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Abstract. In this paper, we develop a set of data processing algorithms for generating textured facade meshes of
cities from a series of vertical 2D surface scans and camera images, obtained by a laser scanner and digital camera
while driving on public roads under normal traffic conditions. These processing steps are needed to cope with
imperfections and non-idealities inherent in laser scanning systems such as occlusions and reflections from glass
surfaces. The data is divided into easy-to-handle quasi-linear segments corresponding to approximately straight
driving direction and sequential topological order of vertical laser scans; each segment is then transformed into a
depth image. Dominant building structures are detected in the depth images, and points are classified into foreground
and background layers. Large holes in the background layer, caused by occlusion from foreground layer objects,
are filled in by planar or horizontal interpolation. The depth image is further processed by removing isolated points
and filling remaining small holes. The foreground objects also leave holes in the texture of building facades, which
are filled by horizontal and vertical interpolation in low frequency regions, or by a copy-paste method otherwise.
We apply the above steps to a large set of data of downtown Berkeley with several million 3D points, in order to
obtain texture-mapped 3D models.
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1. Introduction25

Three-dimensional models of urban environments are26
useful in a variety of applications such as urban27
planning, training and simulation for urban terrorism28
scenarios, and virtual reality. Currently, the standard29
technique for creating large-scale city models in an au-30
tomated or semi-automated way is to use stereo vi-31
sion approaches on aerial or satellite images (Frere32
et al., 1998; Kim et al., 2001). In recent years, ad-33
vances in resolution and accuracy of airborne laser34
scanners have also rendered them suitable for the gener-35
ation of reasonable models (Haala and Brenner, 1997;36

Maas, 2001). Both approaches have the disadvantage 37
that their resolution is only in the range of 1 to 2 feet, 38
and more importantly, they can only capture the roofs 39
of the buildings but not the facades. This essential dis- 40
advantage prohibits their use in photo realistic walk or 41
drive-through applications. 42

There exist a number of approaches to acquire the 43
complementary ground-level data and to reconstruct 44
building facades; however, these approaches are 45
typically limited to one or few buildings. Debevec 46
et al. (1996) propose to reconstruct buildings based 47
on few camera images in a semi-automated way. Dick 48
et al. (2001), Koch et al. (1999), and Wang et al. 49
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(2002) apply automated vision-based techniques for50
localization and model reconstruction, but varying51
lighting conditions, the scale of the environment, and52
the complexity of outdoor scenes with many trees and53
glass surfaces generally pose enormous challenges to54
purely vision-based methods.55

Stamos and Allen (2002) use a 3D laser scanner and56
Thrun et al. (2000) use 2D laser scanners mounted on57
a mobile robot to achieve complete automation, but the58
time required for data acquisition of an entire city is59
prohibitively large; in addition, the reliability of au-60
tonomous mobile robots in outdoor environments is61
a critical issue. In Zhao and Shibasaki (1999), use a62
vertical laser scanner mounted on a van, which is lo-63
calized by using odometry, an inertial navigation sys-64
tem, and the Global Positioning System (GPS), and65
thus with limited accuracy. While GPS is by far the66
most common source of global position estimates in67
outdoor environments, even expensive high-end Dif-68
ferential GPS systems become inaccurate or erroneous69
in urban canyons where there are not enough satellites70
in a direct line of sight.71

In previous work, we have developed a fast, auto-72
mated data acquisition system capable of acquiring73
3D geometry and texture data for an entire city at the74
ground level by using a combination of a horizontal75
and a vertical 2D laser scanners and a digital camera76
(Frueh et al., 2001; Frueh and Zakhor, 2001a). This sys-77
tem is mounted on a truck, moving at normal speeds on78
public roads, collecting data to be processed offline. It79
is similar to the one independently proposed by Zhao80
and Shibasaki (2001), which also use 2D laser scanners81
in horizontal and vertical configuration; however, our82
system differs from that of Zhao and Shibasaki (2001)83
in that we use a normal camera instead of a line cam-84
era. Both approaches have the advantage that data can85

Figure 1. Triangulated raw points: (a) front view; (b) side view.

be acquired continuously, rather than in a stop-and- 86
go fashion, and are thus extremely fast; relative posi- 87
tion changes are computed with centimeter accuracy 88
by matching successive horizontal laser scans against 89
each other. In Frueh and Zakhor (2001b), we proposed 90
to use the particle-filtering-based Monte-Carlo Local- 91
ization (Fox et al., 2000) to correct accumulating pose 92
uncertainty by using airborne data such as an aerial 93
photo or a digital surface model (DSM) as a map. An 94
advantage of our approach is that both scan points and 95
camera images are registered with airborne data, facil- 96
itating a subsequent fusion with models derived from 97
this data (Frueh and Zakhor, 2003). 98

In this paper, we describe our approach to processing 99
the globally registered scan points and camera images 100
obtained in our ground-based data acquisition, and to 101
creating detailed, textured 3D facade models. As there 102
are many erroneous scan points, e.g. due to glass sur- 103
faces, and foreground objects partially occluding the 104
desired buildings, the generation of a facade mesh is 105
not straightforward. A simple triangulation of the raw 106
scan points by connecting neighboring points whose 107
distance is below a threshold value does not result 108
in an acceptable reconstruction of the street scenery, 109
as shown in Figs. 1(a) and (b). Even though the 3D 110
structure can be easily recognized when viewed from 111
a viewpoint near the original acquisition position as in 112
Fig. 1(a), the mesh appears cluttered due to several rea- 113
sons; first, there are holes and erroneous vertices due 114
to reflections off the glass on windows; second, there 115
are pieces of geometry “floating in the air”, correspond- 116
ing to partially captured objects or measurement errors. 117
The mesh appears to be even more problematic when 118
viewed from other viewpoints such as the one shown in 119
Fig. 1(b); this is because in this case the large holes in 120
the building facades caused by occluding foreground
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objects, such as cars and trees, become entirely visi-121
ble. Furthermore, since the laser scan only captures the122
frontal view of foreground objects, they become almost123
unrecognizable when viewed sideways. As we drive by124
a street only once, it is not possible to use additional125
scans from other viewpoints to fill in gaps caused by126
occlusions, as is done in Curless and Levoy (1996) and127
Stamos and Allen (2002). Rather, we have to recon-128
struct occluded areas by using cues from neighboring129
scan points; as such, there has been little work to solve130
this problem (Stulp et al., 2001).131

In this paper, we propose a class of data processing132
techniques to create visually appealing facade meshes133
by removing noisy foreground objects and filling holes134
in the geometry and texture of building facades. Our135
objectives are robustness and efficiency with regards136
to processing time, in order to ensure scalability to the137
enormous amount of data resulting from a city scan.138
The outline of this paper is as follows: In Section 2, we139
introduce our data acquisition system and position esti-140
mation; Section 3 discusses data subdivision and depth141
image generation schemes. We describe our strategy to142
transform the raw scans into a visually appealing fa-143
cade mesh in Sections 4 through 6; Section 7 discusses144
foreground and background segmentation of images,145
automatic texture atlas generation, and texture synthe-146
sis. The experimental results are presented in Section 8.147

2. Data acquisition and Position Estimation148

As described in Frueh et al. (2001) and Frueh and149
Zakhor (2001a), we have developed a data acquisition150
system consisting of two Sick LMS 2D laser scanners,151
and a digital color camera with a wide-angle lens. As152

Figure 2. Truck with data acquisition equipment.

seen in Fig. 2, this system is mounted on a rack approx- 153
imately 3.6 meters high on top of a truck, in order to 154
obtain measurements that are not obstructed by pedes- 155
trians and cars. The scanners have a 180◦ field of view 156
with a resolution of 1◦, a range of 80 meters and an 157
accuracy of ±3.5 centimeters. Both 2D scanners face 158
the same side of the street and are mounted at a 90- 159
degree angle. The first scanner is mounted vertically 160
with the scanning plane orthogonal to the driving di- 161
rection, and scans the buildings and street scenery as 162
the truck drives by. The data captured by this scanner 163
is used for reconstructing 3D geometry as described 164
in this paper. The second scanner is mounted horizon- 165
tally and is used for determining the position of the 166
truck for each vertical scan. Finally, the digital camera 167
is used to acquire the appearance of the scanned build- 168
ing facades. It is oriented in the same direction as the 169
scanners, with its center of projection approximately 170
in the intersection line of the two scanning planes. All 171
three devices are synchronized with each other using 172
hardware-generated signals, and their coordinate sys- 173
tems are calibrated with respect to each other prior to 174
the acquisition. Thus, we obtain long series of vertical 175
scans, horizontal scans and camera images that are all 176
associated with each other. 177

