

An Implicit Finite Element M ethod for Elastic Solids in Contact

Gentaro Hirota, Susan Fisher, Andrei State, Chris Lee* , Henry Fuchs
Department of Computer Science, University of North Carolina at Chapel Hill

{ hirota|sfisher|andrei|fuchs} @cs.unc.edu
*University of Colorado Health Sciences Center

chris@chs.uchsc.edu

Abstract
This work focuses on the simulation of mechanical

contact between nonlinearly elastic objects such as the
components of the human body. The computation of the
reaction forces that act on the contact surfaces (contact
forces) is the key for designing a reliable contact
handling algorithm. In traditional methods, contact
forces are often defined as discontinuous functions of
deformation, which leads to poor convergence
characteristics. This problem becomes especially serious
in areas with complicated self-contact such as skin folds.

We introduce a novel penalty finite element
formulation based on the concept of material depth, the
distance between a particle inside an object and the
object’s boundary. By linearly interpolating pre-
computed material depths at node points, contact forces
can be analytically integrated over contact surfaces
without raising computational cost. The continuity
achieved by this formulation supports an efficient and
reliable solution of the nonlinear system.

This algorithm is implemented as part of our implicit
finite element program for static, quasistatic and
dynamic analysis of nonlinear viscoelastic solids. We
demonstrate its effectiveness on an animation showing
realistic effects such as folding skin and sliding contacts
of tissues involved in knee flexion. The finite element
model of the leg and its internal structures was derived
from the Visible Human dataset.

1. Introduction

When animal and human bodies move, they deform
due to mechanical contact between components such as
skin, muscles or bones. As body posture changes, organs
push and slide against each other, changing the shape of
the body. As a joint bends, the skin surface around it may
stretch and fold, creating complicated geometry.

Simulation of such phenomena would provide
automatic methods to generate the deformation. In
animation, this capability could help create believable-
looking details of organic bodies, eliminating time-
consuming manual intervention [7]. It could also benefit
training physicians and applications such as medical
image registration, for example between pre-operatively
acquired CT or MRI datasets and intra-operative
ultrasound or X-ray imagery. Surgical simulation often
requires procedure-specific postures, which can be
derived by deforming generic models such as the “Visible
Human” dataset [36].

A short version of this paper was presented as [18].

2. Previous work

When simulating deformations of elastic objects, one
of the major challenges is avoiding penetration of
deformable structures. In the following, we describe two
major approaches in dealing with this problem.

2.1. K inematic approaches

Most deformation techniques employed in computer
animation use kinematic approaches. Their major
advantage is interactive performance due to the relatively
small computational cost. Two examples are free-form
deformation (FFD) [34] and “skinning” or skeleton
subspace deformation (SSD) [23], which is the smooth
blending of multiple rigid transformations. FFD and SSD
belong to a group of algorithms that employ “space
deformation” [5], which can be viewed as a 3D
transformation. One can also deform objects by directly
moving the control points of surfaces [11].

In these methods, the impenetrability constraint is
satisfied by heuristic techniques, often requiring
extensive user interaction to produce the desired effects.

Space deformation can be applied to the human body
without causing penetration between the organs [7], but
sliding effects between organs cannot be obtained with
this method.

Many commercial software packages allow animators
to embed formulae to express specific needs for
deformations [1]. These “deformers” can be written in
such a way that penetration between objects is
minimized, but only for specific, limited scenarios.

By using pose space deformation [23], one can
partially automate the process. For example, a user can
“teach” the system to avoid penetration of the skin
around an elbow by directly adjusting the skin geometry.
Henceforth, the system automatically reduces
penetration. The drawback of the method is that it is
highly inflexible since the user must instruct the system
how to handle every new contact scenario.

2.2. Simulation of physical laws

To overcome the drawbacks of kinematic methods,
many techniques employ the notion of force and energy
[14, 21]. Wilhelms et. al. simulate a sliding skin layer by
relaxation of a spring mesh [39]. The relaxation scheme
does not account for buckling, hence realistic folding
does not occur.

Accurate physical simulation, which has been studied
in computational mechanics, can provide a powerful tool
for automatically generating realistic deformations. They
have been traditionally very expensive in terms of
computation time but are becoming increasingly
affordable with the continually growing performance of
computer hardware. The basic approach for contact
problems is to detect penetration between objects and
compute an appropriate response that eliminates,
minimizes or reduces penetration. (This is also
characteristic of our approach.)

Graphics researchers have demonstrated animations
of elastic bodies in contact [2,29,37,40]. As mentioned,
the contact problem (i.e., avoiding penetration) has been
extensively studied in the engineering community [19].
Solution methods for the contact problem can be
categorized by their approach to satisfying the
impenetrability constraint. We now discuss the two major
approaches.

2.2.1. Hard constraint. Most algorithms utilizing hard
constraints use the concept of slave nodes and master
surfaces to define constraints. Consider two colliding
objects. Nodal points on the surface mesh of one object
are designated as slave nodes, whereas master surfaces

are defined from the surface mesh of the second object. If
a slave node penetrates a master surface, a constraint to
keep the node on the surface is created. A set of
constraints is formed by all of the penetrating slave
nodes. With each iteration, new surface geometry is
obtained by solving this constrained optimization
problem, and the set of constraints is updated
accordingly. The process repeats until the constraint set
becomes stable.

