
Oblique Projector Rendering on Planar Surfaces for a Tracked User

Ramesh Raskar
University of North Carolina at Chapel Hill

Projectors are typically mounted so that their optical axis is perpendicular to the planar display surface. Such
configurations are also used in immersive environments to render perspectively correct imagery for a head-tracked
moving user. They include CAVE, PowerWall (m × n array of projectors) or ImmersiveDesk (back-lit and tilted
desktop workbenches). By design, typical display systems try to maintain the image plane parallel to the plane of the
display surface. However, this leads to the need of constant electro-mechanical alignment and calibration of display
systems.

We will show that it is possible to allow oblique projection on planar display surfaces and still render correct
imagery of 3D scenes without additional computational cost. We describe here how oblique projection can eliminate
need of frequent alignment with simple calibration. We use traditional graphics pipeline with a modified projection
matrix and an approximation of the depth-buffer.

Oblique Projection

Consider rendering the virtual point V for the user at T using an oblique projector as shown in Fig ??.a. For
planar display surfaces, the images mT and mP of the virtual point V can be computed by first finding projection
of V onto the display surface, M . A simple observation is that the two images of common virtual point are related
by a collineation, which is well known to be a 3× 3 matrix defined upto scale. This observation allows us to create a
new projection matrix during rendering for the projector as a product of a traditional off-axis projection matrix,PT
(from the user’s viewpoint) and a matrix, A4×4 (from the 3× 3 collineation matrix).

Without a loss of generality, lets assume that the display plane, Π, is defined by z = 0. There are various ways to
create PT and A4×4. We will use a method that updates PT as the user moves but the collineation matrix remains
constant. We create an axis aligned rectangle S on Π bounding the key-stoned quadrilateral illuminated by the
projector. Define a view frustum by first creating a pyramid with T and the four corners of S and the truncating it
with a near plane, z = Tz − zn, and a far plane, z = Tz − zf . This is similar to OpenGL’s glFrustum setup. The
projection matrix for this view frustum is, PT = Frustum(T,S, zn, zf)Translate(−T) and is updated as the user
moves.

Next we calculate the collineation between images of V : mT due to PT , and its image in projector, mP . Note
that the choice of view frustum for PT makes this collineation independent of the user location and hence remains
constant. If the 3D positions of points on Π illuminated by four or more pixels of the projector are known, the 8
parameters of the collineation matrix, A = [a11, a12, a13; a21, a22, a23; a31, a32, 1], can be easily calculated. We create
a new matrix, A4×4 to transform the pixel coordinates but trying to keep the depth values intact,

A4×4 =

 a11 a12 0 a13

a21 a22 0 a23

0 0 1 0
a31 a32 0 1

 (1)

The complete projection matrix is A4×4PT and renders perspectively correct images.

Depth Buffer Approximation

Although the naive approach described above creates correct images of virtual 3D points, it is important to note
that the traditional depth-buffer cannot be effectively used for visibility and clipping. The depth values of virtual
points between near and far plane due to PT are mapped to [−1, 1]. Lets say, [mTx,mTy,mTz, mTw]T = PT [V, 1]T

and mTz/mTw ∈ [−1, 1]. After collineation, the new depth value is actually mTz/(a31mTx+a32mTy+mTw) which (i)
may not be in [−1, 1] resulting in undesirable clipping and (ii) is a function of pixel coordinates, changes quadratically
and hence cannot be linearly interpolated during scan conversion for visibility computation (Fig ??.c). In general,
we cannot achieve two hyperbolic interpolations for the depth values with a single 4 × 4 matrix. In other words,
we must first compute an image with PT (“divide by w”), and then warp the resultant image. This requires a

two-pass rendering method: first render the image and load it in texture memory and then achieve warping using
texture mapping. However, we can achieve the rendering and warping in a single pass using an approximation of
the depth buffer. Note that mTx/mTw and mTy/mTw ∈ [−1, 1] for points rendered inside the rectangle S. Hence
(1− |a31| − |a32|)mTz/(a31mTx + a32mTy +mTw) is guaranteed to be in [−1, 1]. Further, by construction of PT , the
angle between projector’s optical axis and the normal of the planar surface is same as the angle between the optical
axis and retinal plane of frustum for PT . Thus, if this angle is small (i.e. |a31| and |a32| � 1), the depth values are
modified but the changes are monotonic and almost linear across the framebuffer as shown in Fig ??.c.

A′4×4 =

 a11 a12 0 a13

a21 a22 0 a23

0 0 1− |a31| − |a32| 0
a31 a32 0 1

 (2)

Applications

The modified projection matrix can be easily calculated by measuring the tracker-sensor at the four corners of
the illuminated quadrilateral. The effect of quadratic changes in depth values is minimized when the projector is
almost perpendicular. The modified method has no additional rendering cost and we have easily implemented it
using traditional graphics pipeline. For example in CAVE or in Immersive Workbenches, special effort is taken to
map projectors pixels to the pre-defined corners. Using the technique described, a rough positioning followed by a
simple calibration is sufficient to render correct images in a coordinate system registered with the tracker. As shown
in the accompanying video, we have implemented the system to render perspectively correct images of 3D scenes for
a tracked user. We also demonstrate how the technique can be extended to register multiple overlapping projectors
to create larger displays on a wall. More details are available at http://www.cs.unc.edu/˜raskar/Oblique/.

Screen

Projector

Virtual
Point:V

User:T

ud

z

x

Projected
Point:M

z

x

A

M

Projector

Zn

E mP

P_T View Frustum

mT

-1.0

1.0

-1.0 1.0

x

z

Figure 1: (a) Oblique projectors create key-stoned imagery. (b) The modified projection matrix achieves off-axis
projection PT followed by a collineation A4×4. (c) The plot shows depth buffer values along a scan line for points
along constant depth. Using PT (green). After collineation (red) the depth values range beyond [−1, 1] and do not
change linearly. With an approximation of depth-buffer (blue) traditional graphics pipeline can be used to render
perspectively correct images for a tracked moving user. (d) An oblique projector (e) and its contribution to overlapped
projectors.

Acknowledgments: I would like to thank Gary Bishop and my colleagues in the Office of the Future group at
UNC: Mike Brown, Ruigang Yang, Wei-Chao Chen, Herman Towles, Greg Welch, Brent Seales and Henry Fuchs, for
helpful discussions and prototype implementation.