We introduce a Cartesian world coordinate system 178
[x, y, z] where x, y is the ground plane and z points 179
into the sky. While our truck performs a 6 degree- 180
of-freedom motion, its primary motion components 181
are x, y, and θ (yaw), i.e. its two-dimensional (2D) 182
motion. As described in detail in Frueh and Zakhor 183
(2001a), we reconstruct the driven path and determine 184
the global pose for each scan by using the horizontal 185
laser scanner: First, an estimate of the 2D relative pose 186
(�x, �y, �θ ) between each pair of subsequent scans is 187
obtained via scan-to-scan matching; these relative esti- 188
mates are concatenated to form a preliminary estimate 189
for the driven path. Then, in order to correct the global 190
pose error resulting from accumulation of error due to 191
relative estimates, we utilize an aerial image or a DSM 192
as a global map, and apply Monte-Carlo-Localization 193
(Frueh and Zakhor, 2001b). Matching ground-based 194
horizontal laser scans with edges in the global map, we 195
track the vehicle and correct the preliminary path ac- 196
cordingly to obtain a globally registered 2D trajectory 197
as shown in Fig. 3. As described in Frueh and Zakhor 198
(2003), we obtain the secondary motion components 199
z and pitch by utilizing the altitude information pro- 200
vided by the DSM, and the roll motion by correlating 201
subsequent camera images, respectively. 202
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Figure 3. Driven path superimposed on top of a DSM.

While we use the full 6 degree-of-freedom pose to203
compute the final x, y, z coordinates of each scan point204
in the final model, we can for convenience and sim-205
plicity neglect the 3 secondary motion components for206
most of the intermediate processing steps described in207
the following sections of this paper. Furthermore, to re-208
duce the amount of required processing and to partially209
compensate for the unpredictable, non-uniform speed210
of the truck, we do not utilize all the scans captured211
during slow motion; rather, we subsample the series of212
vertical scans such that the spacing between succes-213
sive scans is roughly equidistant. Thus, in our process-214
ing steps described in this paper, we assume the scan215
data to be given as a series of roughly equally spaced216
vertical scans Sn with an associated tuple (xn , yn , θn)217
describing 2D position and orientation of the scanner218
in the world coordinate system during acquisition. Fur-219
thermore, we use sn,υ to denote the distance measure-220
ment on a point in scan Sn with azimuth angle υ, and221
dn,υ = cos(υ) · sn,υ to denote the depth value of this222
point with respect to the scanner, i.e. its orthogonal223
projection into the ground plane, as shown in Fig. 4.224

3. Data Subdivision and Depth Image Generation225

3.1. Segmentation of the Driving Path into Quasi226
Linear Segments227

The captured data during a 20-minute drive consists228
of tens of thousands of vertical scan columns. Since229
successive scans in time correspond to spatially close230
points, e.g. a building or a side of a street block, it is231
computationally advantageous not to process the entire232
data as one block, rather to split it into smaller segments233
to be processed separately. We impose the constraints234

Figure 4. Scanning setup.

that (a) path segments have low curvature, and (b) scan 235
columns have a regular grid structure. This allows us 236
to readily identify the neighbors to right, left, above 237
and below for each point, and, as seen later, is essential 238
for the generation of a depth image and segmentation 239
operations. 240

Scan points for each truck position are obtained as 241
we drive by the streets. During straight segments, the 242
spatial order of the 2D scan rows is identical to the 243
temporal order of the scans, forming a regular topol- 244
ogy. Unfortunately, this order of scan points can be 245
reversed during turns towards the scanner side of the 246
car. Figure 5(a) and (b) show the scanning setup dur- 247
ing such a turn, with scan planes indicated by the two 248
dotted rays. During the two vertical scans, the truck per- 249
forms not only a translation but also a rotation, making 250
the scanner look slightly backwards during the second 251
scan. If the targeted object is close enough, as shown in 252
Fig. 5(a), the spatial order of scan points 1 and 2 is still 253
the same as the temporal order of the scans; however, if 254
the object is further away than a critical distance dcrit, 255
the spatial order of the two scan points is reversed, as 256
shown in Fig. 5(b). 257

For a given truck translation of �s, and a rotation 258
�θ between successive scans, the critical distance can 259
be computed as 260

dcrit = �s

sin(�θ )
.

Thus, dcrit is the distance at which the second scan- 261
ning plane intersects with the first scanning plane. For 262
a particular scan point, the order with its predecessors 263
should be reversed if its depth dn,υ exceeds dcrit; this 264
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Figure 5. Scan geometry during a turn: (a) normal scan order for closer objects; (b) reversed scan order for farther objects.

Figure 6. Scan points with reversed order.

means that its geometric location is somewhere in be-265
tween points of previous scans. The effect of such order266
reversal can be seen in the marked area in Fig. 6. At the267
corner, the ground and the building walls are scanned268
twice, first from a direct view and then from an oblique269
angle, and hence with significantly lower accuracy. For270
the oblique points, the scans are out of order, destroy-271
ing the regular topology between neighboring scan272
points.273

Since the “out of order” scans obtained in these sce-274
narios correspond to points that have already been cap-275
tured by “in order” scans, and are therefore redundant,276
our approach is to discard them and use only “in or-277
der” scans. For typical values of displacement, turn-278
ing angle, and distance of structures from our driving279
path, this occurs only in scans of turns with significant280
angular changes. By removing these “turn” scans and281
splitting the path at the “turning points”, we obtain path282
segments with low curvature that can be considered as283
locally quasi-linear, and can therefore be conveniently284

Figure 7. Driven path: (a) before segmentation; (b) after segmen-
tation into quasi-linear segments.

processed as depth images, as described later in this 285
section. In addition, to ensure that these segments are 286
not too large for further processing, we subdivide them 287
if they are larger then a certain size; specifically, in 288
segments that are longer than 100 meters, we identify 289
vertical scans that have the fewest scan points above 290
street level, corresponding to gaps between buildings, 291
and segment at these locations. Furthermore, we detect 292
redundant path segments for areas captured multiple 293
times due to multiple drive-bys, and use only one of 294
them for reconstruction purposes. Figures 7(a) and (b) 295
show an example of an original path, and the resulting 296
path segments overlaid on a road map, respectively. 297
The small lines perpendicular to the driving path indi- 298
cate the scanning plane of the vertical scanner for each 299
position. 300

3.2. Converting Path Segments into Depth Images 301

In the previous subsection, we described how to create 302
path segments that are guaranteed to contain no scan 303
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pairs with permuted horizontal order. As the vertical304
order is inherent to the scan itself, all scan points of a305
segment form a 3D scan grid with regular, quadrilateral306
topology. This 3D scan grid allows us to transform the307
scan points into a depth image, i.e. a 2.5D representa-308
tion where each pixel represents a scan point, and the309
gray value for each pixel is proportional to the depth310
of the scan point. The advantage of a depth image is its311
intuitively easy interpretation, and the increased pro-312
cessing speed the 2D domain provides. However, most313
operations that are performed on the depth image can314
be done just as well on the 3D point grid directly, only315
not as conveniently.316

A depth image is typically used for representing data317
from 3D scanners. Even though the way the depth value318
is assigned to each pixel is dependent on the specific319
scanner, in most cases it is the distance between scan320
point and scanner origin, or its cosine with respect to321
the ground plane. As we expect mainly vertical struc-322
tures, we choose the latter option and use the depth323
dn,υ = cos(υ) · sn,υ rather than the distance sn,υ , so324
that the depth image is basically a tilted height field.325
The advantage is that in this case points that lie on a326
vertical line, e.g. a building wall, have the same depth327
value, and are hence easy to detect and group. Note328
that our depth image differs from one that would be329
obtained from a normal 3D scanner, as it does not have330
a single center from which the scan points are mea-331
sured; instead, there are different centers for each in-332
dividual vertical column along the path segment. The333
obtained depth image is neither a polar nor a parallel334
projection; it resembles most to a cylindrical projec-335
tion. Due to non-uniform driving speed and non-linear336
driving direction, these centers are in general not on a337
line, but on an arbitrary shaped, though low-curvature338
curve, and the spacing between them is not exactly uni-339
form. Because of this, strictly speaking the grid position340
only specifies the topological order of the depth pix-341
els, and not the exact 3D point coordinates. However,342
as topology and depth value are a good approximation343
for the exact 3D coordinates, especially within a small344
neighborhood, we choose to apply our data process-345
ing algorithms to the depth image, thereby facilitating346
use of standard image processing techniques such as347
region growing. Moreover, the actual 3D vertex coor-348
dinates are still kept and used for 3D operations such as349
plane fitting. Figure 8(a) shows an example of the 3D350
vertices of a scan grid, and Fig. 8(b) shows its corre-351
sponding depth image, with a gray scale proportional to352
dn,υ .353