This method suffers from two major drawbacks, the
first being that it requires frequent constraint updates.
Frequent constraint updates occur when highly
tessellated surfaces are in sliding contact. As soon as a
slave node travels across one master surface to another,
the existing constraint becomes invalid, and a new one
must be created. Thus the lifetime of each constraint in
the optimization process is very short.

The second drawback is known as the locking
problem: the surface becomes artificially stiff due to an
excessive number of constraints. Hallquist et al. handle
this problem by partitioning the surface of each object
into master and slave regions [15]. However, in the
presence of evolving self-contact, it becomes extremely
difficult to maintain the distinction between these two
types of surface elements.

Another method uses heuristic rules to find master-
slave pairs based on the history of movements, and
computes the exact time of collision, [8,16]. The two
colliding objects are treated symmetrically. In this
method, even if the collision times are computed, some
penetrations are tolerated for several time steps before
they are eliminated. To completely prevent penetrations,
the exact birth and death times of impenetrability
constraints for slave-master pairs must be computed at
every step. Such computation is prohibitively expensive.

Belytschko et al. [6] proposed the “splitting pinball”
method, which uses repulsive forces between hierarchical
bounding spheres around individual surface elements.
Although interference checks between spheres are very
efficient, the algorithm’s applicability to complex contact
is not clear. The fine details of a surface such as folding
skin would require that the bounding spheres be
repeatedly subdivided, resulting in excessive
computational cost.

Ideally, if two objects are in contact, they share a
single contact surface. However, because it is virtually
impossible for two independently discretized surfaces to
have common surface geometry, the methods discussed
above cannot prevent small penetrations or gaps. The
frequency of constraint updates is also directly related to
the resolution of surface discretization, and can therefore
lead to very high computational cost.

2.2.2. Penalty methods. By definition, penalty methods
allow small amounts of penetration to occur. To resolve
penetration, penalty forces proportional to the depth of
penetration are calculated [3,9,30]. Unlike constraint
methods, a slave node is allowed to travel without
keeping track of all master surfaces on its path. Thus, the
effect of the resolution of surface discretization on
computational cost is not as dramatic as with constraint
methods.

2.2.3. Gap function computation. Most conventional
methods (including constraint methods) seek projections
to evaluate the gap function (i.e. the negative depth of
penetration) and its derivative [12]. Because of the
geometric complexity of a projection search, these
methods are not appropriate for handling complicated
boundary surfaces.

Most methods (except for the pinball method)
examine penetration at slave nodes only. Because of their
“point sampling” nature, the contact force applied on a
slave node becomes a discontinuous function of
deformation (i.e. of node movements), which often
causes a convergence problem.

In section 5, we introduce a robust method to compute
a continuous gap function for even very complex surface
geometry. We also show that, based on our gap function,
contact penalty forces can be analytically integrated as
continuous functions.

3. Static analysis

Due to their low mass density and fairly low viscosity,
biological tissues tend to rapidly converge to a final state
when subjected to external forces. For example, it is hard
to flex a finger or change facial expression quickly
enough to be able to observe viscosity or inertia effects
such as creep and oscillations. In fact, for many
applications (including animation), the user is only
interested in the (static) equilibrium shapes of flexible
tissues for a given posture or other specified constraints.
In animation applications, dynamic postures and
constraints can be used to steer the animation. Static
analysis is adequate for these applications, and, hence
methods optimized for the static problem must be
developed.

In static analysis, the geometry of an elastic object
depends solely on the forces applied to the object. The
relationship between geometry and forces is described by
a differential equation defined on the continuous domain
of the elastic object.

We assume the resting (undeformed) shape of the
object is known, and elect it as a reference configuration.

The current (deformed) shape is referred to as the current
configuration.

At the equilibrium state, an elastic object in contact
satisfies the following equation:

uunufT δδδ ∀=⋅+⋅+ �� ΓΩ
0)div(dapdV (1)

In this equation, Ω is the interior of the object, Γ is its
boundary, T is the first Piola-Kirchhoff stress tensor,
div is the divergence operator, f is the density of body
forces (such as gravity), u is the displacement of
particles, uδ is an arbitrary variation of u , dV is the
differential volume in the reference configuration, p is
the pressure on the contact surface, n is the normal of the
contact surface, da is the differential area in the current
configuration, and np is the surface traction force on the

contact. Since we assume frictionless contact, the traction
force is normal to the surface. np is integrated over the

boundary. (Actually, its value is non-zero only on the
contact area.)

3.1. Discretization

Because of its complex boundary conditions and
nonlinearity, Eqn. (1) cannot be solved analytically.
Instead, it is discretized using a finite element method,
and an approximate solution is sought [22].

We use tetrahedral elements for the interior and
triangular elements for the boundary of objects. The
triangular elements are chosen to be a subset of the sides
of the tetrahedral elements.

