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Abstract 
This work focuses on the simulation of mechanical 

contact between nonlinearly elastic objects such as the 
components of the human body. The computation of the 
reaction forces that act on the contact surfaces (contact 
forces) is the key for designing a reliable contact 
handling algorithm. In traditional methods, contact 
forces are often defined as discontinuous functions of 
deformation, which leads to poor convergence 
characteristics. This problem becomes especially serious 
in areas with complicated self-contact such as skin folds. 

We introduce a novel penalty finite element 
formulation based on the concept of material depth, the 
distance between a particle inside an object and the 
object’s boundary. By linearly interpolating pre-
computed material depths at node points, contact forces 
can be analytically integrated over contact surfaces 
without raising computational cost. The continuity 
achieved by this formulation supports an efficient and 
reliable solution of the nonlinear system. 

This algorithm is implemented as part of our implicit 
finite element program for static, quasistatic and 
dynamic analysis of nonlinear viscoelastic solids. We 
demonstrate its effectiveness on an animation showing 
realistic effects such as folding skin and sliding contacts 
of tissues involved in knee flexion. The finite element 
model of the leg and its internal structures was derived 
from the Visible Human dataset. 

 
 

1. Introduction 
 

When animal and human bodies move, they deform 
due to mechanical contact between components such as 
skin, muscles or bones. As body posture changes, organs 
push and slide against each other, changing the shape of 
the body. As a joint bends, the skin surface around it may 
stretch and fold, creating complicated geometry.  

Simulation of such phenomena would provide 
automatic methods to generate the deformation. In 
animation, this capability could help create believable-
looking details of organic bodies, eliminating time-
consuming manual intervention [7]. It could also benefit 
training physicians and applications such as medical 
image registration, for example between pre-operatively 
acquired CT or MRI datasets and intra-operative 
ultrasound or X-ray imagery. Surgical simulation often 
requires procedure-specific postures, which can be 
derived by deforming generic models such as the “Visible 
Human”  dataset [36]. 

A short version of this paper was presented as [18]. 
 
2. Previous work 
 

When simulating deformations of elastic objects, one 
of the major challenges is avoiding penetration of 
deformable structures. In the following, we describe two 
major approaches in dealing with this problem.  
 
2.1. K inematic approaches 
 

Most deformation techniques employed in computer 
animation use kinematic approaches. Their major 
advantage is interactive performance due to the relatively 
small computational cost. Two examples are free-form 
deformation (FFD) [34] and “skinning”  or skeleton 
subspace deformation (SSD) [23], which is the smooth 
blending of multiple rigid transformations. FFD and SSD 
belong to a group of algorithms that employ “space 
deformation”  [5], which can be viewed as a 3D 
transformation. One can also deform objects by directly 
moving the control points of surfaces [11]. 

In these methods, the impenetrability constraint is 
satisfied by heuristic techniques, often requiring 
extensive user interaction to produce the desired effects. 



Space deformation can be applied to the human body 
without causing penetration between the organs [7], but 
sliding effects between organs cannot be obtained with 
this method.  

Many commercial software packages allow animators 
to embed formulae to express specific needs for 
deformations [1]. These “deformers”  can be written in 
such a way that penetration between objects is 
minimized, but only for specific, limited scenarios.  

By using pose space deformation [23], one can 
partially automate the process. For example, a user can 
“teach”  the system to avoid penetration of the skin 
around an elbow by directly adjusting the skin geometry. 
Henceforth, the system automatically reduces 
penetration. The drawback of the method is that it is 
highly inflexible since the user must instruct the system 
how to handle every new contact scenario.  
 
2.2. Simulation of physical laws 
 

To overcome the drawbacks of kinematic methods, 
many techniques employ the notion of force and energy 
[14, 21]. Wilhelms et. al. simulate a sliding skin layer by 
relaxation of a spring mesh [39]. The relaxation scheme 
does not account for buckling, hence realistic folding 
does not occur. 

Accurate physical simulation, which has been studied 
in computational mechanics, can provide a powerful tool 
for automatically generating realistic deformations. They 
have been traditionally very expensive in terms of 
computation time but are becoming increasingly 
affordable with the continually growing performance of 
computer hardware. The basic approach for contact 
problems is to detect penetration between objects and 
compute an appropriate response that eliminates, 
minimizes or reduces penetration. (This is also 
characteristic of our approach.) 