4. Properties of City Laser Scans 354

In this section, we briefly describe properties of scans 355
taken in a city environment, resulting from the physics 356
of a laser scanner as an active device measuring time- 357
of-flight of light rays. It is essential to understand these 358
properties and the resulting imperfections in distance 359
measurement, since at times they lead to scan points 360
that appear to be in contradiction with human eye per- 361
ception or a camera. As the goal of our modeling ap- 362
proach is to generate a photo realistic model, we are 363
interested in reconstructing what the human eye or a 364
camera would observe while moving around in the city. 365
As such, we discuss the discrepancies between these 366
two different sensing modalities in this section. 367

4.1. Discrepancies Due to Different Resolution 368

The beam divergence of the laser scanner is about 15 369
milliradians (mrad) and the spacing, hence the angu- 370
lar resolution, is about 17 mrad. As such, this is much 371
lower than the resolution of the camera image with 372
about 2.1 mrad in the center and 1.4 mrad at the image 373
borders. Therefore, small or thin objects, such as ca- 374
bles, fences, street signs, light posts and tree branches, 375
are clearly visible in the camera image, but only par- 376
tially captured in the scan. Hence they appear as “float- 377
ing” vertices, as seen in the depth image in Fig. 9. 378

4.2. Discrepancies Due to the Measurement Physics 379

Camera and eye are passive sensors, capturing light 380
from an external source; this is in contrast with a laser 381
scanner, which is an active sensor, and uses light that 382
it emits itself. This results in substantial differences 383
in measurement of reflecting and semitransparent sur- 384
faces, which are in form of windows and glass fronts 385
frequently present in urban environments. Typically, 386
there is at least 4% of the light reflected at a single 387
glass/air transition, so a total of at least 8% per win- 388
dow; if the window has a reflective coating, this can be 389
larger. The camera typically sees a reflection of the sky 390
or a nearby building on the window, often distorted or 391
merged with objects behind the glass. Although most 392
image processing algorithms would fail in this situa- 393
tion, the human brain is quite capable of identifying 394
windows. In contrast, depending on the window re- 395
flectance, the laser beam is either entirely reflected, 396
most times in a different direction from the laser itself, 397
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Figure 8. Scan grid representations: (a) 3D vertices; (b) depth image.

Figure 9. “Floating” vertices.

resulting in no distance value, or is transmitted through398
the glass. In the latter case, if it hits a surface as shown399
in Fig. 10, the backscattered light travels again through400
the glass. The resulting surface reflections on the glass401
only weaken the laser beam intensity, eventually below402

Figure 10. Laser measurement in case of a glass window.

the detection limit, but do not otherwise necessarily af- 403
fect the distance measurement. To the laser, the window 404
is quasi non-existent, and the measurement point is gen- 405
erally not on the window surface, unless the surface is 406
orthogonal to the beam. In case of multi-reflections, the 407
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situation becomes even worse as the measured distance408
is almost random.409

4.3. Discrepancies Due to Different Scan410
and Viewpoints411

Laser and camera are both limited in that they can only412
detect the first visible/backscattering object along a413
measurement direction and as such cannot deal with414
occlusions. If there is an object in the foreground, such415
as a tree in front of a building, the laser cannot cap-416
ture what is behind it; hence, generating a mesh from417
the obtained scan points results in a hole in the build-418
ing. We refer to this type of mesh hole as occlusion419
hole. As the laser scan points resemble a cylindrical420
projection, but rendering is parallel or perspective, in421
presence of occlusions, it is impossible to reconstruct422
the original view without any holes, even for the view-423
points from which data was acquired. This is a special424
property of our fast 2D data acquisition method. An425
interesting fact is that the wide-angle camera images426
captured simultaneously with the scans often contain427
parts of the background invisible to the laser. These428
could be potentially used either to fill in geometry us-429
ing stereo techniques, or to verify the validity of the430
filled in geometry obtained from using interpolation431
techniques.432

For a photo realistic model, we need to devise433
techniques for detecting discrepancies between the434
two modalities, removing invalid scan points, and435
filling in holes, either due to occlusion or due to436
unpredictable surface properties; we will describe437
our approaches to these problems in the following438
sections.439

5. Multi-Layer Representation440

To ensure that the facade model looks reasonable from441
every viewpoint, it is necessary to complete the geom-442
etry for the building facades. Typically, our facades are443
2 1/2 D objects rather than full 3D objects, and hence444
we introduce a representation based of multiple depth445
layers for the street scenery, similar to the one pro-446
posed in Chang and Zakhor (1999). Each depth layer447
is a scan grid, and the scan points of the original grid448
are assigned to exactly one of the layers. If at a certain449
grid location there is a point in a foreground layer, this450
location is empty in all layers behind it and needs to be451
filled in.452

Even though the concept can be applied to an arbi- 453
trary number of layers, we found that it is in our case 454
sufficient to generate only two, namely a foreground 455
and a background layer. To assign a scan point to ei- 456
ther one of the two layers we make the following as- 457
sumptions about our environment: Main structures, i.e. 458
buildings, are usually (a) vertical, and (b) extend over 459
several feet in horizontal dimension. Furthermore, we 460
assume that (c) building facades are roughly perpen- 461
dicular to the driving direction and that (d) most scan 462
points correspond to facades rather than to foreground 463
objects, as it can occur in residential areas with houses 464
hidden behind trees. Under these conditions, we can ap- 465
ply the following steps to identify foreground objects: 466

For each vertical scan n corresponding to a column in 467
the depth image, we define the main depth as the depth 468
value that occurs most frequently, as shown in Fig. 11. 469
The scan vertices corresponding to the main depth lie 470
on a vertical line, and the first assumption suggests that 471
this is a main structure, such as a building, or perhaps 472
other vertical objects, such as a street light or a tree 473
trunk. With the second assumption, we filter out the 474

Figure 11. Main depth computation for a single scan n: (a) laser
scan with rays indicating the laser beams and dots at the end the
corresponding scan points; (b) computed depth histogram.
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Figure 12. Two-dimensional histogram for all scans.

latter class of vertical objects. More specifically, our475
processing steps can be described as follows:476

We sort all depth values sn,υ for each column n of477
the depth image into a histogram as shown in Fig. 11(a)478
and (b), and detect the peak value and its correspond-479
ing depth. Applying this to all scans results in a 2D480
histogram as shown in Fig. 12, and an individual main481

Figure 13. (a) Foreground layer; (b) background layer.

depth value estimate for each scan. Based on the second 482
assumption, isolated outliers are removed by applying 483
a median filter on these main depth values across the 484
scans, and a final depth value is assigned to each col- 485
umn n. We define a “split” depth, γn , for each column 486
n, and set it to the first local minimum of the histogram 487
occurring immediately before main depth, i.e. with a 488
depth value smaller than the main depth. Taking the first 489
minimum in the distribution instead of the main value 490
itself has the advantage that points clearly belonging 491
to foreground layers are splits off, whereas overhang- 492
ing parts of buildings, for which the depth is slightly 493
smaller than the main depth, are kept in the main layer 494
where they logically belong to, as shown in Fig. 11. 495

A point can be identified as a ground point if its z co- 496
ordinate has a small value and its neighbors in the same 497
scan column have a similarly low z value. We prefer 498
to include the ground in our models, and as such, as- 499
sign ground points also to the background layer. There- 500
fore, we split layers by assigning a scan point Pn,υ to 501
the background layer, if sn,υ > γn or Pn,υ is a ground 502
point, and to the foreground layer otherwise. Figure 13 503
shows an example for the resulting foreground and 504
background layers. 505