The displacements of particles (internal material
points) are obtained by linearly interpolating
displacements at nodes. (The interpolation functions are
called shape functions.) Elastic forces at nodes are
computed by substituting the virtual displacement

�
u

with the corresponding shape functions.
The derivatives for all forces must also be computed to

construct a stiffness matrix, which is crucial for Newton
iteration (described in subsection 3.2).

The details of the contact force computation are
explained in section 5.

As a result of discretization, we obtain a nonlinear
equation of the form:

() 0u =R (2)
Here, u represents the displacement vector

1,1 1,2 1,3 ,1 ,2 ,3(, , , ... , , ,)n n nu u u u u u , where),,(3,2,1, iii uuu

denotes the displacement of the i th node and n is the
number of nodes. We can impose boundary conditions for
displacement by assigning fixed values to the
components of .u

3.2. Solution of the nonlinear system

By solving Eqn. (2), we can obtain a new shape of the
elastic object as the displacement vector u . There are
three factors that contribute to the nonlinearity of this
system:
• Finite deformation: To handle finite deformation (as

opposed to infinitesimal deformation), the force-
displacement relationship must be described by
nonlinear equations (geometric nonlinearity).

• Nonlinear mater ial: Realistic elastic materials are all
nonlinear. The choice of materials is explained in
subsection 3.3.

• Collision and contact of objects: Collision and
contact are events that introduce additional
nonlinearity into the system.
On top of the nonlinearity, the large size of the system

increases the complexity; a typical finite element analysis
of our interest produces a system with tens of thousands
of variables. We have developed a robust and efficient
algorithm to solve large nonlinear systems.

3.2.1. Selecting a search direction. Nearly all solution
methods start with an initial guess and proceed in a given
search direction in a step-by-step manner. Finding the
proper direction in the high-dimensional search space is
critical for the algorithm’s efficiency. Several different
methods exist to determine the best search direction.

The maximum gradient descent method chooses the
direction of the forces (i.e. the negative of the residual

()uR) for each step. This method turns out to be very
slow because it takes many steps for a local force to
propagate through the entire mesh. Furthermore it is
impossible for this method to predict rapid force changes
caused by the deformation of objects.

On the other hand, the Newton method uses the
derivative of the forces (i.e. the stiffness matrix), which
provides information about how the forces vary as a
function of deformation. Each Newton step consists of
computation of the residual, computation of the stiffness
matrix, and solution of a linear system. The process
continues until the residual drops below a given
tolerance. We chose this method due to both its speed
and reliability.

3.2.2. Avoiding illegal steps. Two questions that remain
to be answered are: how to obtain the initial guess and
how far to proceed in a selected search direction.

If there are no displacement boundary conditions, the
object is deformed only by external forces. In this case,
an obvious choice of the initial guess is the initial shape,
i.e. .0u =

But if displacement boundary conditions are specified,
some components of u are externally given. In such
cases u initially contains zeros for free components and
final values for constrained components. The
corresponding mesh may contain a tetrahedral element
whose orientation is reversed, resulting in an illegal
configuration. For this reason, constrained components
must be gradually incremented, and as soon as an illegal
configuration is detected, the step size must be reduced
(adaptive incremental loading). Each incremental step
performs a Newton iteration and the solution is cascaded
into the next step. After the second step, the initial guess
is computed by extrapolating the previous two solutions
(two-point predictor).

Given an initial guess, we must determine how far to
proceed in a given search direction. If ()uR is smooth,
and the initial guess is close to the solution, a full step
towards the solution of the linear system can safely be
taken. However, the nonlinearity of the system often
causes a full step to lead to divergence. A full Newton
step can also bring the mesh to an illegal configuration.
Our method checks if the full Newton step is legal and if
the residual decreases. If both of these are true, the step is
taken. If not, the step size is halved until the two
conditions are satisfied. The scaling value of the step size
is called a damping factor. This line search strategy
greatly improves the robustness of our method.

The resulting algorithm can be summarized as three
nested loops:
 LOOP1: Adapt i ve I ncr ement al Loadi ng
 2- Poi nt Pr edi ct i on
 LOOP2: Newt on I t er at i on
 Li near Syst em Const r uct i on
 Li near Syst em Sol ut i on
 LOOP3: Li ne Sear ch

3.2.3. L inear system solution. Newton iteration depends
on the stable solution of linear systems. The accuracy of
the solution is traded for speed. Since the degree of
nonlinearity of the equation is high, the residual is not
greatly reduced by a single Newton step. Consequently,
computing an exact solution for each linear system does
not improve the rate of convergence. For this reason, an
iterative method is better suited for the linear system
solution than are direct methods.

The linear systems constructed in our finite element
method are symmetric, sparse, and usually positive
definite. Around a bifurcation point, however, the matrix
of the system is sometimes not only indefinite but also
nearly singular. The (bi)conjugate gradient method tends
to behave in an erratic manner. We found that an
implementation of the Generalized Minimum Residual
method (GMRES) with diagonal preconditioning [33] is
both efficient and stable. The iteration is terminated

when either the residual reduces to one tenth or a
predetermined iteration limit is reached. This strategy
keeps the computation time for solving the linear systems
relatively low without slowing down the convergence of
the Newton iteration.

