongs to an appli-
cation process with higher bandwidth requirements than
processes associated with flows 1 and 2. This can be seen
clearly at the right and left edges of the plot when flow 0
takes its full share of the bandwidth under congestion-free
circumstances.

We note the following observations:
� During the congestion interval, all three flows compete
with one another and receive a roughly similar portion of
the available bandwidth.
� The flows continue to compete in a similar fashion dur-
ing the period directly afterward (time 13.0 through 22.0)
as each struggles to send accumulated data and regain its
requisite level of bandwidth.



10

Aggregate
C−TCP flow 0
C−TCP flow 1
C−TCP flow 2

C
on

ge
st

io
n 

Pe
rio

d

C
on

ge
st

io
n 

Pe
rio

d

0

1

2

3

4

5

6

7

8

9

10

11

5 10 15 20 25
Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 8. C-TCP flows sharing bandwidth equally.

� The bandwidth used by each flow is characterized by
jagged edges, often criss-crossing one another. This makes
sense since each flow operates independently, searching
the bandwidth space by repeatedly ramping up and back-
ing off.

C. Behavior of C-TCP Flows

We postulate here that use of the Coordination Proto-
col (CP) should be distinctive in at lease two ways. First,
since all flows make use of the same bandwidth availabil-
ity calculation, round trip time, and loss rate information,
bandwidth usage patterns among CP flows should be much
smoother. That is, there should be far fewer jagged edges
and less criss-crossing of individual flow bandwidths as
flows need not search the bandwidth space in isolation for
a maximal send rate.

Second, the use of bandwidth by a set of CP flows
should reflect the priorities and configuration of the
application–including intervals of congestion when net-
work resources become limited.

To test these hypotheses, we implemented three simple
bandwidth sharing schemes which reflect different objec-
tives an application may wish to achieve on an aggregate
level. We note here that more schemes are possible, and
the mixing of schemes in complex, application-specific
ways is an open area of research.

Figure 8 shows a simpleequal bandwidth sharing
scheme in which C-TCP flows divide available bandwidth
(�) equally among themselves. (�� � �� where�� is
the send rate for sending endpoint�, and� is the num-
ber of sending endpoints.) The aggregate plot line shows
the total bandwidth used by the multi-flow application at a
given time instant. While not plotted on the same graph,
this line closely corresponds to bandwidth availability val-
ues calculated by APs and communicated to cluster end-

C
on

ge
st

io
n 

Pe
rio

d

C
on

ge
st

io
n 

Pe
rio

d

Aggregate
C−TCP flow 0
C−TCP flow 1
C−TCP flow 2

0

1

2

3

4

5

6

7

8

9

10

11

5 10 15 20 25
Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 9. C-TCP flows sharing bandwidth proportionally.

points.
Figure 8 confirms our hypothesis that usage patterns

among CP flows should be far smoother, and avoid the
jagged criss-crossing effect seen in Figure 7. This is both
because flows are not constantly trying to ramp up in
search of a maximal sending rate, and because of the use
of weighted averages in the bandwidth availability calcu-
lation itself. The latter has the effect of dampening jumps
in value from one instant to the next.

Figure 9 shows aproportional bandwidth sharing
scheme among C-TCP flows. In this particular scheme,
flow 0 is configured to take .5 of the bandwidth (�� �

�� � �), while flows 1 and 2 evenly divide the remaining
portion for a value of .25 each (�� � �� � ��� ��).

Figure 9 confirms our second hypothesis above by
showing sustained proportional sharing throughout the en-
tire time interval. This includes the congestion intervals
(times 5.0-8.0 and 14.0-20.0) and post-congestion inter-
vals (times 8.0-10.0, 20.0-25.0) when TCP connections
might still contend for bandwidth.

In Figure 10, we see aconstant bandwidth flow in con-
junction with two flows equally sharing the remaining
bandwidth. The former is configured to send at a con-
stant rate of 3.5 Mb/s or, if it is not available, at the band-
width availability value for that given instant. (�� �

�������������). Flows 1 and 2 split the remaining
bandwidth or, if none is available, send at a minimum rate
of 1Kb/s. (�� � �� � ������ ������ �����)

We observe that flows 1 and 2 back off their sending
rate almost entirely whenever flow 0 does not receive its
full share of bandwidth. We also note that while flow 0
is configured to send at a constant rate, it never exceeds
available bandwidth limitations during time of congestion.

We emphasize once again the impossibility of achiev-
ing results like Figure 9 and Figure 10 in an application



11

C
on

ge
st

io
n 

Pe
rio

d

C
on

ge
st

io
n 

Pe
rio

d Aggregate
C−TCP flow 0
C−TCP flow 1
C−TCP flow 2

0

1

2

3

4

5

6

7

8

5 10 15 20 25
Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 10. A constant bandwidth C-TCP flow with two C-TCP
flows sharing remaining bandwidth.

without the transport-level coordination provided by CP.

D. TCP-Friendliness

The TCP-friendliness of aggregate CP traffic is es-
tablished by using the equation-based congestion control
method described in [6] and used by TFRC [8].

While equation-based rate control guarantees TCP-
compatibility over long time intervals, Figure 11 illustrates
informally the behavior of a single C-TCP connection with
two TCP connections during a short congested interval
(time 5.0 through 9.0). Here we’re interested in verifying
that the behavior of the C-TCP flow does indeed appear to
be compatible with that of the TCP flows.

In general, we see that the C-TCP connection mixes rea-
sonably well with the TCP connections, receiving approx-
imately an equal share of the available bandwidth. In ad-
dition, we once again observe the smoothness of its rate
adjustments compared to the far more volatile changes in
TCP flows.