Since the steps described in this section assume the 506
presence of vertical buildings, they cannot be expected
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to work for segments that are dominated by trees; this507
also applies to the processing steps we introduce in508
the following sections. As our goal is to reconstruct509
buildings, path segments can be left unprocessed and510
included “as is” in the city model, if they do not contain511
any structure. A characteristic of a tree area is its fractal-512
like geometry, resulting in a large variance among ad-513
jacent depth values, or even more characteristically,514
many significant vector direction changes for the edges515
between connected mesh vertices. We define a coeffi-516
cient for the fractal nature of a segment by counting517
vertices with direction changes greater than a specific518
angle, e.g. twenty degrees, and dividing them by the519
total number of vertices. If this coefficient is large, the520
segment is most likely a tree area and should not be521
made subject to the processing steps described in this522
section. This is for example the case for the segment523
shown in Fig. 9.524

After splitting layers, all grid locations occupied in525
the foreground layer are missing in the background526
layer as the vertical laser does not capture any oc-527
cluded geometry; in the next section we will describe528
an approach for filling these missing grid locations529
based on neighboring pixels. However, in our data ac-530
quisition system there are 3D vertices available from531
other sources, such as stereo vision and the horizon-532
tal scanner used for navigation. Thus, it is conceiv-533
able to use this additional information to fill some534
in the depth layers. Our approach to doing so is as535
follows:536

Given a set of 3D vertices Vi obtained from a dif-537
ferent modality, determine the closest scan direction538
for each vertex and hence the grid location (n, υ) it539
should be assigned to. As shown in Fig. 14, each Vi540
is assigned to the vertical scanning plane, Sn , with the541
smallest Euclidean distance, corresponding to column542

Figure 14. Sorting additional points into the layers.

Figure 15. Background layer after sorting in additional points from
other modalities.

n in the depth image. Using simple trigonometry, the 543
scanning angle under which this vertex appears in the 544
scanning plane, and hence the depth image row υ, can 545
be computed, as well as the depth dn,υ of the pixel. 546

We can now use these additional vertices to fill in 547
the holes. To begin with, all vertices that do not belong 548
to background holes are discarded. If there is exactly 549
one vertex falling onto a grid location, its depth is di- 550
rectly assigned to that grid location; for situations with 551
multiple vertices, median depth value for this location 552
is chosen. Figure 15 shows the background layer from 553
Fig. 13(b) after sorting in 3D vertices from stereo vi- 554
sion and horizontal laser scans. As seen, some holes 555
can be entirely filled in, and the size of others becomes 556
smaller, e.g. the holes due to trees in the tall building on 557
the left side. Note that this intermediate step is optional 558
and depends on the availability of additional 3D data. 559

6. Background Layer Postprocessing 560
and Mesh Generation 561

In this section, we will describe a strategy to remove 562
erroneous scan points, and to fill in holes in the back- 563
ground layer. There exists a variety of successful hole 564
filling approaches, for example based on fusing mul- 565
tiple scans taken from different positions (Curless and 566
Levoy, 1996; Stamos and Allen, 2002). Most previ- 567
ous work on hole filling in the literature has been fo- 568
cused on reverse engineering applications, in which a 569
3D model of an object is obtained from multiple laser 570
scans taken from different locations and orientations. 571
Since these existing hole filling approaches are not ap- 572
plicable to our experimental setup, our approach is to 573
estimate the actual geometry based on the surrounding 574
environment and reasonable heuristics. One cannot ex- 575
pect this estimate to be accurate in all possible cases, 576
rather to lead to an acceptable result in most cases, thus 577
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reducing the amount of further manual interventions578
and postprocessing drastically. Additionally, the esti-579
mated geometry could be made subject to further veri-580
fication steps, such as consistency checks by applying581
stereo vision techniques to the intensity images cap-582
tured by the camera.583

Our data typically exhibits the following character-584
istics:585

• Occlusion holes, such as those caused by a tree,586
are large and can extend over substantial parts of a587
building.588

• A significant number of scan points surrounding a589
hole may be erroneous due to glass surfaces.590

• In general, a spline surface filling is unsuitable, as591
building structures are usually piecewise planar with592
sharp discontinuities.593

• The size of data set resulting from a city scan is huge,594
and therefore the processing time per hole should be595
kept to a minimum.596

Based on the above observations, we propose the597
following steps for data completion.598

6.1. Detecting and Removing Erroneous Scan599
Points in the Background layer600

We assume that erroneous scan points are due to601
glass surfaces, i.e. the laser measured either an in-602
ternal wall/object, or a completely random distance603
due to multi-reflections. Either way, the depth of the604
scan points measured through the glass is substantially605
greater than the depth of the building wall, and hence606
these points are candidates for removal. Since glass607
windows are usually framed by the wall, we remove608
the candidate points only if they are embedded among609
a number of scan points at main depth. An example610
of the effect of this step can be seen by comparing the611
windows of the original image in Fig. 16(a) with the612
processed background layer in Fig. 16(b).613

6.2. Segmenting the Occluding Foreground Layer614
into Objects615

In order to determine holes in the background layer616
caused by occlusion, we segment the occluding fore-617
ground layer into objects and project segmentation onto618
the background layer. This way, holes can be filled in619
one “object” at a time, rather than all at the same time;620
this approach has the advantage that more localized621

Figure 16. Processing steps of depth image. (a) Initial depth im-
age. (b) Background layer after removing invalid scan points. (c)
Foreground layer segmented. (d) Occlusion holes filled. (e) Final
background layer after filling remaining holes.



P1: GDU

International Journal of Computer Vision KL3179-04/5384379 September 24, 2004 17:44

UNCORRECTED
PROOF

170 Frueh, Jain and Zakhor

hole filling algorithms are more likely to result in vi-622
sually pleasing models than global ones. We segment623
the foreground layer by taking a random seed point624
that does not yet belong to a region, and applying a625
region growing algorithm that iteratively adds neigh-626
boring pixels if their depth discontinuity or their local627
curvature is small enough. This is repeated until all pix-628
els are assigned to a region, and the result is a region629
map as shown in Fig. 16(c). For each foreground re-630
gion, we determine boundary points on the background631
layer; these are all the valid pixels in the background632
layer that are close to hole pixels caused by the occlud-633
ing object.634

6.3. Filling Occlusion Holes in the Background635
Layer for Each Region636

As the foreground objects are located in front of main637
structures and in most cases stand on the ground, they638
occlude not only parts of a building, but also parts of639
the ground. Specifically, an occlusion hole caused by640
a low object, such as a car, with a large distance to641
the main structure behind it, is typically located only642
in the ground and not in the main structure. This is be-643
cause the laser scanner is mounted on top of a rack, and644
as such has a top down view of the car. As a plane is a645
good approximation to the ground, we fill in the ground646
section of an occlusion hole by the ground plane. There-647
fore, for each depth image column, i.e. each scan, we648
compute the intersection point between the line through649
the main depth scan points and the line through ground650
scan points. The angle υ ′

n at which this point appears651
in the scan marks the virtual boundary between ground652
part and structure part of the scan; we fill in structure653
points above and ground points below this boundary654
differently.655

Applying a RANSAC algorithm, we find the plane656
with the maximum consensus, i.e. maximum number657
of ground boundary points on it, as the optimal ground658
plane for that local neighborhood. Each hole pixel with659
υ < υ ′

n is then filled in with a depth value according660
to this plane. It is possible to apply the same tech-661
nique for the structure hole pixels, i.e. the pixels with662
υ > υ ′

n , by finding the optimal plane through the struc-663
ture boundary points and filling in the hole pixels ac-664
cordingly. However, we have found that in contrast to665
the ground, surrounding building pixels do not often666
lie on a plane. Instead, there are discontinuities due to667
occluded boundaries and building features such as mar-668
quees or lintels, in most cases extending horizontally669

across the building. Therefore, rather than filling holes 670
with a plane, we fill in structure holes line by line hori- 671
zontally, in such a way that the depth value at each pixel 672
is the linear interpolation between the closest right and 673
left structure boundary point, if they both exist; other- 674
wise no value is filled in. In a second phase, a similar 675
interpolation is done vertically, using the already filled 676
in points as valid boundary points. This method is not 677
only simple and therefore computationally efficient, it 678
also takes into account the surrounding horizontal fea- 679
tures of the building in the interpolation. The resulting 680
background layer is shown in Fig. 16(d). 681