We use another technique to prevent failure in the
linear system solver. Each node is assigned a “viscosity”
proportional to the sizes of the surrounding elements. A
well-chosen value for viscosity gives the algorithm the
tendency to pick an energy-minimizing solution at a
bifurcation point, i.e. to prefer a stable equilibrium point.
Also, this method allows starting with an obviously ill-
conditioned initial configuration such as an object placed
in mid-air, which will fall until it hits the ground.

3.3. Mater ial models

The property of an elastic material is defined as the
relationship between stress and strain (Constitutive Law).
In Eqn. (1), the relationship provides a formula that
associates the stress tensor T with the displacement u .
A few quantities must be introduced to describe the
relationship: the deformation gradient IduF +∇= (Id
denotes the identity matrix), the right Cauchy-Green

strain tensor ,FFC T= the invariants of C defined as

),(1 CtrI =)} ,()({ 22
2
1

2 CC trtrI −=),det(3 C=I and finally

the stored energy function)(Fψ . The stress tensor T is
given as ,)(FFT ∂∂= ψ thus)(Fψ actually determines

the material property.
The properties of organic tissues are being actively

studied in biomechanics and several models have been
proposed based on stress-strain data obtained from in
vivo and in vitro experiments. However, due to the
limitations of measurement technology, those models
have not been rigorously validated [27].

We have implemented compressible variations of
three different material models. The first model is the
Mooney-Rivlin material [10,28]

.ln)2()1()3()3()(32132211 IaCCIaICIC ++−−+−+−=Fψ

1C and 2C are constants to control stiffness. a

determines compressibility. This model exhibits a
relatively linear strain-stress curve.

Biological tissues are often characterized by higher
nonlinearity; the stiffness (modulus) dramatically
increases as they are stretched. The second model we use,
the Veronda material, expresses this nonlinearity with an
exponential function [31,38]

,ln)3()3exp(2)(3321 IaaIII −+−+−= αβαψ F

where α controls overall stiffness and β governs the
rate of stiffness increase.

In addition to the nonlinearity, many tissues show
anisotropy due to their microscopic fiber structures
[17,20]. We use the fiber-reinforcement model

fCf T
f =2λ and

22))1(exp()(ff αβλλβαψ −−=F ,

where fλ is the fiber stretch along the fiber direction f ,

and α and β are material constants similar to the ones
in the Veronda model. We superimpose this model onto
the Veronda or Mooney-Rivlin materials for
reinforcement rather than using it alone.

In all the models we use, the energy tends to infinity
as the volume compression ratio 3I tends to zero. This is

an essential property for preventing the element reversal
phenomenon. Nearly incompressible versions of the
above models will also be implemented.

4. Dynamic and quasistatic analysis

We extended our method to quasistatic (i.e. inertia
ignored) and dynamic analysis.

The equilibrium equation now includes inertial and
viscous forces. Time derivatives are discretized by the
implicit Euler scheme [3,37]. Each time step becomes a
Newton iteration (see LOOP2 in section 3.3), which solves
for velocities of node points. The velocities are then used
to update node positions.

We also implemented an explicit method. The explicit
time integration is more appropriate than implicit one in
high-speed applications such as crash/impact problems,
for which time steps must be chosen so small that stress
does not propagate far in a step [24,29].

5. Contact problem

5.1. Gap function

The gap function plays a crucial role in describing the
contact relationship between objects. Fig. 1 illustrates an
object at the reference or undeformed configuration (Fig.
1, left) and the current or deformed configurations (Fig.
1, center and right). The rightmost configuration exhibits

X

Undeformed
object

xx

Self-
penetrating

deformed object

|x|-1

R1
Obstacle (unit sphere)

x'x'

Deformed
object

xx

Fig.1. Gap function.

self-penetration. The gap function),g(xX is the distance
between a particle X (coordinate at the reference
configuration, used to label the particle) on a boundary of
an object at x (coordinate at the current configuration)
and an obstacle. For example, if the obstacle is a unit
sphere located at the origin (as shown for the center
configuration in Fig. 1), then .1),g(−= xxX

The sign of),g(xX is positive if x is outside the
obstacle. In this simple example,),g(xX depends solely
on .x We consider penetration between deformable
objects; therefore multiple particles may share the same
location .x The parameter X identifies the particle
under examination.

Self penetration may occur (Fig. 1, right
configuration), i.e. the obstacle may be the object itself;
hence,),g(xX cannot be defined as the minimum
distance, which is always zero for particles on the
boundary. Instead of the minimum distance, conventional
methods use the distance from x to its projections on
object boundaries. A projection of x on a surface is a
point x′ such that xx ′− is normal to the surface (Fig. 1,
right configuration). By the definition of projection, the
search algorithm has to rely on the normals of the
surfaces. This leads to three major problems:

1) Numerous candidates
2) Plurality of projections
3) Discontinuity with respect to deformation

First, if a surface has high curvature, the algorithm
has to check many candidate projections (Fig. 2). This
case often occurs when buckling creates wrinkles on a
surface. It is not even obvious that one of the candidates
can be selected (e.g. the closest one) because a particle x
may intrude into multiple objects. When multi-object
intrusion occurs, multiple projections should be used
(Fig. 3). Thus, to find projections, a global and
exhaustive search algorithm is required. Furthermore, as
a surface deforms (i.e. as node displacements change), a
projection can emerge or disappear abruptly (Fig. 4), in
which case the gap function is not a continuous function
of the node displacements. This discontinuity undermines
the convergence of the Newton iteration, which requires
the first and second derivatives of the gap function.

