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Abstract

We define a rotation field by extending the notion of a vector field
to rotations. A vector field has a vector as a value at each point of its
domain; a rotation field has a rotation as a value at each point of its
domain. Rotation fields result from mapping the orientation error of
tracking systems. We build upon previous methods for visualization
of vector fields, tensor fields, and rotations at a point to visualize a
rotation field resulting from calibration of a commonly-used mag-
netic tracking system.
CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation; I.3.8 [Computer Graphics]: Applications;
Keywords: Scientific visualization, tufts, streamlines, stream sur-
faces.

1 Introduction

We define a rotation field by building on the common notion of vec-
tor fields. We will assumethe following informal definition of a vec-
tor field.

A vector field maps points in a domain to vectors.

Similarly, we can informally define a rotation field.

A rotation field maps points in a domain to rotations.

Our data comes from mapping the orientation error of a Flock of
BirdsTM [Ascension95] magnetic tracking system in our labora-
tory. In this application, we measure the error in the reported ori-
entation of the sensor relative to the tracking system’s reference
coordinate frame. Other applications which give rise to rotation
fields include visualization of torque in air flow and visualization of
molecule-protein interactions.

1.1 Representation of Rotations

In computer graphics, there are three common ways to represent ro-
tations in<3: Euler angles, quaternions, and 3�3 orthonormal ma-
trices [Foley90]. Each method has advantages and physical repre-
sentations that can be exploited in visualization algorithms. Euler
angles have the advantage of simplicity of representation. Quater-
nions use an axis-and-angle parameterization, and this can provide a

suitable visualization as well. Matrices can be converted into x-y-z
axis tripods for a convenient physical representation.

1.2 Previous Work

1.2.1 Vector field visualization

Recently developed techniques for visualization of vector fields
have focused on depicting the field through its action on vari-
ous types of particles. Streaklines, particle paths, and stream-
lines [Bryson92] are analogous to tools used in physical wind tun-
nels for flow visualization. Streamlines have the property of be-
ing everywhere tangent to the vector field. Several extensions
and variations of streamlines have been developed. Stream poly-
gons [Schroeder91] can represent both translations and rotations
caused by the vector field. They are oriented normal to the local
vector, travel along a streamline, and undergo changes due to or-
thogonal vector fields. Stream surfaces [Hultquist92] extend the
notion of a streamline to two dimensions by tiling nearby stream-
lines. Streamballs [Brill94] are centered at the locations of par-
ticles, but can merge or split depending on their distances. This
enables three-dimensional representation of streamlines and local
field properties. Flow volumes [Max93] are the volumetric equiv-
alent of stream lines. They function similarly to the physical tech-
nique of dye advection, allowing observers to watch (virtual) smoke
pass through the field. A simple and common technique is that of
tufts [Bryson92], showing a single vector that is the value of the field
at the given location.

1.2.2 Tensor field visualization

Research in tensor field visualization is more recent than in
vector field visualization. Ellipsoids [Hesselink94], tensor
glyphs [Haber90], and probes [vanWijk94] show the value of the
field at a single point. Ellipsoids are stretched along their principal
axes according to the field values. Tensor glyphs undergo changes
due to the action of the field. A probe is a cylindrical arrow with
a base. It can depict convergence, shear, velocity, acceleration,
curvature, and rotation. Hyperstreamlines [Delmarcelle94] extend
the notion of streamlines to tensor fields. A hyperstreamline is
defined as “a geometric primitive having a finite size [swept] along
one of the eigenvector fields ...while [stretched] in the transverse
plane under the combined action of the other two orthogonal
eigenvector fields.” Thus it builds on the notion of visualizing a
field through its action on a primitive object.

1.2.3 Visualization of rotations

Visualization of rotations has also attracted interest. This has proven
to be a difficult visualization problem due to the non-linear nature
of rotations and the problems of representations of rotations. Ori-
entation maps [Alpern93] use an axis-angle representation of a ro-
tation, scaling the axis in proportion to a function of the angle. (This
is similar, but not identical, to a quaternion.) The quaternion demon-
strator and the belt trick [Hart94] show how the quaternion acts



through a series of turns, in order to understand how quaternions re-
late to rotations. The Dirac string trick [Francis94] functions sim-
ilarly. Quaternion frames [Hanson94] can represent space curves.
The frames can then be represented on the sphere or visualized with
4D lighting techniques. Spherical color maps [Yamrom94] assign a
color to each orientation, then color the domain over which the ori-
entations occur with these colors.