6.4. Postprocessing the Background Layer 682

The resulting depth image and the corresponding 3D 683
vertices can be improved by removing scan points that 684
remain isolated, and by filling small holes surrounded 685
by geometry using linear interpolation between neigh- 686
boring depth pixels. The final background layer after 687
applying all processing steps is shown in Fig. 16(e). 688

In order to create a mesh, each depth pixel can be 689
transformed back into a 3D vertex, and each vertex Pn,υ 690
is connected to a depth image neighbor Pn+�n,υ+�υ if 691

|sn+�n,υ+�υ − sn,υ | < smax or if

cos ϕ > cos ϕmax

with 692

cos ϕ = ( �Pn−�n,υ−�υ − �Pn,υ) · ( �Pn,υ − �Pn+�n,υ+�υ)

| �Pn−�n,υ−�υ − �Pn,υ | ·| �Pn,υ − �Pn+�n,υ+�υ |
Intuitively, neighbors are connected if their depth 693
difference does not exceed a threshold smax or the 694
local angle between neighboring points is smaller 695
than threshold angle ϕmax. The second criteria is 696
intended to connect neighboring points that are on a 697
line, even if their depth difference exceeds smax. The 698
resulting quadrilateral mesh is split into triangles, and 699
mesh simplification tools such as Qslim (Garland and 700
Heckbert, 1997) can be applied to reduce the number of 701
triangles. 702

7. Atlas Generation for Texture Mapping 703

As photorealism cannot be achieved by using geometry 704
alone, we need to enhance our model with texture data. 705
To achieve this, we equip our data acquisition system 706
with a digital color camera with a wide-angle lens. The 707
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Figure 17. Background mesh triangles projected onto camera images. (a) Camera image. (b) Hole filled background mesh projected onto the
image and shown as white triangles; occluded background triangles project onto foreground objects. The texture of foreground objects such as
the trees should not be used for texturing background triangles corresponding to the building facade.

camera is synchronized with the two laser scanners,708
and is calibrated against the laser scanners’ coordinate709
system; hence, the camera position can be computed for710
all images. After calibrating the camera and removing711
lens distortion in the images, each 3D vertex can be712
mapped to its corresponding pixel in an intensity image713
by a simple projective transformation. As the 3D mesh714
triangles are small compared to their distance to the715
camera, perspective distortions within a triangle can716
be neglected, and each mesh triangle can be mapped717
to a triangle in the picture by applying the projective718
transformation to its vertices.719

As described in Section 4, camera and laser scanners720
have different viewpoints during data acquisition, and721
in most camera pictures, at least some mesh triangles722
of the background layer are occluded by foreground723
objects; this is particularly true for triangles that con-724
sist of filled-in points. An example of this is shown in725
Fig. 17 where occluded background triangles project726
onto foreground objects such as the tree. The back-727
ground triangles are marked in white in Fig. 17. Al-728
though the pixel location of the projected background729
triangles is correct, some of the corresponding texture730
triangles merely correspond to the foreground objects,731
and thus should not be used for texture mapping the732
background triangles.733

In this section, we address the problem of segment-734
ing out the foreground regions in the images so that their735
texture is not used for the background mesh triangles.736
After segmentation, multiple images are combined into737

a single texture atlas; we then propose a number of tech- 738
niques to fill in the texture holes in the atlas resulting 739
from foreground occlusion. The resulting hole filled at- 740
las is finally used for texture mapping the background 741
mesh. 742

7.1. Foreground/Background Segmentation 743
in the Images 744

A simple way of segmenting out the foreground objects 745
is to project the foreground mesh onto the camera im- 746
ages and mark out the projected triangles and vertices. 747
While this process works adequately in most cases, it 748
could miss out some parts of the foreground objects 749
such as those shown in Fig. 18, where projected fore- 750
ground geometry is marked in white. As seen in the 751
figure, some small portions of the foreground tree are 752
incorrectly considered as background. This is due to 753
following reasons: 754

1. The foreground scan points are not dense enough 755
for segmenting the image with pixel accuracy, es- 756
pecially at the boundaries of foreground objects. 757

2. The camera captures side views of foreground 758
objects whereas the laser scanner captures a di- 759
rect view, as illustrated in Fig. 19. Hence, some 760
foreground geometry does not appear in the 761
laser scans and as such cannot be marked as 762
foreground. 763
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Figure 18. Identifying foreground in images by projection of the foreground mesh. White denotes the projected foreground and thus image
areas not to be used for texture mapping of facades.

Figure 19. Some foreground objects at oblique viewing angle are not entirely marked in camera images.

To overcome this problem, we have developed a764
second, more sophisticated method for pixel-accurate765
foreground segmentation based on the use of corre-766
spondence error. The overview of our approach is as767
follows:768

After splitting the scan points into the foreground769
and background layers, the foreground scan points are770
projected onto the images. A flood-filling algorithm is771
applied to all the pixels within a window centered at772
each of the projected foreground pixels using cues of773
color constancy and correspondence error. The color774
at every pixel in the window is compared to that of775
the center pixel. If the colors are in agreement, and the776
correspondence error value at the test pixel is close or777
higher than the value at the center pixel, the test pixel778
is assigned to the foreground.779

In what follows we describe the notion of correspon- 780
dence error in more detail. Let I = {I1, I2, . . . , In} 781
denote the set of camera images available for a quasi- 782
linear path segment. Consider two consecutive images 783
Ic−1 and Ic. Consider a 3D point x belonging to the 784
background mesh obtained after geometry hole filling 785
described in Section 7. x is projected to the images Ic−1 786
and Ic using the available camera position. Assuming 787
that the projected point is within the clip region of both 788
images, let its coordinates in Ic−1 and Ic be denoted 789
by uc−1 and uc respectively. If x is not occluded by 790
any foreground object in an image, then its pixel co- 791
ordinates in the image belong to the background and 792
represent x; otherwise its pixel coordinates correspond 793
to the occluding foreground object. This leads to three 794
cases described below, and illustrated in Fig. 20: 795
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Figure 20. Illustration of correspondence error. (a) background scan point is unoccluded in both images. (b) background scan point occluded
in one of the images. (c) background scan point occluded in both images. The search window and correlation window are marked for clarity. The
line represents the correspondence error vector. The correlation window slides in the search window in order to find the best matching window.

1. x is occluded in neither images as shown in796
Fig. 20(a); uc−1, and uc both belong to the back-797
ground. If the camera position is known precisely,798
uc would be the correspondence point for uc−1. In799
practice, the camera position is known only approx-800
imately, and taking uc−1 as a reference, its corre-801
spondence point in Ic can be located close to uc.802

2. x is occluded only in one of the images as shown in803
Fig. 20(b); one of uc−1 or uc belongs to a foreground804
object due to occlusion of point x, and the other805
belongs to the background.806

3. Point x is occluded in both images as shown in 807
Fig. 20(c), and both uc−1 and uc belong to fore- 808
ground objects. 809

In all three cases the best matching pixel to uc−1 810
in Ic, denoted by uc−1,c, is found by searching in a 811
window centered around uc, and performing color cor- 812
relation as illustrated in Fig. 20. The length of vec- 813
tor v(uc, uc−1,c) then denotes the correspondence error 814
between uc−1 and uc. If |v(uc, uc−1,c)| is large, one 815
or both of uc−1 and uc belong to a foreground object
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resulting in cases 2 or 3. In the next step when im-816
ages Ic and Ic+1 are considered, v(uc+1, uc,c+1) is com-817
puted and we define the correspondence error at pixel818
uc as:819

ε(uc) = max(|v(uc, uc−1,c)|, |v(uc+1, uc,c+1)|)

Intuitively, if the correspondence error at a pixel is large820
the pixel likely belongs to a foreground object. The821
above equation is used to compute the correspondence822
error at all the pixels corresponding to projected back-823
ground scan points. To compute the correspondence824
error at all other pixels within the window centered at825
each of the projected foreground scan points, we apply826
nearest neighbor interpolation. Each pixel in the win-827
dow is declared to be foreground if (a) its color is in828
agreement with the center pixel, and (b) its correspon-829
dence error value is close or higher than the value at830
the center pixel.831