These three problems become more significant as the
penetration depth increases. Solution steps mentioned in
section 3 may bring objects to such a configuration.
Furthermore, it is convenient for modeling if the initial
geometry is allowed to have deep penetration. Therefore,
the ability to recover from deep penetration greatly
improves the robustness and versatility of an algorithm.

5.2. Mater ial depth

We introduce material depth as a new way to compute
the gap function. Fig. 5 explains this notion. The
deformation maps particle X on a boundary to the
current position .x As a result, X collides with particle

.Y The material depth is the distance from Y to the
boundary at the reference configuration. It maintains a
constant intrinsic value for a particle (or material point),
hence the term “material depth.” Since there is no self-
penetration at the reference configuration, the material
depth can be computed regardless of self-penetration at
the current configuration. Also, unlike the distance to a
projection, material depth never changes abruptly due to
deformation.

Material depth is an approximation of the distance
fields at the current configuration. As an object is

xx

X

YY

Material depth

UndeformedUndeformed DeformedDeformedUndeformedUndeformed DeformedDeformedUndeformedUndeformed DeformedDeformedUndeformedUndeformed DeformedDeformedUndeformedUndeformed DeformedDeformedUndeformedUndeformed DeformedDeformed

xx
YY

xx
YY

xx
YY

xx
YY

xx
YY

xx
YY

Fig. 5. Material depth (encoded as color

values).

Penetrating
object
boundariesxx

Candidate
projections

Fig. 2. Multiple projection candidates.

Penetrating
object
boundaries

xx

Multiple
projections

Fig. 3. Projections on multiple objects.

Penetrating object
boundaries

xx

Projection jumps

Surface deforms

Fig. 4. Abruptly emerging and disappearing

projections.

stretched and compressed, the value deviates from the
actual distance. The inaccuracy does not cause a
significant problem since in practice a large penalty
factor can be used without causing numerical instability
[9].
5.3. Integrating penalty forces

As mentioned above, the material depth is substituted
for the gap function).,g(xX The contact force np in

Eqn. (1) is approximated by the penalty force:
.),g(nxXn ε=p

ε is the penalty factor. n is a normal at x and is the

gradient of g. Therefore,

).,(),g(g xXxXn
x∂

∂= εp

To use the finite element method, np must be

integrated over a contact surface. Our method does not
compute the exact value of the material depth at every
point on a penetrating boundary. Instead, it uses a linear
interpolation of the material depths at nodes, which can
be pre-computed. The resulting method requires only
collision detection between triangles and tetrahedra and
uses analytical integration. The algorithm performs the
following steps:

1) Compute the material depth for each node at the
reference configuration.

2) Find the collision between a boundary element
(triangle) and a volumetric element (tetrahedron).

3) Compute the intersection of the triangle and the
tetrahedron.

4) Triangulate the intersection polygon.

5) For each triangle, integrate the penalty force and its
derivatives over the area of the triangle and add
their contributions to the global residual and the
stiffness matrix.

The first 2 steps are briefly discussed in subsections
5.4 and 5.5. Steps 3-5 are explained in greater detail in
the following. As shown in Fig. 6 (left), a tetrahedral
element with nodes 41 ~ PP and a triangular element

41 ~ QQ are intersecting. The intersection is a convex

polygon with up to 7 vertices. To facilitate integration,
the intersecting region is divided into triangles (Fig. 6,
right). There are up to 5 triangles to be considered and
they are all individually processed. Let 31 ~ RR denote

the vertices of one such triangle. We define a penalty
potential energy W for the triangle:

.d2
2�=

triangle
agW ε

Using a parameterization s and t on the triangle, we
obtain:

tsgAW
t

dd2
1

0

1

0
2

2� �
−

= ε

 ,dd))()((
1

0

1

0
2

13121 tstGGsGGGA
t

� �
−

−+−+= ε (3)

where
2)()(1312 RRRR −×−=A

is the area of the triangle and 31 ~ GG are the material

depths at the triangle’s vertices.

31 ~ GG are functions of 41 ~ PP and 31 ~ RR , and

41 ~ gg are material depths at 41 ~ PP . For example, 1G

is obtained by solving the linear system
443322111 glglglglG +++=

443322111 PPPPR llll +++=

14321 =+++ llll ,

where 41 ~ ll are the

barycentric coordinates of 1R

inside the tetrahedron.
The integration (3) is

performed analytically.