Graphics researchers have demonstrated animations 
of elastic bodies in contact [2,29,37,40]. As mentioned, 
the contact problem (i.e., avoiding penetration) has been 
extensively studied in the engineering community [19]. 
Solution methods for the contact problem can be 
categorized by their approach to satisfying the 
impenetrability constraint. We now discuss the two major 
approaches. 
 
2.2.1. Hard constraint. Most algorithms utilizing hard 
constraints use the concept of slave nodes and master 
surfaces to define constraints. Consider two colliding 
objects. Nodal points on the surface mesh of one object 
are designated as slave nodes, whereas master surfaces  
 

are defined from the surface mesh of the second object. If 
a slave node penetrates a master surface, a constraint to 
keep the node on the surface is created. A set of 
constraints is formed by all of the penetrating slave 
nodes. With each iteration, new surface geometry is 
obtained by solving this constrained optimization 
problem, and the set of constraints is updated 
accordingly. The process repeats until the constraint set 
becomes stable. 

This method suffers from two major drawbacks, the 
first being that it requires frequent constraint updates. 
Frequent constraint updates occur when highly 
tessellated surfaces are in sliding contact. As soon as a 
slave node travels across one master surface to another, 
the existing constraint becomes invalid, and a new one 
must be created. Thus the lifetime of each constraint in 
the optimization process is very short. 

The second drawback is known as the locking 
problem: the surface becomes artificially stiff due to an 
excessive number of constraints. Hallquist et al. handle 
this problem by partitioning the surface of each object 
into master and slave regions [15]. However, in the 
presence of evolving self-contact, it becomes extremely 
difficult to maintain the distinction between these two 
types of surface elements. 

Another method uses heuristic rules to find master-
slave pairs based on the history of movements, and 
computes the exact time of collision, [8,16]. The two 
colliding objects are treated symmetrically. In this 
method, even if the collision times are computed, some 
penetrations are tolerated for several time steps before 
they are eliminated. To completely prevent penetrations, 
the exact birth and death times of impenetrability 
constraints for slave-master pairs must be computed at 
every step. Such computation is prohibitively expensive. 

Belytschko et al. [6] proposed the “splitting pinball”  
method, which uses repulsive forces between hierarchical 
bounding spheres around individual surface elements. 
Although interference checks between spheres are very 
efficient, the algorithm’s applicability to complex contact 
is not clear. The fine details of a surface such as folding 
skin would require that the bounding spheres be 
repeatedly subdivided, resulting in excessive 
computational cost. 

Ideally, if two objects are in contact, they share a 
single contact surface. However, because it is virtually 
impossible for two independently discretized surfaces to 
have common surface geometry, the methods discussed 
above cannot prevent small penetrations or gaps. The 
frequency of constraint updates is also directly related to 
the resolution of surface discretization, and can therefore 
lead to very high computational cost. 
 



2.2.2. Penalty methods. By definition, penalty methods 
allow small amounts of penetration to occur. To resolve 
penetration, penalty forces proportional to the depth of 
penetration are calculated [3,9,30]. Unlike constraint 
methods, a slave node is allowed to travel without 
keeping track of all master surfaces on its path. Thus, the 
effect of the resolution of surface discretization on 
computational cost is not as dramatic as with constraint 
methods. 
 
2.2.3. Gap function computation. Most conventional 
methods (including constraint methods) seek projections 
to evaluate the gap function (i.e. the negative depth of 
penetration) and its derivative [12]. Because of the 
geometric complexity of a projection search, these 
methods are not appropriate for handling complicated 
boundary surfaces. 

Most methods (except for the pinball method) 
examine penetration at slave nodes only. Because of their 
“point sampling”  nature, the contact force applied on a 
slave node becomes a discontinuous function of 
deformation (i.e. of node movements), which often 
causes a convergence problem. 

In section 5, we introduce a robust method to compute 
a continuous gap function for even very complex surface 
geometry. We also show that, based on our gap function, 
contact penalty forces can be analytically integrated as 
continuous functions. 
 