The max operation in the above equation has the ef-832
fect of not missing out any foreground pixels. Even833
though this approach results in large values of cor-

Figure 21. (a), (b), (c) sequence of three camera images Ic−1, Ic, Ic+1. (d) correspondence error for Ic shown as gray values. White corresponds
to low value and black corresponds to high value of ε. Red pixels are pixels where no background scan points projected. ε is not computed
at these pixels. (e) Foreground scan points marked as white pixels. (f) Foreground regions of Ic marked as white, using color constancy and
correspondence error. The green triangles are the triangles used for texture mapping/atlas generation from this image.

respondence error at some background pixels corre- 834
sponding to case 2 above, we choose to adopt it for 835
following reasons: 836

1. The flood filling algorithm is applied to projected 837
foreground scan points only within a square win- 838
dow w, the size of which is 61 × 61 pixels in our 839
case; so if a background pixel has a high value of ε 840
but has no projected foreground scan point within a 841
neighborhood equal to size of w, it is never sub- 842
jected to flood filling and thus never marked as 843
foreground. 844

2. Marking non-foreground pixels as foreground is 845
not as problematic as leaving foreground pixels un- 846
marked. This is because the same 3D point is ob- 847
served in multiple camera images, and even though 848
it may be incorrectly classified as foreground in 849
some images, it is likely to be correctly classified as 850
background in others. On the other hand incorrect 851
assignment of foreground pixels to the background 852
and using then for texturing, results in a erroneous 853
texture as discussed before.
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Figures 21(a)–(c) show a sequence of three cam-854
era images, and Fig. 21(d) shows the correspondence855
error for the center image shown as gray values; the856
gray values have been scaled so that 0 or black corre-857
sponds to maximum value of ε, and 255 or white cor-858
responds to minimum value of ε. The correspondence859
error has been computed for each projected background860
scan point. A 7 × 7 window is centered at each pro-861
jected background scan point, and ε at all pixels in the862
window has been determined using nearest neighbor863
interpolation. The red pixels denote those for which864
ε has not been computed or interpolated in the im-865
age. The image looks like a roughly segmented fore-866
ground and background. Figure 21(e) shows the pro-867
jected foreground scan points marked as white pixels.1868
Figure 21(f) shows the foreground segmentation using869
flood-filling with color and correspondence error com-870
parisons as explained in this section. The foreground871
has been marked in white color. The green triangles872
are the triangles used for texture mapping/atlas gener-873
ation from this image. As seen, there are some back-874
ground pixels that have been incorrectly assigned to the875
foreground. This can be attributed to the fact that our876
algorithm has been purposely biased to maximize the877
size of foreground region in order to avoid erroneously878
assigning background pixels to foreground.879

7.2. Texture Atlas Generation880

Since most parts of a camera image correspond to ei-881
ther foreground objects, or facade areas visible in other882
images at a more direct view, we can reduce the amount883
of texture imagery by extracting only the parts actually884
used. The vertical laser scanner results in a vertical col-885
umn of scan points, and triangulation of the scan points886
thus results in a mesh with a row-column structure as887
can be seen in Fig. 17(b). The inherent row-column888
structure of the triangular mesh permits to assemble a889
new artificial image with a corresponding row-column890
structure, and reserved spaces for each texture triangle.891
This so-called texture atlas is created by performing892
the following steps: (a) Determining the inter-column893
and inter-row spacing for each consecutive column and894
row pair in the mesh and using this to reserve space in895
the atlas. (b) Warping each texture triangle to fit to the896
corresponding reserved space in the atlas and copying897
it into the atlas. (c) Setting texture coordinates of the898
mesh triangles to the location in the atlas.899

Since in this manner the mesh topology of the tri-900
angles is preserved and adjacent triangles align auto-901

matically due to the warping process, the resulting tex- 902
ture atlas resembles a mosaic image. While the atlas 903
image might not visually look precisely proportionate 904
due to slightly non-uniform spacing between vertical 905
scans, these distortions are inverted by the graphics 906
card hardware during the rendering process, and are 907
thus negligible. 908

Figures 22(a) and (b) illustrate the atlas generation: 909
From the acquired stream of images, the utilized texture 910
triangles are copied into the texture atlas as symbolized 911
by the arrows. In this illustration, only five original im- 912
ages are shown; in this example we have actually com- 913
bined 58 images of 1024 × 768 pixels size to create 914
a texture atlas of 3180 × 540 pixels. Thus, the texture 915
size is reduced from 45.6 million pixels to 1.7 mil- 916
lion pixels, while the resolution remains the same. If 917
occluding foreground objects and building facade are 918
too close, some facade triangles might not be visible 919
in any of the captured imagery, and hence cannot be 920
texture mapped at all. This leaves visually unpleasant 921
holes in the texture atlas, and hence in final rendering 922
of the 3D models. In the following, we propose ways of 923
synthesizing plausible artificial texture for these holes. 924

7.3. Hole Filling of the Atlas 925

Early work relating to disocclusion in images was done 926
by Nitzberg et al. (1993). Significant improvements 927
to this were made in Masnou and Morel (1998) and 928
Ballester et al. (2000, 2001). These methods are capable 929
of filling in small holes in non-textured regions and 930
essentially deal with local Inpainting; they thus cannot 931
be used for filling in large holes or holes in textured 932
regions (Chan and Shen, 2001). We propose a simple 933
and efficient method of hole filling that first completes 934
regions of low spatial frequency by interpolating the 935
values of surrounding pixels, and then uses a copy-paste 936
method to synthesize artificial texture for the holes. 937
In what follows, we explain the above steps in more 938
detail. 939

Horizontal and Vertical Interpolation. Our pro- 940
posed algorithm first fills in holes in regions of low 941
variance using linear interpolation of surrounding pixel 942
values. A generalized two-dimensional (2D) linear in- 943
terpolation is not advantageous over a one-dimensional 944
(1D) interpolation in a man-made environment where 945
features are usually either horizontal or vertical e.g. 946
curbs run across the streets horizontally, edges of fa- 947
cades are vertical, banners on buildings are horizontal. 948
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Figure 22. (a) Images obtained after foreground segmentation are combined to create a texture atlas. In this illustration only five images are
shown, whereas in this particular example 58 images were combined to create the texture atlas. (b) Atlas with texture holes for the facade
portions that were not visible in any image. (c) Artificial texture is synthesized in the texture holes to result in a filled in atlas that is finally used
for texturing the background mesh.

One-dimensional interpolation is simple, and is able to949
recover most sharp discontinuities and gradients. We950
perform 1D horizontal interpolation in the following951
way: for each row, pairs of pixels between which RGB952
information is missing are detected. The missing values953
are filled in by a linear interpolation of the boundary954
pixels if (a) the boundary pixels at the two ends have955
similar values, and (b) the variances around the bound-956
aries are low at both ends. We follow this by vertical957
interpolation in which for each column the missing val-958
ues are interpolated vertically.959

Figure 23(a) shows part of a texture atlas with holes960
marked in red. Figure 23(b) shows the image after a961
pass of 1D horizontal interpolation. As seen, horizontal962

edges such as the blue curb are completed. Figure 23(c) 963
shows the image after horizontal and vertical interpo- 964
lation. We find the interpolation process to be simple, 965
fast, and to complete the low frequency regions well. 966

The Copy-Paste Method. Assuming that building fa- 967
cades are highly repetitive, we fill holes that could not 968
be filled by horizontal and vertical interpolation, by 969
copying and pasting blocks from other parts of the im- 970
age. This approach is similar to the one proposed in 971
Efros and Freeman (2001) where a large image is cre- 972
ated with a texture similar to a given template. In our 973
copy-paste method the image is scanned pixel by pixel 974
in raster scan order, and pixels at the boundary of holes 975
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Figure 23. (a) part of a texture atlas with holes marked in red (b) after horizontal interpolation (c) after horizontal and vertical
interpolation.

are stored in an array to be processed. A square win-976
dow w of size (2M + 1) × (2M + 1) pixels is centered977
at a hole pixel p, and the atlas is searched for a win-978
dow denoted by bestmatch(w) which (a) has the same979
size as w, (b) does not contain more than 10% hole980
pixels, and (c) matches best with w. If the difference981
between w and bestmatch(w) is below a threshold, the982
bestmatch is classified as a good match to w and hole983
pixels of w are replaced with corresponding pixels in984
bestmatch(w). The method is illustrated in Fig. 24.985