41 ~ PP and 41 ~ QQ are

node positions and thus
directly related to the
displacement u . The penalty
force and its derivatives are

u∂∂W and 22 u∂∂ W

respectively. These derivatives
are computed by numerically
applying the chain rule. The
dependency of variables and
constants is shown in Fig. 7.

The area of the intersection

P2 , g2

P1 , g1

P3 , g3

P4 , g4

Q2

Q3

Q1

Intersection

polygon

R1 , G1

R2 , G2

R3 , G3

Triangulated
intersection

polygon

s

t

½ ε g2

da

Object surface

Fig. 6. Intersecting elements.

W

A

G1, G2, G3

ε

R Q

P

Pg1, g2, g3, g4

uVariables

Constants

Fig. 7. Dependency graph.

varies continuously. The material depth is also
continuous. Thus the penalty force is mostly a smooth
function (C1) of .u The only exception is the case when
an edge of a triangle and a side of the tetrahedron are
coplanar, in which case the penalty force is no longer
smooth. It is still continuous (C0) however, which is
crucial for equation solving, since a solution may not
even exist without continuous penalty forces. This is the
major advantage of our method over traditional methods.

5.4. Initial depth computation

For an object with few triangles, an exhaustive search
algorithm is sufficient for pre-computation of material
depths at node points. For more complex objects, we use
the fast marching level set method, which quickly
computes distance values [35].

By utilizing the tetrahedral mesh, we could use the
finite element version of the fast marching method [4],
which can compute distances even for self-intersecting
objects. This approach is left for future work.

5.5. Collision detection

To accelerate collision detection between tetrahedral
and triangular elements, a bounding volume tree is
constructed for the tetrahedral mesh. A node of the tree
represents an X, Y, or Z coordinate interval that bounds
the intervals of all descendant nodes. The interval of a
leaf node contains a tetrahedral element. The overlaps
between the intervals of each triangle element and the
intervals of tree nodes are examined and possible
collisions are quickly determined.

The tree structure is built by top-down partitioning of
elements in the direction of their greatest extent. We
divide a simulation into smaller simulation runs. Since
we set up our simulation such that the mesh does not
deform much in a single run, the tree structure is built
only once at the beginning of each run. The interval
values are efficiently updated in a bottom-up manner at
every solution step. As a result, the collision detection
occupies only a minor part of the total computation time
(see next section).

6. Results

We simulated flexion of a human knee joint using a
finite element model of a right human leg (Fig. 8). To
build the model, we first generated boundary polygons of
all the organs from a manually segmented mask image
volume of the Visible Human Male. The Visualization
Tool Kit [32] and Maya [1] were used to extract, smooth,

decimate, and assemble the polygons. Then a tetrahedral
mesh was generated from the polygonal boundaries using
SolidMesh [26]. The mesh contains about 10,000 nodes,
10,000 triangular elements, and 40,000 tetrahedral
elements. It consists of a femur (thigh bone), a patella
(knee cap), a tibia (shin bone), a quadriceps (a collection
of four major anterior thigh muscles), a patella ligament,
tendons that connect the patella and the quadriceps, and
a monolithic skin-fat layer (Fig. 9). Our model is not
anatomically complete since it lacks other major muscles
and many important ligaments at the knee joint. They are
included either in the skin-fat layer or are part of a
hollow space around the knee joint. All the boundaries
are treated as frictionless interfaces except for the inner
part of the tibia, which is attached to the skin-fat layer.
Various material parameters are assigned to tetrahedral
elements in order to approximate the mechanical
properties of different parts. The Mooney-Rivlin and
Veronda models were both applied, but images shown in
this paper were obtained by using the Mooney-Rivlin
model only.

The femur is fixed in space. The cross section of the
thigh is constrained so that it can only move on the
cutting plane. The tibia is rotated around an axis in the
knee joint. These positional constraints constitute a
displacement boundary condition. The tibia’s total 150-
degree rotation was divided into 50 three-degree intervals
and the algorithm was applied to each interval to
generate deformations.

The complete simulation took 376 minutes on a single
300MHz R12000 CPU of an SGI Onyx system. Most of
the time (63%) was consumed by the force and stiffness
matrix computations. 22% were spent on collision
detection, out of which the bounding volume tree
construction took less than 1%. The rest, 15%, were
spent on the linear system solution.

Figures 10 through 13 show more images of our
results, including dynamic analysis (Fig. 13). Additional
examples and animations can be found at
ht t p: / / www. cs. unc. edu/ ~us/ f em/ .

Fig. 8. Visible Human dataset with flexed knee

7. Conclusions

We have addressed the frictionless contact problem
for elastic objects. Our main contribution is a novel
penalty finite element method that uses material depth
for evaluating gap functions and their derivatives. Unlike
projection-based gap functions used in traditional
methods, our gap function varies continuously as objects
deform. The field of material depth is approximated by a
linear interpolation of depth values at finite element
nodes. This simplification enables efficient analytical
integration of contact penalty forces over the contact area
and thus results in penalty forces that are continuous
functions of deformation. The achieved continuity
reduces the oscillation and divergence problems often
present in traditional approaches.