3. Static analysis 
 

Due to their low mass density and fairly low viscosity, 
biological tissues tend to rapidly converge to a final state 
when subjected to external forces. For example, it is hard 
to flex a finger or change facial expression quickly 
enough to be able to observe viscosity or inertia effects 
such as creep and oscillations. In fact, for many 
applications (including animation), the user is only 
interested in the (static) equilibrium shapes of flexible 
tissues for a given posture or other specified constraints. 
In animation applications, dynamic postures and 
constraints can be used to steer the animation. Static 
analysis is adequate for these applications, and, hence 
methods optimized for the static problem must be 
developed. 

In static analysis, the geometry of an elastic object 
depends solely on the forces applied to the object. The 
relationship between geometry and forces is described by 
a differential equation defined on the continuous domain 
of the elastic object. 

We assume the resting (undeformed) shape of the 
object is known, and elect it as a reference configuration. 

The current (deformed) shape is referred to as the current 
configuration. 

At the equilibrium state, an elastic object in contact 
satisfies the following equation: 

uunufT δδδ ∀=⋅+⋅+ �� ΓΩ
0)div( dapdV  (1) 

In this equation, Ω is the interior of the object, Γ is its 
boundary, T is the first Piola-Kirchhoff stress tensor, 
div is the divergence operator, f is the density of body 
forces (such as gravity), u is the displacement of 
particles, uδ  is an arbitrary variation of u , dV is the 
differential volume in the reference configuration, p is 
the pressure on the contact surface, n is the normal of the 
contact surface, da is the differential area in the current 
configuration, and np  is the surface traction force on the 

contact. Since we assume frictionless contact, the traction 
force is normal to the surface. np  is integrated over the 

boundary. (Actually, its value is non-zero only on the 
contact area.) 
 
3.1. Discretization 
 

Because of its complex boundary conditions and 
nonlinearity, Eqn. (1) cannot be solved analytically. 
Instead, it is discretized using a finite element method, 
and an approximate solution is sought [22]. 

We use tetrahedral elements for the interior and 
triangular elements for the boundary of objects. The 
triangular elements are chosen to be a subset of the sides 
of the tetrahedral elements.  

The displacements of particles (internal material 
points) are obtained by linearly interpolating 
displacements at nodes. (The interpolation functions are 
called shape functions.) Elastic forces at nodes are 
computed by substituting the virtual displacement

�
u  

with the corresponding shape functions. 
The derivatives for all forces must also be computed to 

construct a stiffness matrix, which is crucial for Newton 
iteration (described in subsection 3.2). 

The details of the contact force computation are 
explained in section 5. 

As a result of discretization, we obtain a nonlinear 
equation of the form: 

( ) 0u =R      (2) 
Here, u  represents the displacement vector 

1,1 1,2 1,3 ,1 ,2 ,3( , , , ... , , , )n n nu u u u u u , where ),,( 3,2,1, iii uuu  

denotes the displacement of the i th node and n  is the 
number of nodes. We can impose boundary conditions for 
displacement by assigning fixed values to the 
components of .u  



3.2. Solution of the nonlinear system 
 

By solving Eqn. (2), we can obtain a new shape of the 
elastic object as the displacement vector u . There are 
three factors that contribute to the nonlinearity of this 
system: 
• Finite deformation: To handle finite deformation (as 

opposed to infinitesimal deformation), the force-
displacement relationship must be described by 
nonlinear equations (geometric nonlinearity). 

• Nonlinear  mater ial: Realistic elastic materials are all 
nonlinear. The choice of materials is explained in 
subsection 3.3. 

• Collision and contact of objects: Collision and 
contact are events that introduce additional 
nonlinearity into the system. 
On top of the nonlinearity, the large size of the system 

increases the complexity; a typical finite element analysis 
of our interest produces a system with tens of thousands 
of variables. We have developed a robust and efficient 
algorithm to solve large nonlinear systems. 
 
3.2.1. Selecting a search direction. Nearly all solution 
methods start with an initial guess and proceed in a given 
search direction in a step-by-step manner. Finding the 
proper direction in the high-dimensional search space is 
critical for the algorithm’s efficiency. Several different 
methods exist to determine the best search direction.  