For the method to work well, we need a suitable met-986
ric that accurately measures the perceptual difference987
between two windows, an efficient search process that988
finds the bestmatch of a window w, a decision rule that989
classifies whether the bestmatch found is good enough,990
and a strategy to deal with cases when the bestmatch991
of a window w is not a good match. In our proposed992
scheme, the difference between two windows consists993
of two components: (a) the sum of color differences

of corresponding pixels in the two windows, and (b) 994
the number of outliers for the pair of windows. These 995
components are weighted appropriately to compute the 996
resulting difference. An efficient search is performed 997
by constructing a hierarchy of Gaussian pyramids, and 998
performing an exhaustive search at a coarse level to 999
find a few good matches, which are then successively 1000
refined at finer levels of the hierarchy. In cases when 1001
no good match is found the window size is changed 1002
adaptively. If a window of size (2M + 1) × (2M + 1) 1003
does not result in a good match, the algorithm finds 1004
the bestmatch for a smaller window of size (M + 1) × 1005
(M + 1) and this process continues until the window 1006
size becomes too small, in our case 9 × 9 pixels. If no 1007
good match is found even after reducing the window 1008
size, the hole pixels are filled by averaging the known 1009
neighbors provided the pixel variance of the neighbors 1010
is low; otherwise the colors of hole pixels are set to the 1011
value of randomly chosen neighbors. 1012
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Figure 24. Illustrating the copy-paste method.

8. Results1013

We drove our equipped truck on a 6769 meters1014
long path in downtown Berkeley, starting from Blake1015
street through Telegraph avenue, and in loops around1016
the downtown blocks. During this 24-minute-drive,1017
we captured 107,082 vertical scans, consisting of1018
14,973,064 scan points. For 11 minutes of driving time1019
in the downtown area, we also recorded a total of 7,2001020
camera images. Applying the described path splitting1021
techniques, we divide the driven path into 73 segments,1022
as shown in Fig. 25 overlaid with a road map. There is1023
no need for further manual subdivision, even at Shat-1024
tuck Avenue, where Berkeley’s street grid structure is1025
not preserved.1026

8.1. Geometry Reconstruction1027

For each of the 73 segments, we generate two meshes1028
for comparison: the first mesh is obtained directly from1029
the raw scans, and the second one from the depth im-1030
age to which we have applied the postprocessing steps1031
described in previous sections. For 12 out of the 731032
segments, additional 3D vertices derived from stereo1033
vision techniques are available, and hence, sorting in1034

Figure 25. Entire path after split in quasi-linear segments.

these 3D points into the layers based on Section 5 1035
does fill some of the holes. For these specific holes, 1036
we have compared the results based on stereo vision 1037
vertices with those based on interpolation alone as de- 1038
scribed in Section 6, and have found no substantial dif- 1039
ference; often the interpolated mesh vertices appear to 1040
be more visually appealing, as they are less noisy than 1041
the stereo vision based vertices. Figure 26(a) shows 1042
an example before processing, and Fig. 26(b) shows 1043
the tree holes completely filled in by stereo vision ver- 1044
tices. As seen, the outline of the original holes can 1045
still be recognized in Fig. 26(b), whereas the points 1046
generated by interpolation alone are almost indistin- 1047
guishable from the surrounding geometry, as seen in 1048
Fig. 26(c). 1049

We have found our approach to work well in the 1050
downtown areas, where there are clear building struc- 1051
tures and few trees. However, in residential areas, 1052
where the buildings are often almost completely hid- 1053
den behind trees, it is difficult to accurately estimate 1054
the geometry. As we do not have the ground truth 1055
to compare with, and as our main concern is the vi- 1056
sual quality of the generated model, we have manu- 1057
ally inspected the results and subjectively determined 1058
the degree to which the proposed postprocessing pro- 1059
cedures have improved the visual appearance. The 1060
evaluation results for all 73 segments before and af- 1061
ter postprocessing techniques described in this paper 1062
are shown in Table 1; the postprocessing does not uti- 1063
lize auxiliary 3D vertices from horizontal laser scan- 1064
ner or the camera. Even though 8% of all processed 1065
segments appear visually worse than the original, the 1066
overall quality of the facade models is significantly im- 1067
proved. The important downtown segments are in most 1068
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Figure 26. Hole filling. (a) Original mesh with holes behind occlud-
ing trees; (b) filled by sorting in additional 3D points using stereo
vision; (c) filled by using the interpolation techniques of Section 6.

cases ready to use and do not require further manual1069
intervention.1070

The few problematic segments all occur in residen-1071
tial areas, consisting mainly of trees. The tree detection1072
algorithm described in Section 5 classifies ten segments1073
as “critical” in that too many trees are present; all six1074
problematic segments corresponding to “worse” and1075
“significantly worse” rows in Table 1 are among them,1076
yet none of the improved segments in rows 1 and 2 are1077

Table 1. Visual comparison of the processed
mesh vs. the original mesh for all 73 segments.

Significantly better 35 48%

Better 17 23%

Same 15 21%

Worse 5 7%

Significantly worse 1 1%

Total 73 100%

Table 2. Visual comparison of the processed
mesh vs. the original mesh for the segments au-
tomatically classified as non-tree-areas.

Significantly better 35 56%

Better 17 27%

Same 11 17%

Worse 0 0%

Significantly worse 0 0%

Total 63 100%

detected as critical. This is significant because it shows 1078
that (a) all problematic segments correspond to regions 1079
with a large number of trees, and (b) they can be suc- 1080
cessfully detected and hence not be subjected to the 1081
proposed steps. Table 2 shows the evaluation results if 1082
only non-critical segments are processed. As seen, the 1083
postprocessing steps described in this paper together 1084
with the tree detection algorithm improve over 80% of 1085
the segments, and never result in degradations for any 1086
of the segments. 1087

In Fig. 27 we show before and after examples, and 1088
the corresponding classifications according to Tables 1 1089
and 2. As seen, except for pair “f”, the proposed post- 1090
processing steps result in visually pleasing models. Pair 1091
f in Fig. 27 is classified by our tree detection algorithm 1092
as critical, and hence, should be left “as is” rather than 1093
processed. 1094

8.2. Texture Reconstruction 1095

For 29 path segments or 3 1
2 city blocks, we recorded 1096

camera images for texture mapping, and hence we re- 1097
construct texture atlases as described in Section 7. Most 1098
facade triangles which were occluded in the direct view 1099
could be texture mapped from some other image with 1100
an oblique view. Only 1.7% of the triangles were not 1101
visible in any image, and therefore required texture 1102
synthesis. 1103

Figure 28 demonstrates our texture synthesis algo- 1104
rithm. Figure 28(a) shows a closer view of the facade to- 1105
gether with holes caused by occlusion from foreground 1106
objects. The holes are marked in white. Figure 28(b) 1107
shows the result using the hole filling technique de- 1108
scribed in Section 7. As seen, the synthesized texture 1109
improves the visual appearance of the model. For com- 1110
parison purposes, Fig. 28 (c) shows the image resulting 1111
from the inpainting algorithm described in Bertalmio 1112
et al. (2000). A local algorithm such as inpainting only 1113
uses the information contained in a thin band around the 1114
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Figure 27. Generated meshes, left side original, right side after the proposed foreground removal and hole filling procedure. The classification
for the visual impression is “significantly better” for the first four image pairs, “better” for pair e and “worse” for pair f.

hole, and hence interpolation of surrounding boundary1115
values cannot possibly reconstruct the window arch or1116
the brick pattern on the wall. The copy-paste method on1117
the other hand, is able to reconstruct the window arch1118

and brick pattern by copying and pasting from other 1119
parts of the image. 1120

In Fig. 29 we apply the texture atlas of Fig. 28 to the 1121
geometry shown in Fig. 27(d) and compare the model 1122



P1: GDU

International Journal of Computer Vision KL3179-04/5384379 September 24, 2004 17:44

UNCORRECTED
PROOF

Data Processing Algorithms for Generating Textured 3D Building Facade Meshes 181

Figure 28. (a) part of texture atlas with holes marked in white; (b)
hole filled atlas using the copy-paste method described in Section 7;
(c) result of Inpainting.

with and without the data processing algorithms de-1123
scribed in this paper. Figure 29(a) shows the model1124
without any processing, Fig. 29(b) the same model af-1125
ter our proposed geometry processing, and Fig. 29(c)

Table 3. Processing times for 3 1
2 downtown Berkeley blocks.