Contact problems demand the solution of a large-scale
highly nonlinear system. We developed a reliably
converging solver that integrates various numerical
techniques such as Newton iteration, adaptive
incremental loading, two-point predictor, line search (or
variable damping factor), and quasi-viscosity.

We have demonstrated the performance of our method
by simulating very large deformations on part of a human
anatomical model. To our knowledge, this is the first
demonstrated simulation of large-scale motion of a
complex model derived from the widely used Visible
Human dataset and encompassing multiple tissue types
including bone, muscle, tendons, and skin.

8. Future work

This work is limited to frictionless contact. This
limitation is justified because the friction between organs
inside bodies is known to be small [25]. This is not the
case for friction between (non-lubricated) skin surfaces,
an area that should be investigated. The residual stress
(such as skin tension) and atmospheric pressure should
also be considered in order to improve the accuracy of the
simulation.

Chemical and biophysical phenomena contribute to
internal stresses. Muscle contraction is the most dramatic
example for this. Such stresses should be included as part
of the external body forces (f in Eqn. 1) to simulate
“active” aspects of biological tissues.

To handle more complex anatomical models, a further
performance improvement is desirable. Since most
computation is local to each finite element,
parallelization techniques should enable significant
acceleration of our algorithm [8].

We hope that methods such as the ones described here
will lower the cost of deforming complex anatomical

models, making possible a wide variety of applications
for which currently available techniques have been
prohibitively expensive.

9. References

[1] Anderson, P., et al, Using Maya. Alias|Wavefront, 1999.

[2] Baraff, D., and Witkin, A., Dynamic simulation of non-
penetrating flexible bodies. Proceedings of SIGGRAPH
92, Computer Graphics, 26, 2 (July 1992), pp. 303-308.

[3] Baraff, D., and Witkin, A., Large steps in cloth
simulation. Proceedings of SIGGRAPH 98, Computer
Graphics Proceedings, Annual Conference Series, 1998,
pp. 43-54.

[4] Barth, T.J., and Sethian, J.A., Numerical schemes for the
Hamilton-Jacobi and level set equations on triangulated
domains. J. Computational Physics 145(1), pp. 1-40,
September 1998.

[5] Bechmann, D., Space deformation models survey.
Computer & Graphics, 18(4), pp. 571-586, 1994.

[6] Belytschko, T., Yeh I.-S., The splitting pinball method for
general contact. In R.Glowinksi (ed.), Computing Methods
in Applied Science and Engineering. Nova Science
Publishers, New York, NY, 1992.

[7] Bregler, C. (chair), Hollow Men and Invisible People -
Layers of a digital actor. SIGGRAPH 2000 Technical
Sketch.

[8] Brown, K., Attaway, S., Plimpton, S., Hendrickson, B.,
Parallel strategies for crash and impact simulations.
Computer methods in applied mechanics and engineering
184, pp. 375-390, 2000.

[9] Carstensen, C., Scherf, O., and Wriggers, P., Adaptive
finite elements for elastic bodies in contact. SIAM J.
Scientific Computing 20(5), pp. 1605-1626, 1999.

[10] Ciarlet., P.G., Mathematical Elasticity. North-Holland,
1988.

[11] DeRose, T., Kass, M., Truong, T., Subdivision surfaces in
character animation. Proceedings of SIGGRAPH 98,
Computer Graphics Proceedings, Annual Conference
Series, 1998, pp. 85-94.

[12] Donzelli, P.S., A mixed-penalty contact finite element
formulation for biphasic soft tissues, PhD Thesis, Dept. of
Mech. Eng., Aeronautical Eng. and Mechanics, RPI, Troy,
NY, 1995.

[13] Fung, Y.C., Biomechanics. Springer-Verlag, 1993.

[14] Gourret, J.-P., Thalmann, N.M., Thalmann, D., Simulation
of object and human skin deformations in a grasping task.
Proc. of SIGGRAPH 89, Computer Graphics, 23, 4 (Aug.
1989), pp. 21-30.

[15] Hallquist, J.O., Goudreau, G.L., and Benson, D.J., Sliding
interface with contact-impact in large scale Lagrangian
computation, 1987.

[16] Heinstein, M.W., Attaway, S.W., Swegle, J.W., Mello,
F.J., A general contact detection algorithm for finite
element analysis. In Aliabadi, M. H., Brebbia, C. A.
(eds.), Contact Mechanics. Computational Mechanics
Publications, Southampton, UK, 1993.

[17] Hirokawa, S., Tsuruno, R., Three-dimensional
deformation and stress distribution in an analytical /
computational model of the anterior cruciate ligament.
Journal of Biomechanics 33 (2000), 1069-1077.

[18] Hirota, G., Fisher, S., State, A., Fuchs, H., Lee, C.,
Simulation of Deforming Elastic Solids in Contact.
SIGGRAPH 2001 Technical Sketch. In SIGGRAPH 2001
Conference Abstracts and Applications, p. 259.

[19] Kikuchi, N., Oden, J.T., Contact Problems in Elasticity: A
study of variational inequalities and finite element
methods. SIAM Studies in Applied and Numerical
Methematics, 1988.