1.3 Driving Problem

Previous methods do not necessarily extend well to rotation
fields or provide suitable visualizations for our application. Our
driving problem is the visualization of orientation error from a
Flock of Birds magnetic tracking system. We measure the er-
ror [Livingston97] at a series of irregularly distributed points by
using a Faro Technologies Metrecom IND-01 mechanical tracking
system [Faro93] as a reference. We then resample the error into a
regular grid over the three translational dimensions relative to the
transmitter of the tracker. The resampling uses a Gaussian kernel
at each desired grid point and computes a weighted average of the
samples within a user-controlled distance. We express the error as
a rotation at the measured points and at the grid points.

We need to identify regions of the field in which the measured
(or resampled) rotations differ from nearby rotations (heterogene-
ity). This difference could be seen in either the axis of rotations or
in the magnitude of the rotation, or both. We also need to identify re-
gions in which the magnitude of the error is greater than a tolerance.
The former can imply poor sampling frequency, while the latter can
reveal the presence of hidden sources of distortion of the magnetic
field. Consequently, we must be able to relate the visualization to
the physical space represented. The transmitter of the tracking sys-
tem defines a global coordinate system for this space. We measure
orientation error as deviation from this global system.

Vector representations (such as mapping Euler angles to Carte-
sian axes or using the axis of the quaternion) fail to adequately cap-
ture all of the information of a rotation field. While a rotation field
has similarities to tensor fields (e.g. significance of eigenvectors), it
is not strictly a tensor field, since it is non-linear and the dependent
variables (the three degrees of freedom of the rotations) are not inde-
pendent. However, the techniques described above for tensor fields
can be applied. Due to the density of the field and our need to un-
derstand its heterogeneity, we found the ellipsoid and tensor glyphs
insufficient for detailed analysis of the rotation field. Hyperstream-
lines appear to be suitable, and if anything offer too much flexibility,
plus the shaded polyhedral shapes can be expensive to render. The
same limitations apply to visualization of rotation fields with probes.

2 Visualization Methods

We introduce four visualizations of rotation fields. Two are
point icons, one is a line icon similar to hyperstreamlines,
and one is a surface icon similar to hyperstreamlines and
stream surfaces. Drawing on the work in animated visualiza-
tions [Ma92][vanWijk94][Yamrom95], we animate all visualiza-
tions.

2.1 Cylindrical tufts

We use a triangular cylinder with red, green, and blue sides to create
a tuft for rotation. This cylindrical tuft is defined in a local coordi-
nate system, then a copy is translated to the position of each sample.
We rotate the cylinder according to the field value to show the effect
of the field. The tuft is then oriented around its axis by the angle of
rotation. We had hoped this would highlight subtle variations in the
field, but it did not. The length of the cylinder can be adjusted to user
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Figure 1: CONSTRUCTING AXIS STREAMLINES. At a point p, the
field value is read, producing a rotated axis tripod (solid lines) from
the global coordinate system (dashed lines). We take a step along
the desired tripod leg (thick line) to arrive at the next point q, from
which the integration continues.

preference. While this visualization does produce a clear visualiza-
tion of the field of axes of the respective rotations, it does not high-
light subtle differences in the field. To visualize these differences,
we animate the tufts by spinning them around their respective axes
at speeds proportional to their respective angles of rotation; thus we
are animating the second rotation described above. Each tuft makes
one complete revolution at its respective speed. The waves of color
that emerge from this animation (Plate 1) make apparent even subtle
differences at adjacent points of the field. The disadvantage of this
method is that the display can become cluttered. Providing depth
cues with atmospheric effects improves the visualization slightly.

2.2 Axis tripods

For a less bulky point icon, we display the local axis tripod, rotated
relative to the transmitter’s orientation. Plate 2 shows a subsetof the
tripods located at the sample points. As with the cylindrical tufts, it
is difficult to pick out subtle differences in the field. We improve the
visualization by warping the axis tripods between the identity rota-
tion and field value. By sampling on a regular 3D grid and choosing
appropriate scale factors, the axis tripods can form a 3D grid when
all values are warped to the identity rotation. Although the display
can quickly become cluttered, we found this visualization useful for
locating heterogeneity in the field. Depth cues again reduce the ap-
parent clutter.

2.3 Axis streamlines

In an effort to producea visualization with less clutter, we drew upon
the concept of streamlines. In contrast to hyperstreamlines, we do
not want to integrate along the eigenvector of the rotation. We find
the eigenvector a non-intuitive visualization. Instead, we introduce
axis streamlines by integrating along the rotated local x, y, and z

vectors associated with the rotation. (A matrix representation of the
rotation is quite suitable for computing these vectors efficiently.)
These lines are straight lines in the distorted magnetic field of the
tracker.