Processing Times for Automated Reconstruction on 2 GHz Pentium 4

Data conversion 14 min

Path reconstruction based on scan matching and global correction 70 min
with Monte Carlo Localization (with DSM and 5,000 particles)

Path segmentation 1 min

Geometry reconstruction 6 min

Texture mapping and atlas generation 27 min

Texture synthesis for atlas holes (including 20 h 51 min
pixel-accurate image foreground removal)

Model optimization for rendering 19 min

Total model generation time without texture synthesis 2 h 17 min

Total model generation time with texture synthesis 23 h 08 min

the model after both geometry processing and texture 1126
synthesis. Note that in the large facade area occluded 1127
by the two trees on the left part of the original mesh, 1128
geometry has been filled in; while most of it could 1129
be texture mapped using oblique camera views, a few 1130
remaining triangles could only be textured via synthe- 1131
sis. As seen, the visual difference between the original 1132
mesh and the processed mesh is striking and appears 1133
to be even larger than in Fig. 27(d). This is because 1134
texture distracts the human eye from missing details 1135
and geometry imperfections introduced by hole filling 1136
algorithms. Finally, Fig. 30 shows the facade model for 1137
the entire 3 1

2 city blocks area. 1138

8.3. Complexity and Processing Time 1139

Table 3 shows the processing time measured on a 2 1140
GHz Pentium 4 PC for the automated reconstruction of 1141
the 3 1

2 complete street blocks of downtown Berkeley 1142
shown in Fig. 30. Without the texture synthesis tech- 1143
nique of Section 7, thus leaving 1.7% of the triangles 1144
untextured, the processing time for the model recon- 1145
struction is 2 hours and 17 minutes. Due to the size 1146
of the texture, our texture synthesis algorithm is much 1147
slower, with processing time varying between <1 min 1148
and 8 hours per segment, depending on the number and 1149
the size of the holes. If quality is more important than 1150
processing speed, the entire model can be reconstructed 1151
with texture synthesis in about 23 hours. 1152

Our approach is not only fast, but also automated: 1153
Besides the driving, which took 11 minutes for the 1154
model shown, the only manual step in our modeling 1155
approach is one mouse click needed to enter the ap- 1156
proximate starting position in the digital surface map 1157
for Monte-Carlo Localization, which is needed once
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Figure 29. Textured facade mesh: (a) without any processing; (b) with geometry processing; and (c) with geometry processing, pixel-accurate
foreground removal and texture synthesis.

Figure 30. Reconstructed facade models: (a) overview; (b) close-up view.
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at the beginning of a model acquisition, and could be1158
automated by using a low-cost GPS.1159

8.4. Accuracy, Limitations, and Possible1160
Failure Scenarios1161

We have demonstrated that our approach is capable1162
of reconstructing facade models for a large-scale ur-1163
ban area. Since we do not have access to ground-truth1164
geometry or texture data, it is difficult, if not impossi-1165
ble, to assess the accuracy of the reconstructed models.1166
However, the following observations can be made:1167

The accuracy of the reconstructed model depends on1168
(a) the accuracy of the raw scan points and (b) errors1169
made during hole filling and mesh reconstruction. The1170
vertical scan points have a basic random error of σs =1171
±3.5 centimeters due to the scanner’s measurement1172
noise. As determined in Frueh (2002), the horizontal1173
scan matching is accurate to within σx = σy = 1 cm1174
for successive horizontal scans, which are on average1175
about 1 meter apart. Thus, the relative position accu-1176
racy for a path corresponding to N matched horizon-1177
tal scans, or about N meters, is σN =

√
N · (σ 2

x + σ 2
y ).1178

Therefore, the total uncertainty between 2 scan points1179
p1, p2 recorded within N meters of driving can be esti-1180
mated to σp1,p2 =

√
N · (σ 2

x + σ 2
y ) + 2σ 2

s . For exam-1181
ple for a 10 meter wide facade,σp1,p2 is 6.67 centimeter.1182
Additionally, our Monte-Carlo-Localization-based ap-1183
proach utilizes a DSM to correct drift-like global pose1184
offsets in the vehicle’s path by redistributing correction1185
vectors among the relative motion estimates. By virtue1186
of the parameters chosen in our Monte-Carlo localiza-1187
tion, these correction vectors are designed to be of the1188
same order of magnitude as σx . While the correction1189
vectors are intended to compensate for errors made1190
during the horizontal scan matching, they can add to1191
the uncertainty due to inaccuracies in the DSM itself.1192
Thus, our models are accurate, locally to about σp1,p2,1193
e.g. few centimeters, and globally to the accuracy of1194
the DSM as a global map, e.g. one meter.1195

Errors made during hole filling and mesh reconstruc-1196
tion can be severe, depending on the scene and the1197
amount of geometry that needs to be “invented”. First,1198
facades perpendicular to the driving direction or en-1199
tirely occluded by large foreground objects are invisi-1200
ble to the laser scanner and hence not even result in a1201
hole to be filled in—such structures do not appear in1202
the model at all. Similarly, facades that are nearly all1203
glass without surrounding solid walls would not pro-1204
vide enough vertical scan points to be recognized as a1205

facade and would therefore not be reconstructed. Sec- 1206
ond, complicated facade objects such as fences, fire es- 1207
capes, or wires cannot be adequately reconstructed; due 1208
to their non-contiguous structure, corresponding scan 1209
points are classified as outliers and removed. Third, it 1210
is obvious that even a human operator can be wrong 1211
in filling a hole, since clues at the boundaries might be 1212
misleading; this is more so for an automated hole filling 1213
algorithm such as ours, which is based on interpolation 1214
and hence implicitly assumes a rather simple geometric 1215
structure. Forth, and most importantly, there are scenes 1216
for which a simple foreground/facade layer concept is 1217
not sufficient. Examples of these are more complex 1218
staged building structures with porches, pillars, oriels, 1219
or non-vertical walls, and residential areas with many 1220
trees. In these cases, our assumptions of Section 5 do 1221
not hold true any longer; using histogram analysis to 1222
separate the scan points into either foreground or fa- 1223
cades is inadequate and results in oddly reconstructed 1224
models as seen in Fig. 27(f). 1225

As a matter of fact, for complicated structures which 1226
differ substantially from a foreground/background sce- 1227
nario, our drive-by approach with one single vertical 1228
scanner does not provide enough data to successfully 1229
reconstruct a satisfactory model and hence is inappli- 1230
cable. Fortunately however, as demonstrated for down- 1231
town Berkeley, the street scenery in most downtown 1232
areas consists of a foreground/background composi- 1233
tion. As a solution to more complicated structures, mul- 1234
tiple vertical laser scanners could be mounted at dif- 1235
ferent orientations; similar to merging 3D scans taken 1236
from multiple viewpoints, these oblique scans could be 1237
used if direct scans are not sufficient. 1238

9. Conclusions 1239

We have proposed a method to reconstruct building fa- 1240
cade meshes from large laser surface scans and camera 1241
images, even in presence of occlusion. Future work will 1242
focus on using color and texture cues to verify filled- 1243
in geometry. Additionally, foreground objects could be 1244
classified and replaced by appropriate generics. 1245

Acknowledgment 1246

This work was sponsored by Army Research Office 1247
under contract DAAD19-00-1-0352. We wish to thank 1248
Sick, Inc. for their support. We also wish to thank John 1249
Flynn for providing the stereo vision results. 1250



P1: GDU

International Journal of Computer Vision KL3179-04/5384379 September 24, 2004 17:44

UNCORRECTED
PROOF

184 Frueh, Jain and Zakhor

Note1251

1. The original image is more than 4 times larger in each dimension.1252
This image is produced by subsampling the original image in1253
a special way. Each white pixel corresponding to a foreground1254
scan point in the original image is retained as a white pixel in the1255
subsampled image. This gives a false impression that the density1256
of foreground scan points is very high. On the other hand if the1257
image is subsampled in the normal fashion, there would almost1258
be no white pixels left in the subsampled image.
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