[20] Klisch, S.M., Lotz, J.C., Application of a fiber-reinforced
continuum theory to multiple deformations of the annulus
fibrosus. Journal of Biomechanics 32 (1999) 1027-1036.

[21] Koch, R. M., Gross, M. H., Carls, F. R., von Büren, D.F.,
Fankhauser, G., Parish, Y.I.H., Simulating facial surgery
using finite element methods. proceedings of SIGGRAPH
'96, Computer Graphics Proceedings, Annual Conference
Series, 1996, pp. 421-428.

[22] Le Tallec, P., Numerical methods for solids. In Ciarlet,
P.G., Lions, J. L. (eds.), Handbook of Numerical Analysis.
North-Holland, 1994.

[23] Lewis, J.P., Cordner, M., Fong, N., Pose space
deformation: a unified approach to shape interpolation and
skeleton-driven deformation. Proceedings of SIGGRAPH
2000, Computer Graphics Proceedings, Annual
Conference Series, 2000, pp. 165-172.

[24] Lin J.I., DYNA3D: A nonlinear, explicit, three-
dimensional finite element code for solid and structural
mechanics, User manual, Methods Development Group,
Lawrence Livermore National Laboratory, December
1998.

[25] Malcolm, L.L., An experimental investigation of the
frictional and deformational response of articular cartilage
interfaces to statistic and dynamic loading. PhD thesis,
Univ. of California San Diego, 1976.

[26] Marcum, D.L., and Weatherill, N.P., unstructured grid
generation using iterative point insertion and local
reconnection. AIAA Journal, 33(9), September 1995, pp.
1619-1625.

[27] Miller, K., Chinzei, K., Orssengo, G., Bednarz, P.,
Mechanical properties of brain tissue in-vivo: experiment
and computer simulation. Journal of Biomechanics 33
(2000), pp. 1369-1376.

[28] Mooney, M., A theory of large elastic deformation. Journal
of Applied Physics. 11 (1940), pp. 582-592.

[29] O’Brien J.F., Hodgins J.K. Graphical modeling and
animation of brittle fracture. Proceedings of SIGGRAPH,
Computer Graphics Proceedings, Annual Conference
Series, 1999.

[30] Papadopoulos, P., and Taylor, R.L., A simple algorithm
for three-dimensional finite element analysis of contact
problems. Computers & Structures 46(6), pp. 1107-1118,
1993.

[31] Pioletti, D.P., Rakotomanana, L.R., Benvenuti, J.F.,
Leyvraz P.F., Viscoelastic constitutive law in large
deformations: application to human knee ligaments and
tendons. Journal of Biomechanics 31 (1998), pp. 753-757.

[32] Schroeder, W., Martin, K., Lorensen, B., The visualization
toolkit: an object-oriented approach to 3-d graphics.
Prentice-Hall, 1997.

[33] Seager, M., A SLAP for the masses. Lawrence Livermore
Nat. Laboratory Technical Report, UCRL-100267,
December 1988.

[34] Sederberg, T.W., and Parry, S.R., Free-form deformation
of solid geometric models. Proceedings of SIGGRAPH 86,
Computer Graphics, 20, 4 (August 1986), pp. 151-160.

[35] Sethian, J.A., Level set methods and fast marching
methods: evolving interfaces in computational geometry,
fluid mechanics, computer vision, and materials science.
Cambridge Univ. Press, 1999.

[36] Spitzer, V., Ackerman, M.J., Scherzinger, A.L., Whitlock,
D., The visible human male: a technical report. J. Am.
Med. Inform. Assoc. 3(2), Mar-Apr 1996, pp. 118-130.

[37] Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K.,
Elastically deformable models. Proc. of SIGGRAPH'87,
Computer Graphics, 21, 4 (Aug. 1987), pp. 205-214.

[38] Veronda, D.R., Westmann, R.A., Mechanical
characterization of skin-finite deformation. Journal of
Biomechanics 3 (1970), pp. 111-124.

[39] Wilhelms, J., and Van Gelder, A., Anatomically based
modeling. Proceedings of SIGGRAPH 97, Computer
Graphics Proceedings, Annual Conference Series, 1997,
pp. 173-180.

[40] Zhuang, Y., Real-time simulation of physically-realistic
global deformations. PhD thesis, Department of Electrical
Engineering and Computer Science, University of
California, Berkeley, 2000.

Fig. 9. The constituent parts of the leg model, derived from the Visible Human database

Fig. 10. Bent knee (left) and stretched (initial)
position (right). The patella automatically slides
over the femur as a result of the simulation

Fig. 11. Skin surface of highly flexed knee (left),
cut-away view of the same flexed knee (right).
Only parts of the tibia and femur are visible in
the cut-away, since they are partly in front of or
behind the cutting plane. Note natural-looking
sliding contact between skin areas, skin and
bones/muscles, patella and femur. The complex
self-contact of folding skin was handled without
visible penetration. The colors encode the
material depth value.

Fig. 12. Close-up of knee, illustrating pattern of
skin folding

Fig. 13. An example of dynamic analysis: elastic
bars deformed by their own weight