An axis streamline is thus constructed as follows (Figure 1).
First, a seed point is chosen. We had a rectangular volume over
which we needed to analyze tracker performance, and this provided
convenient planes in which to place arrays of seed points. Next,
we interpolate the field value from the resampled regular grid us-
ing a series of spherical linear interpolations [Shoemake85] to de-
termine the rotation at the current point from the eight surrounding
grid points. We apply this rotation and take a step of predetermined
length in the rotated x (or y or z) direction. At this new point, the
field value is again interpolated and a new step taken. We used a
precomputed number of segments to stop the integration, though a
physically meaningful stopping criteria would also be suitable (such
as leaving the volume of interest in our application).



Axis streamlines reduce the clutter of the display while preserv-
ing properties of the data (Plate 3). Depth cues again help reduce the
apparent clutter. Using small integration steps enhances features in
the data. It can be easy to lose track of the reference frame. Thus
we animate the streamlines by warping between straight lines (the
identity rotations) and the integrated streamlines. As the lengths of
the streamlines grow, the lines can diverge in heterogeneousregions,
providing less information in those regions.

2.4 Axis stream surfaces

We can tile between adjacent axis streamlines to create axis stream
surfaces (Plate 4). Currently we use exactly those axis streamlines
produced as described in Section 2.3, with the same seed points. We
represent the axis stream surfaces as quadrilateral strips, with one
quadrilateral for every step taken beyond the seed point. We ani-
mate axis stream surfaces by again warping, as for axis streamlines,
between the straight lines and the integrated streamlines. The tiling
remains the same between frames; only the positions of the vertices
change. Twisting and shearing of axis stream surfaces denote het-
erogeneity in the field. This is a much easier feature to detect for a
surface than for a line. Depth cues improve the visualization some-
what.

3 Results

We found all four visualizations useful for locating heterogeneities
in the rotation field, though axis stream surfaces are best. Hetero-
geneity of the field was crucial information in our analysis of the
magnetic tracker performance and the development of our correc-
tion method [Livingston97]. That method uses the resampled (reg-
ular) grid of translation and rotation error as a lookup table. The
lookup table we used was three-dimensional in its input and six-
dimensional in its output. The input dimensionscorrespond to the x,
y, and z axes of the tracking system. The output is a translation and
a rotation to apply to a reading taken at the given position. We had
assumed that this was the appropriate parameter set. (We visualize
only the rotation portion of the output in this work.)

The visualizations presented here were not ready in time for use
in that work, but we can see with these visualizations that the rota-
tion field exhibits heterogeneity throughout. This reveals poor sam-
pling of the rotation field. With these visualizations, we would have
tested our assumption about the parameter set much sooner than
we did. When we did test the assumption [Livingston97], we dis-
covered that the rotation field associated with the magnetic tracker
needs six input dimensions: the three corresponding to the position
of the sensor with respect to the transmitter, and the three corre-
sponding to the orientation of the sensor with respect to the trans-
mitter.

We can also quickly pick out areas in which the error of the
tracker is large. The axis streamlines are well-suited to showing this
information. This led us to examine the environment more care-
fully for sources of distortion in the tracker’s magnetic field, which
is the primary cause of tracker error. These sources may be hidden
from view or believed to be benign, but the axis streamlines and axis
stream surfaces have shown us regions of the field with high error.

4 Future Work

We hope to create visualization methods that clutter the display even
less. We can subsample the field as necessary, but this reduces
the information content of the display as well as the visual con-
tent. Streamlines depend heavily on the seed placement. Interac-
tive placement would allow the user to control the visualization bet-
ter; automated placement [Turk96] would also serve us well. Trans-

parency and improved depth cues might enable us to see through
axis stream surfaces to the entire field. Extension to volumes would
then be an option. We use animation to depict information in the
field, but we may need to use animation for display of dynamic data.
To visualize our magnetic tracker error data, we need a 6D domain
and 6D range visualization method.

Finally, we look forward to applying these methods to new track-
ing devicesand different applications. The data that we have thus far
visualized come from data sets with which we have long worked;
thus we knew what to expect and needed only to analyze the perfor-
mance of the visualization methods. New data would challenge our
methods to provide insights to unknown fields as well.
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Plate 1: CYLINDRICAL TUFTS. Waves of color produced by spin-
ning the tufts at rates proportional to the angle of the rotation en-
hance the visualization of subtle changes in adjacent measurements.
The gray box at the top (in this and other plates) represents the trans-
mitter of the magnetic tracking system.

Plate 2: AXIS TRIPODS. Each tripod is rotated with respect to the
global coordinate system by the field value at that point.

Plate 3: AXIS STREAMLINES. Integration over a series of axis
tripods produces streamlines of the rotated local x, y, and z coor-
dinate axes.

Plate 4: AXIS STREAM SURFACES. Tiling axis streamlines to pro-
duce axis stream surfaces enhances the visualization.