VI. FUTURE WORK

We believe transport-level protocol coordination in C-
to-C applications to be fertile area for future work. In par-
ticular, much work remains to be done on new transport
protocols better equipped to make use of network condi-
tion and cluster flow information. These protocols may
provide end-to-end semantics which are more specific to
an application’s needs than current all-purpose protocols
like TCP and UDP.

Flow coordination in a C-to-C application within this
paper has meant the sharing of bandwidth from a single
bandwidth availability calculation, equivalent to a single
TCP-compatible flow. Future work might focus on shar-
ing the equivalent of more than one TCP-compatible flow,

Congestion
Period

TCP flow
TCP flow

C−TCP flow

0

1

2

3

4

5

6

2 4 6 8 10 12 14
Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 11. C-TCP flow interacting with TCP flows.

just as many applications (eg., Web browsers) open more
than one connection to increase throughput by paralleliz-
ing end-to-end communication.

The assumption that local networks on each end of a
C-to-C application can always be provisioned to minimize
network delay and loss may not always be true. For exam-
ple, wireless devices may introduce delay and loss inherent
to the technology itself. How CP can be adapted to acco-
modate this situation is an area of future work. One idea is
to use CP for distinguishing between congestion sources.
End-to-end estimates of delay and loss could be compared
with those of CP in order to determine whether congestion
is local or within the network.

Finally, the impact of CP mechanisms on forwarding
performance at the AP is an important issue that deserves
further study. We conjecture here that the impact will
be modest since per-packet processing largely amounts to
simple accounting and checksum computations, and an AP
avoids entirely the need for buffering or scheduling mech-
anisms. An actual implementation is required, however,
before any meaningful analysis can be done.

VII. SUMMARY

In this paper, we have identified a class of distributed
applications known ascluster-to-cluster (C-to-C) applica-
tions. Such applications have semantically related flows
that share a common intermediary path, typically between
first- and last-hop routers. C-to-C applications require
transport-level coordination to better put the application
in control over bandwidth usage, especially during peri-
ods when network resources become limited by conges-
tion. Without coordination, high-priority flows may con-
tend equally with low-priority flows for bandwidth, or re-
ceive no bandwidth at all, thus preventing the application
from meeting its objectives entirely.

We have proposed the Coordination Protocol (CP)



12

as a way of coordinating semantically related flows in
application-controlled ways. CP operates between the net-
work (IP) and transport (TCP, UDP) layers, offering C-to-
C flows fine-grained information about network conditions
along the cluster-to-cluster data path, as well as informa-
tion about application flows as an aggregate. In particu-
lar, CP makes use of equation-based rate control methods
to calculate bandwidth availability for the entire C-to-C
application. This results in aggregate flow rates that are
highly adaptive to changing network conditions and TCP-
compatible.

REFERENCES

[1] D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H. Balakrish-
nan. System Support for Bandwidth Management and Content
Adaptation in Internet Applications.Proceedings of the Fourth
Symposium on Operating Systems Design and Implementation
(OSDI), pages 213–226, October 2000.

[2] H. Balakrishnan and S. Seshan.RFC 3124: The Congestion Man-
ager, June 2001.

[3] Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan Seshan.
An Integrated Congestion Management Architecture for Internet
Hosts.Proceedings of ACM SIGCOMM, September 1999.

[4] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances
in Network Simulation.IEEE Computer, 33(5):59–67, May 2000.

[5] D.D. Clark and D.L. Tennenhouse. Architectural Considerations
for a New Generation of Protocols.Proc. ACM SIGCOMM 1990,
Computer Communication Review, 20(4):200–208, September
1990.

[6] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based
Congestion Control for Unicast Applications.Proceedings of
ACM SIGCOMM, pages 43–56, 2000.

[7] J. Grudin. Computer-Supported Cooperative Work: Its History
and Participation.Computer, 27(4):19–26, 1994.

[8] M. Handley, J. Padhye, S. Floyd, and J. Widmer.TCP Friendly
Rate Control (TFRC): Protocol Specification. IETF, May 2001.
Internet Draft, work in progress.

[9] H.T. Kung and S.Y. Wang. TCP Trunking: Design, Implementa-
tion and Performance.Proc. of ICNP ’99, November 1999.

[10] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
Throughput: A Simple Model and Its Empirical Validation.Pro-
ceedings of ACM SIGCOMM, 1998.

[11] V.N. Padmanabhan. Coordinated Congestion Management and
Bandwidth Sharing for Heterogeneous Data Streams.Proceed-
ings of the 9th International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), pages
187–190, 1999.

[12] P. Pradhan, T. Chiueh, and A. Neogi. Aggregate TCP Congestion
Control Using Multiple Network Probing.Proc. of IEEE ICDCS
2000, 2000.

[13] Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin,
and Henry Fuchs. The Office of the Future: A Unified Ap-
proach to Image-Based Modeling and Spatially Immersive Dis-
plays.Proceedings of ACM SIGRAPH 98, 1998.

[14] S. Savage, N. Cardwell, and T. Anderson. The Case for Informed
Transport Protocols.Proceedings of HotOS VII, March 1999.

[15] Srinivasan Seshan, Mark Stemm, and Randy H. Katz. SPAND:
Shared Passive Network Performance Discovery. InUSENIX
Symposium on Internet Technologies and Systems, 1997.

[16] M. Weiser. Some Computer Science Problems in Ubiquitous
Computing. Communications of the ACM, 36(7):75–84, July
1993.

[17] T.-P. Yu, D. Wu, K. Mayer-Patel, and L.A. Rowe. DC: A Live
Webcast Control System.Proc. of SPIE Multimedia Computing
and Networking, 2001.