The maximum gradient descent method chooses the 
direction of the forces (i.e. the negative of the residual 

( )uR ) for each step. This method turns out to be very 
slow because it takes many steps for a local force to 
propagate through the entire mesh. Furthermore it is 
impossible for this method to predict rapid force changes 
caused by the deformation of objects. 

On the other hand, the Newton method uses the 
derivative of the forces (i.e. the stiffness matrix), which 
provides information about how the forces vary as a 
function of deformation. Each Newton step consists of 
computation of the residual, computation of the stiffness 
matrix, and solution of a linear system. The process 
continues until the residual drops below a given 
tolerance. We chose this method due to both its speed 
and reliability.  
 
3.2.2. Avoiding illegal steps. Two questions that remain 
to be answered are: how to obtain the initial guess and 
how far to proceed in a selected search direction.  

If there are no displacement boundary conditions, the 
object is deformed only by external forces. In this case, 
an obvious choice of the initial guess is the initial shape, 
i.e. .0u =  

But if displacement boundary conditions are specified, 
some components of u  are externally given. In such 
cases u  initially contains zeros for free components and 
final values for constrained components. The 
corresponding mesh may contain a tetrahedral element 
whose orientation is reversed, resulting in an illegal 
configuration. For this reason, constrained components 
must be gradually incremented, and as soon as an illegal 
configuration is detected, the step size must be reduced 
(adaptive incremental loading). Each incremental step 
performs a Newton iteration and the solution is cascaded 
into the next step. After the second step, the initial guess 
is computed by extrapolating the previous two solutions 
(two-point predictor). 

Given an initial guess, we must determine how far to 
proceed in a given search direction. If ( )uR  is smooth, 
and the initial guess is close to the solution, a full step 
towards the solution of the linear system can safely be 
taken. However, the nonlinearity of the system often 
causes a full step to lead to divergence. A full Newton 
step can also bring the mesh to an illegal configuration. 
Our method checks if the full Newton step is legal and if 
the residual decreases. If both of these are true, the step is 
taken. If not, the step size is halved until the two 
conditions are satisfied. The scaling value of the step size 
is called a damping factor. This line search strategy 
greatly improves the robustness of our method. 

The resulting algorithm can be summarized as three 
nested loops: 
 LOOP1:  Adapt i ve I ncr ement al  Loadi ng 
  2- Poi nt  Pr edi ct i on 
  LOOP2:  Newt on I t er at i on 
   Li near  Syst em Const r uct i on 
   Li near  Syst em Sol ut i on 
   LOOP3:  Li ne Sear ch 

 
3.2.3. L inear  system solution. Newton iteration depends 
on the stable solution of linear systems. The accuracy of 
the solution is traded for speed. Since the degree of 
nonlinearity of the equation is high, the residual is not 
greatly reduced by a single Newton step. Consequently, 
computing an exact solution for each linear system does 
not improve the rate of convergence. For this reason, an 
iterative method is better suited for the linear system 
solution than are direct methods. 

The linear systems constructed in our finite element 
method are symmetric, sparse, and usually positive 
definite. Around a bifurcation point, however, the matrix 
of the system is sometimes not only indefinite but also 
nearly singular. The (bi)conjugate gradient method tends 
to behave in an erratic manner. We found that an 
implementation of the Generalized Minimum Residual 
method (GMRES) with diagonal preconditioning [33] is 
both efficient and stable. The iteration is terminated 



when either the residual reduces to one tenth or a 
predetermined iteration limit is reached. This strategy 
keeps the computation time for solving the linear systems 
relatively low without slowing down the convergence of 
the Newton iteration. 

We use another technique to prevent failure in the 
linear system solver. Each node is assigned a “viscosity”  
proportional to the sizes of the surrounding elements. A 
well-chosen value for viscosity gives the algorithm the 
tendency to pick an energy-minimizing solution at a 
bifurcation point, i.e. to prefer a stable equilibrium point. 
Also, this method allows starting with an obviously ill-
conditioned initial configuration such as an object placed 
in mid-air, which will fall until it hits the ground. 
 
3.3. Mater ial models 
 

The property of an elastic material is defined as the 
relationship between stress and strain (Constitutive Law). 
In Eqn. (1), the relationship provides a formula that 
associates the stress tensor T  with the displacement u . 
A few quantities must be introduced to describe the 
relationship: the deformation gradient IduF +∇=  ( Id  
denotes the identity matrix), the right Cauchy-Green 

strain tensor ,FFC T=  the invariants of C  defined as 

),(1 CtrI =  )} ,()({ 22
2
1

2 CC trtrI −=  ),det(3 C=I  and finally 

the stored energy function )(Fψ . The stress tensor T  is 
given as ,)( FFT ∂∂= ψ  thus )(Fψ  actually determines 

the material property. 
The properties of organic tissues are being actively 

studied in biomechanics and several models have been 
proposed based on stress-strain data obtained from in 
vivo and in vitro experiments. However, due to the 
limitations of measurement technology, those models 
have not been rigorously validated [27]. 

We have implemented compressible variations of 
three different material models. The first model is the 
Mooney-Rivlin material [10,28] 

.ln)2()1()3()3()( 32132211 IaCCIaICIC ++−−+−+−=Fψ

1C  and 2C  are constants to control stiffness. a  

determines compressibility. This model exhibits a 
relatively linear strain-stress curve. 

Biological tissues are often characterized by higher 
nonlinearity; the stiffness (modulus) dramatically 
increases as they are stretched. The second model we use, 
the Veronda material, expresses this nonlinearity with an 
exponential function [31,38] 

,ln)3()3exp(2)( 3321 IaaIII −+−+−= αβαψ F  

where α  controls overall stiffness and β  governs the 
rate of stiffness increase. 

In addition to the nonlinearity, many tissues show 
anisotropy due to their microscopic fiber structures 
[17,20]. We use the fiber-reinforcement model 

fCf T
f =2λ  and 

22 ))1(exp()( ff αβλλβαψ −−=F , 

where fλ  is the fiber stretch along the fiber direction f , 

and α  and β  are material constants similar to the ones 
in the Veronda model. We superimpose this model onto 
the Veronda or Mooney-Rivlin materials for 
reinforcement rather than using it alone. 

In all the models we use, the energy tends to infinity 
as the volume compression ratio 3I  tends to zero. This is 

an essential property for preventing the element reversal 
phenomenon. Nearly incompressible versions of the 
above models will also be implemented. 
 
4. Dynamic and quasistatic analysis 
 

We extended our method to quasistatic (i.e. inertia 
ignored) and dynamic analysis.  

The equilibrium equation now includes inertial and 
viscous forces. Time derivatives are discretized by the 
implicit Euler scheme [3,37]. Each time step becomes a 
Newton iteration (see LOOP2 in section 3.3), which solves 
for velocities of node points. The velocities are then used 
to update node positions. 

We also implemented an explicit method. The explicit 
time integration is more appropriate than implicit one in 
high-speed applications such as crash/impact problems, 
for which time steps must be chosen so small that stress 
does not propagate far in a step [24,29]. 
 
5. Contact problem 
 
5.1. Gap function 
 

The gap function plays a crucial role in describing the 
contact relationship between objects. Fig. 1 illustrates an 
object at the reference or undeformed configuration (Fig. 
1, left) and the current or deformed configurations (Fig. 
1, center and right). The rightmost configuration exhibits 
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Fig.1. Gap function.  



self-penetration. The gap function ),g( xX  is the distance 
between a particle X  (coordinate at the reference 
configuration, used to label the particle) on a boundary of 
an object at x  (coordinate at the current configuration) 
and an obstacle. For example, if the obstacle is a unit 
sphere located at the origin (as shown for the center 
configuration in Fig. 1), then .1),g( −= xxX  

The sign of ),g( xX  is positive if x  is outside the 
obstacle. In this simple example, ),g( xX  depends solely 
on .x  We consider penetration between deformable 
objects; therefore multiple particles may share the same 
location .x  The parameter X  identifies the particle 
under examination. 

Self penetration may occur (Fig. 1, right 
configuration), i.e. the obstacle may be the object itself; 
hence, ),g( xX  cannot be defined as the minimum 
distance, which is always zero for particles on the 
boundary. Instead of the minimum distance, conventional 
methods use the distance from x  to its projections on 
object boundaries. A projection of x  on a surface is a 
point x′  such that xx ′−  is normal to the surface (Fig. 1, 
right configuration). By the definition of projection, the 
search algorithm has to rely on the normals of the 
surfaces. This leads to three major problems: 

 

1) Numerous candidates 
2) Plurality of projections 
3) Discontinuity with respect to deformation 

 

First, if a surface has high curvature, the algorithm 
has to check many candidate projections (Fig. 2). This 
case often occurs when buckling creates wrinkles on a 
surface. It is not even obvious that one of the candidates 
can be selected (e.g. the closest one) because a particle x  
may intrude into multiple objects. When multi-object 
intrusion occurs, multiple projections should be used 
(Fig. 3). Thus, to find projections, a global and 
exhaustive search algorithm is required. Furthermore, as 
a surface deforms (i.e. as node displacements change), a 
projection can emerge or disappear abruptly (Fig. 4), in 
which case the gap function is not a continuous function 
of the node displacements. This discontinuity undermines 
the convergence of the Newton iteration, which requires 
the first and second derivatives of the gap function. 

These three problems become more significant as the 
penetration depth increases. Solution steps mentioned in 
section 3 may bring objects to such a configuration. 
Furthermore, it is convenient for modeling if the initial 
geometry is allowed to have deep penetration. Therefore, 
the ability to recover from deep penetration greatly 
improves the robustness and versatility of an algorithm. 

 
5.2. Mater ial depth 
 

We introduce material depth as a new way to compute 
the gap function. Fig. 5 explains this notion. The 
deformation maps particle X  on a boundary to the 
current position .x  As a result, X  collides with particle 

.Y  The material depth is the distance from Y  to the 
boundary at the reference configuration. It maintains a 
constant intrinsic value for a particle (or material point), 
hence the term “material depth.”  Since there is no self-
penetration at the reference configuration, the material 
depth can be computed regardless of self-penetration at 
the current configuration. Also, unlike the distance to a 
projection, material depth never changes abruptly due to 
deformation.  

Material depth is an approximation of the distance 
fields at the current configuration. As an object is 
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stretched and compressed, the value deviates from the 
actual distance. The inaccuracy does not cause a 
significant problem since in practice a large penalty 
factor can be used without causing numerical instability 
[9].  
5.3. Integrating penalty forces 
 

As mentioned above, the material depth is substituted 
for the gap function ).,g( xX  The contact force np  in 

Eqn. (1) is approximated by the penalty force: 
.),g( nxXn ε=p  

ε is the penalty factor. n  is a normal at x  and is the 

gradient of g. Therefore, 

).,(),g( g xXxXn
x∂

∂= εp  

To use the finite element method, np  must be 

integrated over a contact surface. Our method does not 
compute the exact value of the material depth at every 
point on a penetrating boundary. Instead, it uses a linear 
interpolation of the material depths at nodes, which can 
be pre-computed. The resulting method requires only 
collision detection between triangles and tetrahedra and 
uses analytical integration. The algorithm performs the 
following steps: 

1) Compute the material depth for each node at the 
reference configuration.  

2) Find the collision between a boundary element 
(triangle) and a volumetric element (tetrahedron). 

3) Compute the intersection of the triangle and the 
tetrahedron. 

4) Triangulate the intersection polygon. 

5) For each triangle, integrate the penalty force and its 
derivatives over the area of the triangle and add 
their contributions to the global residual and the 
stiffness matrix. 

The first 2 steps are briefly discussed in subsections 
5.4 and 5.5. Steps 3-5 are explained in greater detail in 
the following. As shown in Fig. 6 (left), a tetrahedral 
element with nodes 41 ~ PP  and a triangular element 

41 ~ QQ  are intersecting. The intersection is a convex 

polygon with up to 7 vertices. To facilitate integration, 
the intersecting region is divided into triangles (Fig. 6, 
right). There are up to 5 triangles to be considered and 
they are all individually processed. Let 31 ~ RR  denote 

the vertices of one such triangle. We define a penalty 
potential energy W  for the triangle: 

.d2
2�=

triangle
agW ε  

Using a parameterization s and t on the triangle, we 
obtain: 

tsgAW
t

dd2
1

0

1

0
2

2� �
−

= ε  

     ,dd))()((
1

0

1

0
2

13121 tstGGsGGGA
t

� �
−

−+−+= ε  (3) 

where 
2)()( 1312 RRRR −×−=A  

is the area of the triangle and 31 ~ GG  are the material 

depths at the triangle’s vertices. 

31 ~ GG  are functions of 41 ~ PP  and 31 ~ RR , and 

41 ~ gg  are material depths at 41 ~ PP . For example, 1G  

is obtained by solving the linear system 
443322111 glglglglG +++=  

443322111 PPPPR llll +++=  

14321 =+++ llll , 

where 41 ~ ll  are the 

barycentric coordinates of 1R  

inside the tetrahedron. 
The integration (3) is 

performed analytically. 

41 ~ PP  and 41 ~ QQ  are 

node positions and thus 
directly related to the 
displacement u . The penalty 
force and its derivatives are 

u∂∂W  and 22 u∂∂ W  

respectively. These derivatives 
are computed by numerically 
applying the chain rule. The 
dependency of variables and 
constants is shown in Fig. 7. 

The area of the intersection 

P2 , g2

P1 , g1

P3 , g3

P4 , g4

Q2

Q3

Q1

Intersection

polygon

R1 , G1

R2 , G2

R3 , G3

Triangulated
intersection

polygon

s

t

½ ε g2

da

Object surface
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varies continuously. The material depth is also 
continuous. Thus the penalty force is mostly a smooth 
function (C1) of .u  The only exception is the case when 
an edge of a triangle and a side of the tetrahedron are 
coplanar, in which case the penalty force is no longer 
smooth. It is still continuous (C0) however, which is 
crucial for equation solving, since a solution may not 
even exist without continuous penalty forces. This is the 
major advantage of our method over traditional methods. 
 
5.4. Initial depth computation 
 

For an object with few triangles, an exhaustive search 
algorithm is sufficient for pre-computation of material 
depths at node points. For more complex objects, we use 
the fast marching level set method, which quickly 
computes distance values [35]. 

By utilizing the tetrahedral mesh, we could use the 
finite element version of the fast marching method [4], 
which can compute distances even for self-intersecting 
objects. This approach is left for future work. 
 
5.5. Collision detection 
 

To accelerate collision detection between tetrahedral 
and triangular elements, a bounding volume tree is 
constructed for the tetrahedral mesh. A node of the tree 
represents an X, Y, or Z coordinate interval that bounds 
the intervals of all descendant nodes. The interval of a 
leaf node contains a tetrahedral element. The overlaps 
between the intervals of each triangle element and the 
intervals of tree nodes are examined and possible 
collisions are quickly determined. 

The tree structure is built by top-down partitioning of 
elements in the direction of their greatest extent. We 
divide a simulation into smaller simulation runs. Since 
we set up our simulation such that the mesh does not 
deform much in a single run, the tree structure is built 
only once at the beginning of each run. The interval 
values are efficiently updated in a bottom-up manner at 
every solution step. As a result, the collision detection 
occupies only a minor part of the total computation time 
(see next section). 
 
6. Results 
 

We simulated flexion of a human knee joint using a 
finite element model of a right human leg (Fig. 8). To 
build the model, we first generated boundary polygons of 
all the organs from a manually segmented mask image 
volume of the Visible Human Male. The Visualization 
Tool Kit [32] and Maya [1] were used to extract, smooth, 

decimate, and assemble the polygons. Then a tetrahedral 
mesh was generated from the polygonal boundaries using 
SolidMesh [26]. The mesh contains about 10,000 nodes, 
10,000 triangular elements, and 40,000 tetrahedral 
elements. It consists of a femur (thigh bone), a patella 
(knee cap), a tibia (shin bone), a quadriceps (a collection 
of four major anterior thigh muscles), a patella ligament, 
tendons that connect the patella and the quadriceps, and 
a monolithic skin-fat layer (Fig. 9). Our model is not 
anatomically complete since it lacks other major muscles 
and many important ligaments at the knee joint. They are 
included either in the skin-fat layer or are part of a 
hollow space around the knee joint. All the boundaries 
are treated as frictionless interfaces except for the inner 
part of the tibia, which is attached to the skin-fat layer. 
Various material parameters are assigned to tetrahedral 
elements in order to approximate the mechanical 
properties of different parts. The Mooney-Rivlin and 
Veronda models were both applied, but images shown in 
this paper were obtained by using the Mooney-Rivlin 
model only. 

The femur is fixed in space. The cross section of the 
thigh is constrained so that it can only move on the 
cutting plane. The tibia is rotated around an axis in the 
knee joint. These positional constraints constitute a 
displacement boundary condition. The tibia’s total 150-
degree rotation was divided into 50 three-degree intervals 
and the algorithm was applied to each interval to 
generate deformations. 

The complete simulation took 376 minutes on a single 
300MHz R12000 CPU of an SGI Onyx system. Most of 
the time (63%) was consumed by the force and stiffness 
matrix computations. 22% were spent on collision 
detection, out of which the bounding volume tree 
construction took less than 1%. The rest, 15%, were 
spent on the linear system solution. 

Figures 10 through 13 show more images of our 
results, including dynamic analysis (Fig. 13). Additional 
examples and animations can be found at 
ht t p: / / www. cs. unc. edu/ ~us/ f em/ .  

 

Fig. 8. Visible Human dataset with flexed knee 



7. Conclusions 
 

We have addressed the frictionless contact problem 
for elastic objects. Our main contribution is a novel 
penalty finite element method that uses material depth 
for evaluating gap functions and their derivatives. Unlike 
projection-based gap functions used in traditional 
methods, our gap function varies continuously as objects 
deform. The field of material depth is approximated by a 
linear interpolation of depth values at finite element 
nodes. This simplification enables efficient analytical 
integration of contact penalty forces over the contact area 
and thus results in penalty forces that are continuous 
functions of deformation. The achieved continuity 
reduces the oscillation and divergence problems often 
present in traditional approaches. 

Contact problems demand the solution of a large-scale 
highly nonlinear system. We developed a reliably 
converging solver that integrates various numerical 
techniques such as Newton iteration, adaptive 
incremental loading, two-point predictor, line search (or 
variable damping factor), and quasi-viscosity. 

We have demonstrated the performance of our method 
by simulating very large deformations on part of a human 
anatomical model. To our knowledge, this is the first 
demonstrated simulation of large-scale motion of a 
complex model derived from the widely used Visible 
Human dataset and encompassing multiple tissue types 
including bone, muscle, tendons, and skin. 
 
8. Future work 
 

This work is limited to frictionless contact. This 
limitation is justified because the friction between organs 
inside bodies is known to be small [25]. This is not the 
case for friction between (non-lubricated) skin surfaces, 
an area that should be investigated. The residual stress 
(such as skin tension) and atmospheric pressure should 
also be considered in order to improve the accuracy of the 
simulation. 

Chemical and biophysical phenomena contribute to 
internal stresses. Muscle contraction is the most dramatic 
example for this. Such stresses should be included as part 
of the external body forces ( f  in Eqn. 1) to simulate 
“active”  aspects of biological tissues. 

To handle more complex anatomical models, a further 
performance improvement is desirable. Since most 
computation is local to each finite element, 
parallelization techniques should enable significant 
acceleration of our algorithm [8]. 

We hope that methods such as the ones described here 
will lower the cost of deforming complex anatomical 

models, making possible a wide variety of applications 
for which currently available techniques have been 
prohibitively expensive. 
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Fig. 9. The constituent parts of the leg model, derived from the Visible Human database 
 

  
Fig. 10. Bent knee (left) and stretched (initial) 
position (right). The patella automatically slides 
over the femur as a result of the simulation 

 

Fig. 11. Skin surface of highly flexed knee (left), 
cut-away view of the same flexed knee (right). 
Only parts of the tibia and femur are visible in 
the cut-away, since they are partly in front of or 
behind the cutting plane. Note natural-looking 
sliding contact between skin areas, skin and 
bones/muscles, patella and femur. The complex 
self-contact of folding skin was handled without 
visible penetration. The colors encode the 
material depth value. 

 

Fig. 12. Close-up of knee, illustrating pattern of 
skin folding 

 

Fig. 13. An example of dynamic analysis: elastic 
bars deformed by their own weight 


